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ALICE in 2022
Just finished LS2 upgrade and being in the final commissioning phase

Discussion started in 2011, Upgrade LoI published in 2014

J. Phys. G: Nucl. Part. Phys. 41 087001

Beside the challenging detector developments, the increased data rate also required a new

computing concept

ALICE could build upon the experience from the ALICE High Level Trigger, an online

system exploiting parallel, distributed data processing and hardware acceleration on FPGA

and GPU

It was decided to build a common online-offline compute facility ALICE O2 with a

common concept of distributed computing for data acquisition, simulation,

reconstruction, and analysis

10-years-period of design, development, construction, and commissioning

⇒ that’s the time scale .
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18.5.2021 David Rohr, drohr@cern.ch

ALICE in Run 3: 50 kHz Pb-Pb

Record large minimum bias sample.

- All collisions stored for main detectors → no trigger.

- Continuous readout → data in drift detectors overlap

- 50x more events stored, 50x more data.

- Cannot store all raw data → online compression.

→ Use GPUs to speed up online processing.

Basic processing unit of ALICE: 

Time Frames

• ~10 ms of data

• Contains O(500) collisions

1

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms during production).

- Tracks of different collisions shown in different colors.

.
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ALICE online-offline - ALICE O2

ALICE had to do (and is doing) a

major effort in LS2 to reduce the gap

between required and affordable

computing resources

Conceptual paradigm shift:

quasi-online processing

Algorithmic paradigm shift:

focus on algorithms for synchronous

reconstruction

Triggerless acquisition

Massive utilization of hardware

accelerators

Alternative approaches for simulation

⇒ Complete system designed for high data throughput
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Hardware acceleration in ALICE O2

The Time Projection Chamber is one thing

making ALICE special

Low mass detector

Particle tracking in high occupancy

environment

Data from many collisions overlapping in the

acquisition window

> 3TB/s full reconstruction on GPU
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Installed ALICE EPN farm for Run 3:

250 servers with 8 AMD MI50 GPUs

total 2000 GPUs
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Workflow-oriented definition of the compute topology

On top of FairMQ as transport layer and the O2 data model as data layer, a third software

layer, the Data Processing Layer (DPL) was introduced

The basic building blocks of DPL workflows are

DataProcessors defined as entities with inputs, an

algorithm, and outputs

Workflows combine/chain individual DataProcessors

Multiple workflows can be combined into one workflow

The description is declarative: The user describes what to achieve in terms of process

connectivity and algorithm, the framework takes care of how to realize the workflow and the

connections.
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Analysis Framework
The increase in data and event rate also imposed challenges to the analysis → big need for

increasing and improving throughput, efficiency, and organization

New, dedicated analysis computing model following the common distribution model

Analysis framework built on top of ALICE O2 Data Processing Layer

Columnar in-memory representation

Organized in workflows: modular, mergable entities

Declarative definition of workflows

Analysis framework applies automatic optimization based on the information from

declaration of analysis

⇒ Lots of new concepts emerging and exploited,

⇒ It’s all about understanding the data model
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Anton Alkin, vCHEP 18/05/2021[4/9] [DPL Analysis Framework: Core Design]

Analysis Data Model

Tracks
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fITSClusterMap
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fTPCSignal
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Columns

X α 𝐟(𝐗, 𝐙,𝐦) Index 𝐙 = 𝐗 sin𝜶

1 2

2 3

Static Dynamic Index Expression

Arrow::Array lambda function Arrow::Array Arrow::Array

created in memory

with Gandiva[4]

A B

1

2

3

Interconnected tables
G Self-contained (Tables), as collections

of Columns, connected by indices

passed through sharedmemory

G Represented as ROOT TTree [5] on

disk and as Apache Arrow Table [6] in

memory

G Hierarchy of indices represents log-

ical connections among data Tables

(Tracks →Collisions →BCs)

G Columns and Tables are represented

by C++ types for the end user result-

ing in negligible performance over-

head

.
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Anton Alkin, vCHEP 18/05/2021[6/9] [DPL Analysis Framework: Bulk Operations and Declarative Analysis]

Table Manipulation
Database-like operations
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Combinations

G All operations are zero-copy due to Apache Arrow backend

G Analyzer can directly request joined, grouped, partitioned of filtered table as an

input to their task, combining all four operations if needed

G It is possible to inspect 2-, 3- andmore rows combinations of a particular table

without nested loops or memory caches, by using combinations generator

G A traditional “event loop” interface is also provided

.
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Summary - Distributed computing in ALICE O2

ALICE is now using one unified model for distribution of data and computing tasks within the

common online-offline O2 system. All components follow the same interface and strategy.

multi-process, small, configurable entities

data model to uniquely describe all data in the system

declarative composition

fully decoupled algorithms from transport and I/O

supported plugin of hardware accelerators

common algorithmic code base for CPU and GPU

Lots of expertise in the fields which will be required for future LHC computing

Strong participation from the Norwegian ALICE community
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Summary - Norwegian ALICE computing activities in the coming years
The major LS2 upgrade has just been finished,

in the field of computing. Norwegian ALICE community is contributing to:

Core Data Processing Layer in ALICE O2

Framework for declarative workflows

Analysis framework

JAliEn grid middleware

Neic Nordic Tier 1 participation

⇒ it’s all application-motivated - “we want to do physics”

Recall: many of the challenges for future LHC computing have been tackled in

ALICE already in LS2, We now have expertise, prototypes, and even full-scale

production system

⇒ can be applied in the same manner to ALICE 3 .
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Strategy - Where can we have an impact?

Fields where we can significantly contribute to computing challenges as relatively small group:

First priority: Physics analysis → make analysis easier and more efficient

Simulation and modeling

Verification of algorithms, data quality, and performance

Automized optimization

GPU expertise → extend to analysis and ML surrogate models

We have the unique chance of connecting simulation and modeling to a vast amount of real

data, covering physics, algorithms, operation. Need to continue exploiting this.
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