
WMS and Computing Resources
Alexandre F. Boyer
2nd Virtual DIRAC User Workshop
May 10th 2022

Introduction

The DIRAC WMS can:

- Interact with a variety of distributed components (Batch Systems, CEs…).
- Federate a large number of computing resources (mostly from Grids).

But:

- Software always requires more complex hardware.
- Computing infrastructure and funding models are changing.
- National science programs are consolidating computing resources and

encourage using Cloud systems as well as High-Performance Computers.

Objectives

- Support relevant distributed and heterogeneous computing resources for
one or more communities.

- Get as many allocations as needed, as fast as possible if necessary.

- Use these allocations efficiently. Tasks should be adapted to the underlying
resources and respect the allocation conditions.

Table of Contents

- DIRAC Jobs
- Computing Resources
- Supplying Computing Resources with Jobs
- Efficient executions

DIRAC Jobs:
Definition, Structure &

Requirements

Interfaces: link

Job: a type of container to acquire
resources on a computing system.

- Input: executable, arguments,
input data

- Output: stdout/stderr, output
data

Various ways to manage jobs in
DIRAC:

- CLI
- Python API
- WebApp

See the Interfaces presentation for
further details.

https://dirac.readthedocs.io/en/rel-v7r3/UserGuide/Tutorials/JDLsAndJobManagementBasic/index.html
https://indico.cern.ch/event/1107386/contributions/4827829/

Status: link

WMS jobs are proceeding through
a chain of states from Submitting
to Done/Failed.

 Introduction of a strict
JobState machine: Forbid state
transitions which are not allowed
in the state machine definition.

v7r3

https://dirac.readthedocs.io/en/rel-v7r3/AdministratorGuide/Systems/WorkloadManagement/Jobs/index.html

(Default) Structure: link

Executable, arguments and inputs
are part of the workflow (modules
to execute Scripts, Applications).

A workflow is defined in XML.

Executed within an allocation on a
same worker node (not always
true…).

Default behaviour: components
can be set differently.

https://dirac.readthedocs.io/en/rel-v7r3/AdministratorGuide/Systems/Workflow/index.html?highlight=workflow

Requirements

CVMFS (link): getting complex
software stack on distributed
computing infrastructures. Not a
strict requirement.

Getting a compatible environment:
Singularity is used.

- Documentation here
- Within DIRAC here

https://cernvm.cern.ch/fs/
https://singularity-docs.readthedocs.io/en/latest/
https://dirac.readthedocs.io/en/rel-v7r3/CodeDocumentation/Resources/Computing/SingularityComputingElement.html?highlight=Singularity

Computing Resources:
Various computing paradigms

and components

Declaring Computing Resources: link

Computing resources should be
declared in the DIRAC CS Section
/Resources/Sites to be reachable.

- Sites: a virtual administrative
domain

- Site: a physical domain
- CE: an entrypoint within a

physical domain
- Queue: a logical partition within a

Site to split resources according
to their features

/Resources/Sites
LCG { #Sites
 LCG.CERN.cern { # Site
 CEs {
 cern120.cern.ch { # CE
 # CE params

 Queues {
 normal # Queue
 {
 # Queue params
 …

https://dirac.readthedocs.io/en/rel-v7r3/AdministratorGuide/Resources/computingelements.html?highlight=Computing%20Elements

Computing Elements (CEs): link

Intermediary elements between WMS and computing resources, aiming to
ease the interactions with various and heterogeneous computing resources
(Batch Systems, Cloud Providers).

DIRAC implements interfaces to manage jobs via CEs (submit, monitor jobs, get
their status). They are named <CEName>CE.

https://dirac.readthedocs.io/en/rel-v7r3/AdministratorGuide/Resources/computingelements.html?highlight=Computing%20Elements

Grid Computing
Distributed computing infrastructure for
advanced science and engineering:

- “Coordinated resource sharing and
problem-solving in dynamic,
multi-institutional virtual
organizations”

- Virtual Organizations (VO) are
collaborating.

- Ideal to work with HTC workloads.

Manage a cluster of dedicated compute nodes, harness wasted CPU power from
idle desktop workstations. v10 is coming in May 2022, v9 support will end on
February 1st 2023.

HTCondorCE is implemented using the condor CLI, supports local and remote
schedd. Since last year:

- Now supports MP slots
- When coupled with remote schedd, automatically clean outputs

From v10, GSI support will end: token-based authn will replace X509-based
authn (see here). DIRAC is not ready yet.

Grid Computing: HTCondor

v7r2
v7r2

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=PlanToReplaceGridCommunityToolkit
https://htcondor.readthedocs.io/en/latest/

Grid Computing: ARC

Manage jobs on various Batch Systems. LTS version: ARC6

ARCCE is implemented using the Python binding library. Since last year:

- Support of AREX services (via HTTP) via the EMI-ES interface
- Can submit jobs with inputs, outputs in parameters (useful when used as a

standalone)

ARC is slowly dropping support of gridftp services, they provide a REST
interface to interact with AREX services. We are on it: AREXCE PR v7r3

v7r3

v7r3

http://www.nordugrid.org/arc/arc6/
http://www.nordugrid.org/arc/arc6/overview/arc-ce-components.html
https://github.com/DIRACGrid/DIRAC/pull/5542

Grid Computing: no CE

No worries: there is an SSHCE, which can be combined with various Batch
System interfaces: SLURM, Condor, Torque, LSF, GE, OAR.

SSHCE deploys a batch system interface to remote computing infrastructures
and performs remote calls to interact with a given Batch System.

Since last year, efforts have been devoted to SLURM:

- Support Multi-Node allocations
- Minimal support for GPUs

v7r2

v7r3

https://slurm.schedmd.com/

Cloud Computing
On-demand access to a shared pool of
configurable computing resources.

- IaaS, PaaS, SaaS
- Private, Community (OpenStack),

Public (AWS, Google Cloud,
Microsoft Azure), Hybrid

No interoperability between clouds,
not standard

Cloud Computing: VMDIRAC & CloudCE
VMDIRAC:

- VMDIRAC extension now merged into core DIRAC
- Updated for py3 compatibility.

Resources/CloudComputingElement added from

- Provides direct submission to clouds (allocation = one VM instance).
- Based on apache-libcloud, a python library for generalising cloud

interfaces: Provides inbuilt classes for common cloud types, we can add
more classes if needed.

- Uses cloud-init for VM contextualisation.

v7r3

v7r3

https://libcloud.apache.org/
https://cloud-init.io/

High-Performance Computing
Cluster-based systems: computing
resources networked together
(many-core architectures).
Characterized by fast internode
connectivity. Supercomputers are the
largest HPC of the world.

Much more constrained than a
traditional Grid site (no external
connectivity, no CVMFS, external
access to a Batch System). Each HPC is
unique and requires a specific
attention.

https://indico.cern.ch/event/852597/contributions/4331717/
https://indico.cern.ch/event/852597/contributions/4331717/

Volunteering Computing
Large computing power distributed in
hundreds of thousands of personal
computers belonging to the general
public willing to share their resources.

Trustless environments, mechanisms
to check the fidelity of the results.

Works well with preemptible HTC
workloads.

Decentralized cloud concepts inherit
from Volunteering Computing.

Volunteering Computing: BOINC

BOINCCE allows to interact with BOINC resources via SOAP.

No progress since 2013.

“Inner” CEs: basic components

Interfaces to manage jobs within an allocation. “Inner” CEs are independent
from the computing paradigm.

- InProcessCE: execution of the job in the same process as the caller
- SudoCE: execution in a spawned process with a different user ID (used on

VMs to isolate caller environment from the user job)
- SingularityCE: execution inside a Singularity container (isolation of the

environment, possibility to update the environment for user job execution)
e.g. reinstall DIRAC client with different options.

Configuration (in CE section of the CS): LocalCEType = <InnerCE>

“Inner” CEs: PoolCE
Run several jobs simultaneously in separate processes, managed by a
ProcessPool.

The PoolCE transfers jobs to a basic “inner” CE (InProcess, Sudo, Singularity).

Mostly used to partition many-core nodes with jobs having different CPU
requirements:

- Getting a whole node (48 cores)
- Getting available cores (4-16 cores)
- Getting a fixed number of cores (1 core; 5 cores)

Configuration (in CE section of the CS): LocalCEType = Pool/<InnerCE>

Supplying
Computing Resources

 with DIRAC Jobs

Pre-Processing Steps: link
Currently rely on the Executor
architecture:

- Tasks need to be executed before
processing a job (checking
InputData, assigning a job to a
task queue…)

- Executors get tasks once they are
available and process them

 The architecture is going to be
replaced by Celery + Message Queue.
v8.0

https://dirac.readthedocs.io/en/rel-v7r3/DeveloperGuide/AddingNewComponents/DevelopingExecutors/index.html?highlight=Executors

Resources and Jobs Tag
Tags were introduced to declare special capabilities of computing resources

- e.g. Tags = GPU to declare GPU applications support

Tags can be requested in job’s JDLs in order to limit them only to sites with special
capabilities. Site queues can also define jobs with which tags they accept

Tags are not statically predefined and can be used for flexible tuning:

- e.g. site queues offering resources for the biomed VO but only for COVID19 related
jobs define:

RequiredTag = COVID19

VO = biomed

Getting an allocation: pull-based approach
Pilot-Job: resource reservation
container (code here).

- Once installed on a computing
resource, executes configurable
steps.

JobAgent: submits environment
information to the Matcher service,
and gets an appropriate job.

- Job is then submitted to an
“Inner” CE

https://github.com/DIRACGrid/Pilot

Getting an allocation: pull-based approach

Pilot-Job implementation has its repository, independent from DIRAC (Pilot3).
Since last year:

- Various minor features (support for GPUs…)
- Pilot logging is coming: pushing logs to LocalFile, REST or MQ

- DIRAC is then able to get pilot logs and store them in a SE.
- No need to get Pilot outputs from the CEs, they are automatically

transferred by the Pilot itself.
- CloudCE is expecting this feature (no unified way to get outputs from

VM via lib-cloud)

v8.0

Getting an allocation: pull-based approach

SiteDirector: Manage Pilot-Job instantiations.

- Checks waiting jobs, generates Pilot-Jobs if necessary.
- Pushes them to CEs.
- Monitors them.
- Reports data to the Accounting system.

CloudDirector deprecated: SiteDirector + CloudCE as replacement.
CloudDirector will be removed once communities have tested CloudCE.

v8.0

Getting an allocation: pull-based approach

A pull-based approach does work if the remote computing resources have an outbound
connectivity. This is not always the case, especially for HPC sites.

PushJobAgent: a mix between a SiteDirector and a JobAgent. Run outside a Site, fetch
jobs, tag them and submits them to an inner PoolCE.

- Workflows run outside the Site, only the Script/Application/Executable is sent to the
Site

The solution remains simple but consumes a lot of memory: cannot scale.

Will come up with a revised version/architecture in a future DIRAC version.

Getting an allocation: push-based approach

v7r3

CVMFS cannot work if no outbound
connectivity is available.

SubCVMFS, utility to:

- trace applications of interest
- build a subset of CVMFS
- test it with applications of interest
- deploy it to a computing infrastructure

Getting an allocation:
push-based approach

https://zenodo.org/record/6335367

Efficient Executions

DIRAC Benchmark: definition

A given CPU-intensive task can perform differently according to the underlying
CPU used:

- SiteA: 5 secs, SiteB: 15 secs

The DIRAC Benchmark (DB12) is a fast CPU benchmarking solution aiming to
compute the power of a CPU.

DB12 replicates a Monte-Carlo simulation execution (mainly used in the HEP
context).

Provide ~accurate information in less than a minute.

https://github.com/DIRACGrid/DB12

DIRAC Benchmark: structure

DIRAC Benchmark: progress

Since last year:

- DB12 was ported to Python3.9: noticed discrepancies with the Python2
versions (see further details here)

- Introduced correction factors to provide scores close to the Python2
implementation

- DB12 was uploaded to Pipy and Conda-forge: added a CI and tests
- DB12 (the repository) is now properly used within DIRAC (not copy pasted)

v1.0.4

https://zenodo.org/record/5647834

Conclusion
- Keep integrating new kind of computing resources to DIRAC (especially

HPC ones)
- Keep following recent computing resources developments (tokens, end of

GSI support)
- Keep maintaining the DIRAC WMS to efficiently exploit resources

(Pilot-Logging, DB12, Executors)

- While providing a uniform and simple interface to users

