Medical Applications of Modern Physics

Marco Silari CERN, Geneva, Switzerland marco.silari@cern.ch

Medical Physics

A branch of applied physics concerning the application of physics to medicine

or, in other words

The application of physics techniques to the human health

Introduction to Medical Physics

- Physics discoveries
- Tools for physics applied to medicine
- Medical imaging
- > CT
- PET and PET/CT
- Conventional radiation therapy
- Hadron therapy

The beginnings of modern physics and of medical physics

1895 discovery of X rays

Wilhelm Conrad Röntgen

J.J. Thompson

1897
"discovery" of the electron

The beginnings of modern physics and of medical physics

Henri Becquerel (1852-1908)

1896:

Discovery of natural radioactivity

Thesis of Mme. Curie – 1904 α , β , γ in magnetic field

Hundred years ago

1898
Discovery of polonium and radium

Marie Curie Pierre Curie (1867 – 1934) (1859 – 1906)

Tools for (medical) physics: the cyclotron

1930 Ernest Lawrence invents the cyclotron

The beginnings of modern physics and of medical physics

James Chadwick (1891 – 1974)

1932 Discovery of the neutron

The beginnings of modern physics and of medical physics

Slown-down particle Fast positive particle coming from below

1932 – C. D. Anderson Discovery of the positron

Layer of lead

Inserted in a cloud chamber

Tools for (medical) physics: the electron linac

Sigmur Varian

William W. Hansen

Russell Varian

1939

Invention of the klystron

1947 first linac for electrons 4.5 MeV and 3 GHz

Tools for (medical) physics: the synchrotron

1945: E. McMillan and V.J. Veksler

discover the principle of phase stability

1 GeV electron synchrotron Frascati - INFN - 1959

6 GeV proton synchrotron Bevatron - Berkeley - 1954

CERN accelerators

Medical imaging

TECHNIQUE		YEAR	ENERGY	PHYSICAL PROPERTY	IMAGING
RADIOLOGY	X RAYS IMAGING	1895	X RAYS	ABSORPTION	The state of the s
ECHOGRAPHY	ULTRASOUND IMAGING	1950	US	REFLECTION TRANSMISSION	
NUCLEAR MEDICINE	RADIOISOTOPE IMAGING	1950	γ RAYS	RADIATION EMISSION	

Medical imaging

TECHNIQUE		YEAR	ENERGY	PHYSICAL PROPERTY	IMAGING	
X RAYS COMPUTERIZED TOMOGRAPHY	СТ	1971	X RAYS	ABSORPTION		MORPHOLOGY
MAGNETIC RESONANCE IMAGING	MRI	1980	RADIO WAVES	MAGNETIC RESONANCE		MORPHOLOGY /FUNCTION
POSITRON EMISSION TOMOGRAPHY	PET	1973	γ RAYS	RADIATION EMISSION		FUNCTION

Medical imaging

Röhren fremden Fabrikates.

"Monopol"-Oberflächen-Therapie-Röntgenröhre mit Vorrichtung zur therapeutischen Dosierung der Röntgenstrahlen nach Prof. Dr. A. Köhler, Wiesbaden.

Diese Röhre ist besonders für die Röntgen-Oberflächentherapie bestimmt. Sie gestattet eine praktisch genügend genaue Verabreichung der für eine Sitzung erforderlichen Strahlenmenge durch bequeme direkte Ablesung an einer Thermometerskala.

[22.5] Monopol X-ray tubes were available in 1907 and some were modified to Kohler's specification by 1914. (Courtesy: Siemens AG, Erlangen.)

Medical imaging: x-ray generator and image intensifier

X-ray image versus CT scan

A conventional X-ray image is basically a shadow: you shine a "light" on one side of the body, and a piece of film on the other side registers the silhouette of the bones (to be more precise, organs and tissues of different densities show up differently on the radiographic film).

Shadows give an incomplete picture of an object's shape.

Look at the wall, not at the person. If there's a lamp in front of the person, you see the silhouette holding the banana, but not the pineapple as the shadow of the torso blocks the pineapple. If the lamp is to the left, you see the outline of the pineapple, but not the banana.

© 2002 HowStuffWorks

X-ray computerized tomography (CT)

A - LINEAR SAMPLING

B - ANGULAR SAMPLING

C-RECONSTRUCTION

This is the basic idea of computer aided tomography. In a CAT scan machine, the X-ray beam moves all around the patient, scanning from hundreds of different angles. The computer takes all this information and puts together a **3-D image** of the body.

X RAYS
COMPUTERIZED TOMOGRAPHY

Volumetric CT

< 0,4 sec/rotation Organ in a sec (17 cm/sec) Whole body < 10 sec

Cardiac CT

DYNAMIC CT ACQUISIION

ECG

PHASES OF A CARDIAC CYCLE

- EJECTION FRACTIONCARDIAC OUTPUTREGIONAL WALL MOTION
- ..

FUNCTIONAL PARAMETERS

VOLUME RENDERED IMAGE OF HEART AND VESSELS

Positron Emission Tomography (PET)

<u>ISOTOPES</u>	Half-Life	
11-C	20.4 min,	"natural"
13-N	10.0 min	"natural"
15-0	2.0 min	"natural"
18-F	109.8 min	"pseudo-natural"

Cyclotron

Radiochemistry

J. Long, "The Science Creative Quarterly", scq.ubc.ca

Positron Emission Tomography (PET)

COVERAGE:

~ 15-20 cm

SPATIAL RESOLUTION:

~ 5 mm

SCAN TIME to cover an entire organ:

 ~ 5 min

CONTRAST RESOLUTION:

depends on the radiotracer

PET functional receptor imaging

[11C] **FE-CIT**

Courtesy HSR MILANO

PET coverage and axial sampling

FIRST GENERATION PET

CURRENT GENERATION PET

1 SLICE – 2 cm

> 40 SLICES - 6 mm Axial FOV: 15 -20 cm

PET: total body studies

Courtesy HSR MILANO

¹⁸F-FDG PET/CT

Courtesy HSR MILANO

Summary of accelerators running in the world

CATEGORY OF ACCELERATORS	NUMBER IN USE (*)			
High Energy acc. (E >1 GeV)	~120			
Synchrotron radiation sources	>100			
Medical radioisotope production	~1000			
Radiotherapy accelerators	> 7500	10000		
Research acc. included biomedical research	~1000			
Industrial processing and research	~1500			
Ion implanters, surface modification	>7000			
TOTAL	> 18000			
(*) Adapted from W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, 2004				

Three classes of medical accelerators

Electron linacs for conventional radiation therapy, including

advanced modalities:

- Cyberknife
- IntraOperative RT (IORT)
- Intensity Modulated RT

Low-energy cyclotrons for production of radionuclides for medical diagnostics

Medium-energy cyclotrons and synchrotrons for hadron therapy with protons (250 MeV) or light ion beams (400 MeV/u ¹²C-ions)

X-rays in radiation therapy: medical electron linacs

CyberKnife (CK) Robotic Surgery System

6 MV Linac mounted on a robotic arm

- No flattening filter
- Uses circular cones of diameter 0.5 to 6 cm
- Non-Isocentric
- Average dose delivered per session is 12.5 Gy
- 6 sessions/day
- Dose rate @ 80 cm = 400 cGy/min

http://www.accuray.com/Products/Cyberknife/index.aspx

Intensity Modulated Radiation Therapy

An example of intensity modulated treatment planning with photons. Through the addition of 9 fields it is possible to construct a highly conformal dose distribution with good dose sparing in the region of the brain stem (courtesy of T. Lomax, PSI).

Yet X-rays have a comparatively poor energy deposition as compared to protons and carbon ions

Hadrontherapy: n, p and C-ion beams

Radiobiological effectiveness (RBE)

G. Kraft, 2007 - Results for C ions

Indication	End point	Results photons	Results carbon HIMAC-NIRS	Results carbon GSI
Chordoma	local control rate	30 – 50 %	65 %	70 %
Chondrosarcom a	local control rate	33 %	88 %	89 %
Nasopharynx carcinoma	5 year survival	40 -50 %	63 %	
Glioblastoma	av. survival time	12 months	16 months	
Choroid melanoma	local control rate	95 %	96 % (*)	
sinuses	local control rate	21 %	63 %	
tumours Pancreatic carcinoma	av. survival time	6.5 months	7.8 months	
Liver tumours	5 year survival	23 %	100 %	
Salivary gland tumours	local control rate	24-28 %	61 %	77 %
Soft-tissue carcinoma	5 year survival	31 – 75 %	52 -83 %	

Hadrontherapy

Charged hadrons have a much better energy deposition with respect to X-rays

Proton radiation therapy

Accel-Varian

Loma Linda (built by FNAL)

Loma Linda University Medical Center (LLUMC)

Loma Linda University Medical Center (LLUMC)

Hadron-therapy in Europe

O in operation in construction Δ planned

Yellow = p only Orange = p and

FIGURE 1. Map of Europe showing the present status of the ion beam therapy. The status of different projects is given by the symbols: in operation (); under construction (), planned ()

The type of the facilities is indicated by the colors: yellow – proton only; orange – Carbon and protons.

G. Kraft, Proc. of CAARI 2008, AIP, p. 429

Heavy Ion Therapy Unit at the University of Heidelberg clinics

The HIT heavy ion gantry, weight about 600 tons

National Centre for Oncological Hadrontherapy, CNAO, Italy

I am indebted to Ugo Amaldi (TERA Foundation and University of Milano Bicocca, Italy) and Maria Carla Gilardi (University of Milano Bicocca, Italy) for providing me with many of the slides that I have shown you today.

I also wish to thank David Bartlett (formerly Health Protection Agency, UK) for pointing me to the very interesting book shown on slide 14.