ATLAS software and computing road-map

James Catmore, UiO

NorCC Strategy kick-off meeting, 11th March 2022

HL-LHC and ATLAS computing

ATLAS road-map for HL-LHC computing

- Prepared as input to the LHCC review of computing for HL-LHC
 - Lays out a concrete plan to deliver the vision set out in the <u>Conceptual Design Report prepared in 2020</u>
 - Consists of a set of milestones to be met in the coming years across all areas of software and computing in ATLAS
 - Milestones are categorised as being as
 - "Maintenance and operation": needed just to stand still
 - "Conservative R&D": development work that can be carried out with existing person power within that domain
 - "Aggressive R&D": development work that will require new person-power or existing personnel committing to new activities, not assumed to come from the relevant domain
 - More aggressive milestones → potentially greater impact on resources
 - Progress will be followed up internally every six months

ATLAS Software and Computing HL-LHC Roadmap

Reference:

Created: 1 October 2021
Last Modified: 22 February 2022
Prepared by: The ATLAS Collaboration

© 2022 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Roadmap topics

Milestones

Project management

MID	DID	Description	Due
PR-1		First evaluation of effort needed to deliver on HL-LHC milestones	Q2 20
PR-2		HL-LHC Computing TDR	Q3 20
	2.1	R&D projects targeting Run 4 ("Run 4 projects) define scope and potential impact of their demonstrators, and a program of work with effort and risk estimates to the end of Phase 2.	Q4 20
	2.2	Define release, datasets and platforms to be used to evaluate Run 4 performance impact of demonstrators	Q1 20
	2.3	Run 4 projects release their demonstrators	Q2 20
	2.4	Run 4 projects evaluate the performance impact of their R&D demonstrators and estimate the effort needed to develop fully functional prototypes	Q2 20
PR-3		Run 4 Release	Q2 20
	3.1	Run 4 projects release fully functional prototypes, estimate risks and effort needed to bring to production quality	Q2 20
	3.2	Run 4 developers tutorial	Q3 20
	3.3	Run 4 Feature Freeze	Q2 20
PR-4		Ready for Run 4 Data Taking	Q2 20
	4.1 Run 4 projects demonstrate required functionality in release	Q3 20	
	4.2	Run 4 release validated	Q1 20

Databases, metadata, conditions

atabase	infrast	ructure, conditions and metadata (ADAM)				
MID	DID	Description	Due			
DB-1		Relational database infrastructure consolidation	Q4 2022			
	1.1	Migration of application schemas used in data processing from ATLR to ATONR	Q3 2022			
	Setup of Frontier launchpad using ATONR_ADG (Active Data Guard) 1.2 nodes.					
DB-2	DB-2 Conditions database CREST development and integration					
	Define the CREST development, timeline and deployment strategy, as well as COOL data migration strategy.					
	Finalize the prototype for CREST deployment, partial COOL data migration and Athena jobs testing. Implement changes needed in IOVDbSvc.					
	2.3	Time series data processing and storage evaluation for CREST usage (DCS data).	Q1 2023			
	2.4	Implement a directory structure to export selected conditions data from CREST into CVMS (access from sites without network connectivity).	Q4 2023			
	2.5	Deployment of a parallel infrastructure for accessing conditions via CREST for larger tests (validate scalability and experts needs).	Q1 2026			
	2.6	Final CREST validation for Run4 and COOL decommissioning.	Q4 2026			
DB-3		Metadata evolution	Q1 2025			
	3.1 AMI Application migration to CERN Oracle DB.					
	3.2	AMI Tag evolution and deployment.				
	Fully functional and integrated metadata system to characterize datasets (data and MC) used for physics analysis.					
Main	Maintenance & Operations Conservative R&D Aggressive R&D					

Core software & heterogeneous computing

	CS-1		Pileup-digitiza	tion i	n AthenaMT production ready		Q4 2022	
		1.1	Ensure reprod	lucibi	lity of MT production of presampl	ed MB RDO files	Q2 2022	
	CS-2		Complete inve	estiga	tion of lossy compression technic	ques	Q4 2023	
		2.1	Lossy compre AODs	ssion	of the ID track covariance matrix	k in the primary	Q4 2021	$\left[\right]$
		2.2	Lossy compre	ssion	of DAOD		Q4 2021]
		2.3	Lossy compre	ssion	of primary AODs		Q4 2023	
	CS-3		Implement I/O	road	map metadata recommendations	1	Q4 2022	1
		3.1	Multi-threaded	in-file	e metadata handling		Q2 2022	1
		3.2	Redesign of th fine-grained w		tadata handling infrastructure (be ws)	etter support for	Q4 2022	
	CS-4		Evaluation of o	lata f	ormats well-suited for massively	parallel I/O (HPCs)	Q1 2022	
		4.1	Storing interme	ediate	EventService Simulation data in	HDF5	Q1 2022	1
	CS-5		Migration to R	тос	7		Q4 2026	1
		5.1	StorageSvc ca RNTuple	pable	of writing a subset of DAOD_PI	HYS(lite) data to	Q4 2023	1
		5.2	Migration of At	hena	from Root 6 to 7		Q1 2025	1
		5.3	ROOT and LC	G rel	ease contributions, testing, feedb	ack	Ongoing	1
	CS-6		Re-evaluation	of sin	nulation data formats (including E	EVNT, HITS, RDO)	TBD	1
		6.1	Technical revie	w of	file storage format, compression	, etc		1
		6.2	Content review	v of d	ata format			1
	CS-7		GPU Kernel so	hedu	ılina		Q1 2023	1
		7.1			ernel scheduling in athena		Q2 2021	1
		-	Integration with				Q1 2023	1
_	CS-8				techniques and infrastructure in A	Athena	Q4 2021	1
_	CS-9				ithm heterogeneous applications		Q2 2023	┨
_		9 1			algorithm workflow		Q3 2022	1
_		-			merged into master		Q2 2022	1
		\vdash	Calorimeter cli		•		Q4 2022	†
		-			L inference in athena		Q2 2023	†
		0.1			ocessing data across multiple ev	ents on an	Q2 2020	┨
	CS-10		accelerator	or pro	socosing data doroso manipio ov	one on an	Q4 2023	
		10.1	Proof-of-conce	pt pr	ototype		Q4 2021	1
	CS-11		GPU Memory	mana	gement		TBD	1
		11.1	First (Vecmem) prot	totype		Q1 2022	1
	CS-12		Make ATLAS [Data I	Model classes accelerator-friendl	у	Q4 2024	1
		12.1	Prototype GPI	J-frier	ndly xAOD classes		Q1 2022	1
		12.2	Support for red	duced	l/mixed precision in ATLAS EDM		Q4 2022	1
		12.3	Decision on x	AOD A	API evolution		Q4 2022	1
		12.4	Event-batching	and	EDM		Q3 2023	1
		12.5	Accelerator-fri	endly	detector data model (geometry a	and calibration)	Q4 2024	1
		П			m to offload and update detector			1
		12.6	device				Q4 2024	-
	CS-13				ng, targeting HPCs and grid		TBD	1
		13.1	Raythena/HP>	(-bas	ed scheduler prototype		Q3 2022	
	CS-14		HL-LHC Techr competitors	ology	decision: CUDA or one of its les	ss-proprietary	Q1 2024	
		14.1	Full paralleliza	tion p	eattern recommendation to collab	oration	Q1 2024	1
		14.2	Design pattern	s/tuto	orial on GPU migration		Q1 2024	1
	Mainten	ance	& Operations		Conservative R&D	Angressive P&D		-
	ividifiten	ai ice	x Operations		Conservative RQD	Aggressive R&D		

Detector description, simulation, digitisation

MID	DID	Description	Due
SI-1		Updates required for MC+MC Overlay for Run4	Q2 2023
	1.1	Enhance Overlay code to better deal with high pile-up environments	Q2 2023
	1.2	Implement Overlay Algorithm for HGTD	Q2 2023
	1.3	Implement Overlay Algorithm for ITk Pixels	Q2 2023
	1.4	Implement Overlay Algorithm for ITk Strips	Q2 2023
SI-2		Track Overlay	Q2 2023
	2.1	Data overlay with pre-reconstructed tracks	Q2 2023
SI-3		Review or Run 4 Simulation Strategy	Q2 2024
	3.1	Evaluate Geant4 equivalents of ISF functionality	Q1 2023
	3.2	Evaluate accuracy of EMEC simulation in FastCaloSim	Q4 2023
	3.3	Prototype EMEC geometry using native Geant4-GPU constructs	Q4 2023
	3.4	Prototype GPU version of LAr sensitive detector callback	Q2 2024
SI-4		Pile-up Digitization in AthenaMT	Q4 2023
	4.1	Full AthenaMT compatible pile-up digitization	Q2 2023
	4.2	Reduce memory usage of pileup digitization for very high mu	Q4 2023
SI-5		Make data overlay useable for p-p collision simulation	Q2 2026
	5.1	Flexible alignment and geometry in simulation for data overlay	Q2 2024
	$\overline{}$	Skimming of zero-bias Bytestream data and efficient grouping of events	
	5.2	as input to p-p overlay	Q2 202
	5.3	Adapt Fast Chain workflow to data overlay	Q2 202
SI-6		Fast simulation/FastChain development for Run4	Q2 202
	6.1	R&D in FastChain alternatives	Q2 2026
	6.2	Development of substantial improvements to fast calorimeter simulation	Q2 2026
	6.3	Development of substantial improvements to fast inner detector simulation	Q2 2026
	6.4	Implementation of ITk in FATRAS	Q2 2026
	6.5	Tuning fast simulation to data	Q2 202
	6.6	Improve Geant 4 interface for fast simulation	Q2 2026
SI-7		Geometry updates for the Run4 MC Campaign	Q4 202
SI-8		Run4 optimisation of the performance of ATLAS full Geant4 simulation	Q4 202
SI-9		Testing Geant4 Versions and configurations for Run4	Q4 2026
	9.1	Validate Geant 4 v11	Q4 202
SI-1	0	Validation of full and fast simulation for Run4	Q3 2028
SI-1	1	Feature complete digitization + overlay for all sub-systems including conditions access	Q2 202
SI-1:	_	Feature complete trigger simulation including compatibility with overlay	Q2 202
		e & Operations Conservative R&D Aggressive R&D	

Reconstruction

l pu	nstru IID		Description				Duc
- 1		טוט	Description		201		Due
	RE-1			grade release (21.9)			Q1 2022
_	RE-2		<u>'</u>	on to the Phase-II De	etector		Q1 2024
R	RE-3		Migrate default CP				Q3 2025
4		3.01		to a new internal tra	cking EDM		Q1 2023
4		3.02	Define run-4 ATLA				Q1 2022
4		3.03	Migrate to the new	run-4 ATLAS EDM			Q3 2022
		3.04		e/demonstrator with a	all the compo	onents	Q3 2024
		3.05	ITk reconstruction				Q4 202
		3.06	Muon tracking geo	metry and navigation	l		Q3 202
		3.07	Muon standalone r	econstruction			Q1 202
		3.08	Muon combined re	construction			Q3 202
		3.09	Calorimeter trackir	g geometry and navi	gation		Q3 202
		3.10	Calorimeter track e	extensions			Q3 202
		3.11	Electron and gamr	na reconstruction			Q3 202
		3.12	Particle flow recon	struction			Q3 202
		3.13	Tau reconstruction				Q3 202
		3.14	Flavour tagging				Q3 202
		3.15	Jets and Missing E	T reconstruction			Q3 202
F	RE-4		Accelerator and m	achine learning (R&D))		Q3 202
Т		4.1	Develop demonstr	ators for accelerators	and new M	L techniques	Q1 202
		4.2	Finalise and imple	ment functional proto	types		Q3 202
F	RE-5		Feature freeze				Q3 202
		5.1	Calorimeter recons	struction			Q1 202
		5.2	ITk reconstruction				Q1 202
		5.3	Muon reconstruction	on			Q1 202
		5.4	Electron and gamr	na reconstruction			Q1 202
		5.5	Particle flow recon	struction			Q2 202
		5.6	Tau reconstruction				Q2 202
		5.7	Flavour tagging				Q3 202
		5.8	Jets and Missing E	T reconstruction			Q3 202
F	RE-6		Performance freez	е			Q1 202
		6.1	Calorimeter recons	struction			Q2 202
		6.2	ITk reconstruction				Q2 202
		6.3	Muon reconstruction	on			Q3 202
		6.4	Electron and gamr	na reconstruction			Q3 202
		6.5	Particle flow recon	struction			Q4 202
		6.6	Tau reconstruction				Q4 202
		6.7	Flavour tagging				Q1 202
		6.8	Jets and Missing E	T reconstruction			Q1 202
	RE-7		Validation				Q3 202

Analysis

	MID	DID	Description					Due
	AN-1		Baseline DAOD_	PH'	YSLITE with run 3 s/w (even	t loop	based) & TTree	Q3 2023
		1.1	First bulk product	tion	of prototype DAOD_PHYSL	ITE		Q4 2021
		1.2	Mechanism for e	valu	ation of systematic uncertain	nties	with PHYSLITE	Q2 2022
		1.3	Demonstrator for	full	analysis on PHYSLITE for to	arget	analyses	Q4 2022
		1.4	Recommendation	ns fo	or application of lossy compr	essio	n	Q4 2022
		1.5	Finalised list of P	'HY	SLITE contents			Q2 2023
		1.6	Development/roll	l-out	t of docs/training for run 3 an	alysi	s w/ PHYSLITE	Q3 2023
	AN-2		PHYSLITE worki	ng v	with RNTuple			Q4 2023
		2.1	Implementation of	of RI	NTuple and revised xAOD in	PHY	SLITE	Q4 2023
	AN-3		Prototyping & rev analysis	view	of columnar data operations	for e	end-to-end	Q2 2024
		3.1	Tests of basic rea	adin	g performance using TTree v	versio	on of PHYSLITE	Q4 2022
		3.2	Prototyping of too	ols f	or columnar CP operations a	and o	ther systematics	Q4 2023
		3.3	Adoption of ROO)T7	data structures			Q1 2024
		3.4	Performance and adoption	d ea	se-of-use assessment leadin	g to	decision on	Q2 2024
	AN-4		Development of	colu	mnar analysis infrastructure			Q2 2026
		4.1	Prototyping of fra	me	work for orchestrating colum	nar C	P operations	Q3 2024
		4.2	Development of	colu	mnar skimming/augmentatio	n		Q1 2025
		4.3	Demonstrate end comp.	d-to-	end analysis using columnar	r tool:	s/fkw + dist.	Q4 2025
		4.4	Development & r	oll-c	out of documentation/training	for n	un 4 analysis	Q2 2026
	AN-5		Accommodate al	l an	alyses in the run 4 analysis r	node	I	Q2 2028
		5.2	First assessment	t of ı	run 4 analyses incompatible	with I	PHYSLITE	Q2 2023
		5.3	Calculate resource	ces	implications and feed back to	o phy	sics coordination	Q3 2023
		5.4	Set up DAODs fo	or ar	nalyses which are unable to	use th	he new model	Q2 2026
		5.5	Updated DAOD_	PH	YSLITE to capture additional	anal	yses	Q2 2028
	Maint	Maintenance & Operations Conservative R&D Aggressive R&D						·
_	_				•		•	

Distributed computing

MID	DID	Description	Due
DC-1		Transition to tokens	Q4 2025
	1.1	Submission from Harvester to all HTCondor CEs with tokens	Q1 2022
	1.2	All users move from VOMS to IAM for X509	Q4 2022
	1.3	All job submission and data transfers use tokens	Q4 2025
DC-2		Storage evolution	Q4 2025
	2.1	No GridFTP transfers at any site	Q1 2022
	2.2	SRM-less access to tape	Q4 2025
	2.3	Recommended transition plan from DPM completed	Q4 2021
	2.4	Transition plan from all DPM sites	Q4 2022
	2.5	All sites moved away from DPM	Q2 2024
DC-3		Next operating system version	Q2 2024
	3.1	Ability to run on "future OS" on grid sites	Q4 2022
	3.2	Central services moved to "future OS"	Q4 2023
	3.3	(CentOS 7/8 EOL)	Q2 2024
DC-4		Network infrastructure ready for Run 4	Q4 2027

	4.1	Network challenge at 10% expected rate	Q4 2021
	4.2	Network challenge at 30% expected rate	Q4 2023
	4.3	Network challenge at 60% expected rate	Q4 2025
	4.4	Network challenge at 100% expected rate	Q4 2027
DC-5		Integrating next generation of HPCs	Q2 2023
	5.1	Integration of at least 2 EuroHPC sites	Q4 2022
	5.2	Integration of next generation US HPCs for production	Q2 2023
DC-6		Exploratory R&D on GPU-based workflows for next generation HPC	Q4 2023
DC-7		HL-LHC datasets replicas and versions management	Q2 2024
	7.1	Replicas and versions detailed accounting	Q4 2022
	7.2	DAOD replicas reduction	Q4 2023
	7.3	DAOD versions reduction	Q2 2024
DC-8		Data Carousel for storage optimization	Q4 2023
	8.1	Investigate with sites the cost of Tape infrastructure and the estimated cost in case of sensible increase of read/write throughput	Q4 2022
	8.2	Reduce the AOD on disk to 50% of the total AOD volume, using Data Carousel to orchestrate the stage from tape for DAOD production.	Q4 2023
DC-9		Disk management: secondary(cached) dataset	Q2 2023
	9.1	Evaluate the impact on job brokering and task duration if disk space for secondary data is reduced	Q2 2023

Current involvement

Distributed computing

HPC and analysis facilities

 ATLAS distributed computing management, NorduGrid/ARC middleware development, ATLAS@Home, HPC integration

Reconstruction

Tau reconstruction

Analysis

Derivation framework, data formats, distributed analysis

Project management

Development and follow-up of the milestones

Contributions to the milestones

(Non-exhaustive; based on current expertise and interests)

GPU programming in core software

NFR application (Catmore & Gramstad)

- High performance analysis
- HPC activities, new workflows

NeIC application (Cameron, Ould Saada, Read)

 -			
DC-5		Integrating next generation of HPCs	Q2 2023
	5.1	Integration of at least 2 EuroHPC sites	Q4 2022
	5.2	Integration of next generation US HPCs for production	Q2 2023
DC-6		Exploratory R&D on GPU-based workflows for next generation HPC	Q4 2023
DC-7		HL-LHC datasets replicas and versions management	Q2 2024
	7.1	Replicas and versions detailed accounting	Q4 2022
	7.2	DAOD replicas reduction	Q4 2023
	7.3	DAOD versions reduction	Q2 2024
DC-8		Data Carousel for storage optimization	Q4 2023
	8.1	Investigate with sites the cost of Tape infrastructure and the estimated cost in case of sensible increase of read/write throughput	Q4 2022
	8.2	Reduce the AOD on disk to 50% of the total AOD volume, using Data Carousel to orchestrate the stage from tape for DAOD production.	Q4 2023
DC-9		Disk management: secondary(cached) dataset	Q2 2023
	9.1	Evaluate the impact on job brokering and task duration if disk space for secondary data is reduced	Q2 2023

W.r.t. tau reconstruction

Aug.

NFR application
(Catmore & Gramstad)
ATLAS QT (Langrekke

CS-12		Make ATLAS Data Model classes accelerator-friendly	Q4 2024
	12.1	Prototype GPU-friendly xAOD classes	Q1 2022
	12.2	Support for reduced/mixed precision in ATLAS EDM	Q4 2022
	12.3	Decision on xAOD API evolution	Q4 2022
	12.4	Event-batching and EDM	Q3 2023

RE-4		Accelerator and machine learning (R&D)	Q3 2025
	4.1	Develop demonstrators for accelerators and new ML techniques	Q1 2024
	4.2	Finalise and implement functional prototypes	Q3 2025

AN-3		Prototyping & review of columnar data operations for end-to-end analysis	Q2 2024
	3.1	Tests of basic reading performance using TTree version of PHYSLITE	Q4 2022
	3.2	Prototyping of tools for columnar CP operations and other systematics	Q4 2023
	3.3	Adoption of ROOT7 data structures	Q1 2024
	3.4	Performance and ease-of-use assessment leading to decision on adoption	Q2 2024
AN-4		Development of columnar analysis infrastructure	Q2 2026
	4.1	Prototyping of framework for orchestrating columnar CP operations	Q3 2024
	4.2	Development of columnar skimming/augmentation	Q1 2025
	4.3	Demonstrate end-to-end analysis using columnar tools/fkw + dist. comp.	Q4 2025
	4.4	Development & roll-out of documentation/training for run 4 analysis	Q2 2026

Summary

- ATLAS people: please read the document and consider whether new longterm commitments could contribute to delivering these milestones whilst fitting into the strategy of NorCC
- Non-ATLAS people: are there areas where we could meaningfully collaborate?