

cherenkov telescope array

Cherenkov Telescope Array (CTA) report

L. Arrabito LUPM CNRS-IN2P3, France

2nd Virtual DIRAC User Workshop 9^{th -} 10th May 2022

- DIRAC in use since > 10 years to manage CTA Monte Carlo simulations
 - Several massive productions in the design phase to optimize the CTA array configuration and layout
 - Support user-specific simulations
- Using almost all DIRAC functionalities
 - WMS, DMS, TS and Production System, etc.
 - CTADIRAC extension developed
- CTA operations will start around 2023
 - Plan to use DIRAC-WMS for real data processing and Monte Carlo simulations potentially coupled with Rucio

- Current installed DIRAC version : 7.3.12
- CTADIRAC server installation composed of 5 servers hosted at CC-IN2P3 and PIC
- Switched to python 3 in October 2021 for servers/client
- CTADIRAC extension also migrated to python 3
- Using resources available to the CTA VO
 - About 10 grid sites (HT-Condor, ARC)

CTA news : approved Array Layouts

CTAO-North, Canarian island

- 4 Large Size Telescopes
- 9 Mid Size Telescopes

CTAO-South, Chile

- 14 Mid Size Telescopes
- 37 Small Size Telescopes
- 15% of observation time each year (dark time available per year)
- 20% monitoring and service data

1-2 Gbps capacity -> Required Data Volume Reduction ratio after 5 years: 50

CTA news : retained Data Centres for offsite processing

4 Data centers ~ equally sharing processing load and storage

- PIC in Barcelona, Spain
- DESY in Zeuthen, Germany
- CSCS in Lugano, Switzerland
- INAF/INFN in Frascati, Italy

CTAO applications remotely controlled and monitored from the CTAO Science Data Management Center at DESY Zeuthen

DIRAC functionalities in use

• WMS

- HTCondor and ARC CEs
- Tests done in the past with SSH CE to access standalone clusters
- Tests done with VMDIRAC to access Cloud resources (2017)
- DMS
- DIRAC File Catalog (Replica and Metadata Catalog)
 - More than 23 million replicas
 - About 20 meta-data defined to characterize CTA datasets
 - Using datasets to expose data selections to users and as input to transformations/productions (currently 650 defined datasets)
- Transformation System
 - For processing workflows and data management operations (FTS as backend)
 - Using the TSCatalog interface (CTA contribution)
- Production System (CTA contribution)
 - For processing workflows composed of several transformations
- Monitoring System with ElasticSearch backend
 - Component Monitoring/WMS history/RMS monitoring
 - Not able yet to use it for Job Parameters (open issue)

DIRAC functionalities we don't use

- Resource Status System
- Centralized Logging
- -> Essentially for lack of time but very interested to test and enable them soon

CTADIRAC extension 1/2

- Extensions of the DIRAC Job API to easily configure CTA applications
- Several scripts to configure/submit different CTA workflows
 - Create transformations for different kinds of CTA Jobs
 - Create productions to build more complex workflows
 - Using datasets as input for transformations and productions
- Scripts used within CTA jobs
 - e.g. put And Register files and set metadata
- Provenance Service to handle CTA provenance metadata
 - Included in CTADIRAC DMS
 - Using PostGreSQL DB as backend

-> Specific to CTA, cannot be ported to vanilla DIRAC

CTADIRAC extension 2/2

- Commands to manage transformations
 - e.g. Create a Moving transformation taking as input a dataset
 - Defined a procedure to finalize a Moving transformation (e.g. done at 97% and getting 'stuck') using a set of commands
 - Check the status of transformation requests, files, get replica informations
 - Take some actions for problematic files, stuck requests, etc. (unregister files, set files to processed, cancel requests, ...)
 - Not sure that the procedure can be generalized to other kinds of transformations
- Commands to manage datasets (create, show, dump, get storage usage per SE, ...)
- -> All these can be generalized if interesting for others

What is your biggest frustration with DIRAC?

- No big frustration with DIRAC 🙂
- Moving to python3, conda and installation with pip facilitates a lot the DIRAC installation (server/client and development setup)
- Topics we mentioned at the last workshop tackled since then
 - Tools to automatically install a fully operational DIRAC server instance (thanks for sharing puppet modules used at CERN)
 - Easy deployment and testing of a full DIRAC development instance

Additional desired features 1/2

- Monitoring System
 - Installed since 2 years for : Component Monitoring/WMS History/RMS Monitoring
 - Component Monitoring is broken but will be restored in v8
 - Currently trying to enable Monitoring for Job Parameters
 - Interested in common Grafana/Kibana dashboards
 - Good to know that they will be available in v8

Additional desired features 2/2

- Token-based AAI (e.g. with IAM)
 - Important for future CTA operations
 - Willing to test this feature when available in v8
- DIRAC-Rucio integration
 - Interested in a enriched interface, in particular for meta-data methods
 - Goal is to be able to use DIRAC Transformation System combined with Rucio

Operations with DIRAC in last 2 years

- About 285 millions CPU HS06 hours
- Used about 6 PB distributed in 7 SEs
- New members in the operation team (O. Gueta, F. Di Pierro)

Data management operations in last 2 years

- Massive migration of 'old' productions from disk to tape (~3 PB)
- Removal of outdated productions (0.5-1 PB)
- Using Transformation System and FTS

FTS transfers in February 2022

Operational incident in the last year 1/2

• Frequent connection timeouts to the Transformation Manager service during productions if using the TSCatalog

dirac-jobexec WARN: Issue getting socket: <DIRAC.Core.DISET.private.Transports.M2SSLTransport.SSLTransport object at 0x2b0b575a98b0> : ('dips', 'ccdcta-server04.in2p3.fr', 9131, 'Transformation/TransformationManager') : timed out:SSLTimeoutError('timed out')

- With TSCatalog enabled
 - Each file is registered in DFC is also attempted to be registered in the TSCatalog (addFile)
 - Idem for setMetadata

Operational incident in the last year 2/2

- Investigations done with DB and sys admins at CC-IN2P3
 - No particular CPU of I/O load observed on Maria DB cluster but found errors reading communication packets
 - No load observed on the server running the TSManager service
 - Relaxing some connection timeout parameters on the Maria DB server did not help
- The same problem reported also by Xiaomei for transformations with > 200k input files even without using the TSCatalog
 - <u>https://github.com/DIRACGrid/DIRAC/discussions/6044</u>
 - Currently trying to tune network parameters on the DIRAC server

Other news since last workshop

- Improved DB infrastructure for CTA-DIRAC at CC-IN2P3
 - 1 MariaDB Galera cluster (2 servers) hosting FileCatalogDB, TS
 DB, PS DB, RMS DB (other DBs hosted at PIC)
 - 1 standalone MariaDB instance hosting AccountingDB
 - No more DB incidents since this update
- Upgrade CTA-DIRAC servers
 - Replacement of 2 servers at PIC planned soon
- Started to use Grafana/Kibana dashboards for Monitoring
- CTADIRAC-Rucio integration (ESCAPE project)

CTADIRAC-Rucio integration 1/2

- Work done in the context of ESCAPE (F. Gillardo (LAPP), A. Bruzzese (PIC) and with the help of C. Serfon)
- Use case
 - Reprocess all raw data (DL0) to higher (DL3) level
- Simplified workflow
 - Raw (DL0) data is identified on tape via metadata
 - Data volume is calculated
 - Data is staged from tape storage to temporary disk
 - Data is reprocessed using CTA software via DIRAC-WMS
 - Final data products (DL3) are verified
 - Ingest the resulting new DL3 data into the datalake
 - Update the corresponding metadata

CTADIRAC-Rucio integration 2/2

- Using a Rucio instance dedicated to CTA managed by PIC
- Using the CTA-DIRAC certification instance
 - Single-server installation (VM hosted at CC-IN2P3)
 - Configured to use the RucioFileCatalog only (for simplicity)
- Using the RucioFileCatalog plugin available in v7.3.12
- Using belle2 extract scope algorithm for now
- First simple tests successful
 - Put and Register File using DataManager with RucioFileCatalog
 - Run jobs accessing Input Data registered in Rucio
- Interested to move to the 'no-config' Rucio version and DIRAC scope algorithm I learned about yesterday or implement a new one for CTA
- Further testing DIRAC-Rucio integration especially combined with the TS when metadata methods will be available

Conclusions and future plans

- DIRAC used successfully in the last ten years for CTA
 - Will play a central in future CTA operations
- Start moving towards a Computing Model with 4 official Data Centers to be used in CTA operations
 - Integrate new sites in CTADIRAC
 - Perform technical data challenges
- Future plans
 - Develop tools and procedures to achieve fully automatized dataprocessing
 - Full failure recovery for transformations/productions
 - Improve the Production System interface and **prepare a tutorial**
- New team member at LUPM from 1st April 2022
- New 2-years position will open at LUPM (end 2022 start 2023)
- Very good communication and support from DIRAC dev team and other communities