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Electron-lon Collider

To be build around 2030 at Brookhaven National Laboratory

An EIC can uniquely address three profound questions about nucleons — neutrons and protons
- and how they are assembled to form the nuclei of atoms:

. How does the mass of the nucleon arise?
. How does the spin of the nucleon arise? 3
. What are the emergent properties of dense systems of gluons?



EIC Accelerator

= oy = conceoe roeied BIC Will be the first dedicated facility to
e i o Electron
4-—";;5 Polarimeters 41GeV Arc Source Colllde electron Wlth 10NS (prOtOHS) ma

Injector
Possible Detector

wee - Wide range of c.m.s. energies.
. Location

Possible Detector fon TTOHSfer
= Electron Storage Line
-y nl Location

IR8 — Ring

Moreover, it will allow studies with highly

Electron

Injector (RCS) ; / lon.Ring

R6 polarized beams (not possible at HERA)
- | E.:5..18GeV
lon Source Ep: 41, 100 ... 275 GeV
E..:41..110 GeV/n
- Wi B lons: frompto U
Pol (e,p,He, etc): >70%
Lum: up to 10%* cm2 s
10* E
i | Current polarized DIS e/u+p data: [ = Existing Measurements with A =56 (Fe): [l
Current polarized RHIC p+p data: 00 i
. e 108 =
o o] -
E 103 L e+p E E e+A
c:" : 102 =
@] g E
=102 | c B
Re] F o
5 C 5 10
S | 2 F
e | @ F
oc 10 E (a e B
g 1
1T 111 1 1 ) S 1 1 L1 1 11 1 1 T i L L1 1 11 01_ 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 I\\\III 1 11 11111
10 10° 102 107 1 108 16% 1073 102 107" 1 4
Parton momentum fraction, x Parton momentum fraction, x

Colliding electrons to ions gives access to unexplored kinematic regions with the lowest possible x values.
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Inclusive DIS

® measure scattered lepton
® multi-dimensional binning: x, Q?
- reach to lowest x, Q2impacts
Interaction Region design
- low mass detectors,
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Semi-inclusive DIS
® measure scattered lepton
and hadrons in coincidence
® multi-dimensional binning:
x, Q2, z, pT,\
- particle identification over entire
region is critical
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EIC Physics

Tomography
Spatial Imaging

Exclusive processes
® measure all particles in event
® multi-dimensional binning:

X, QZ; t;\

® proton p.: 0.2 -1.3GeV

—> cannot be detected in main
detector

-> strong impact on Interaction
Region design

A wide range of the physics processes can
be measured at EIC.

A comprehensive detector with a large
rapidity (-4 <n< 4) coverage is essential for
these studies.



Status of EIC

In January 2020, Brookhaven National Laboratory (BNL) was chosen as the site for the
future Electron-Ion Collider.

On March 2021, BNL and JLab issued a call for Collaboration Proposals for Detectors
at the EIC with proposals due by December 1%, 2021.

— ECCE (the EIC Comprehensive Chromodynamics Experiment) Consortium
— ATHENA (A Totally Hermetic Electron-Nucleus Apparatus) Collaboration

— CORE (a COmpact detectoR for the EIC)
EIC Detector Proposal Advisory Panel Meeting 13™-15% December 2021

On March 8" 2022 at DPAP close-out meeting it was anounced that ECCE has been
unanimously selected as Detector 1

— The scientific community strongly supports building a second detector at IP8 and
this opportunity (with a possible delayed start) will be discussed later this year.



ECCE Detector
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Will reuse the sSPHENIX 1.5T BaBar Solenoid and Hadronic Calorimeter

Provides large rapidity (-4 <n< 4) coverage for detecting the scattered electron, jet reconstruction 7
and Particle IDentification



Far-forward phyS|cs at EIC

EIC opportunities for the Norwegian community

Saturation (coherent/incoherent
J/y production)
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The various phyS|cs channels require tagging of charged hadrons (protons, pions)

or neutral particles (neutrons, photons) at very-forward rapidities(;>4.5).

Different final states require different detector subsystem for detection.

Different collision systems provide unique challenges due to magnetic rigidity difference
between beam and final-state particles.
Placing far-forward detectors uniquely challenging due to presence of machine
components, space constraints, apertures, etc



EIC opportunities for the Norwegian community
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th proton or neutron tagging

e+p DVCS events with A

proton tagging.

Rapidity
gap

» with neyitron tagging (ep_—> (m) =€’ nX) e+HeB with spectator proton
» LambdA decays (A »pmr and A — nm?) tagging.

e-/v/e .
e+Hed coherent He4 tagging.

-/e+ J_/_,Z",Wi

g+Au events with neutron tagging
o veto breakup and photon

E.; ’ E acceptance.

P p'.n" A ZHE

Many synergies with the' existing nuclear physics program in the ALICE Experiment at LHC

Detector development in the Far-Forward region is essential for these studies
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EIC Far-Forward region

Roman Pots

BO Trackers + Calorimeter ,

/ Blapf Dipole 7DC
B1lpf Dipole
Q2bpf quadrupole

/ /lef quadrupole
Q

= lapf quadrupole
‘ BOapf Diople
BOpf Diople
Detector (x,z) Position [m] Dimensions 0 [mrad] Notes
ZDC (-0.96, 37.5) (60cm, 60cm, 1.62m) f <55 ~40mradat¢p = 7 n>59
Roman Pots (2 stations) (-0.83, 26.0) (-0.92, 28.0) (30cm, 10cm) 0.0< 8 <55 100 cut. n> 5.9
Off-Momentum Detector (-1.62, 34.5), (-1.71, 36.5) (50cm, 35¢m) 0.0 <0 <50 0.4 < x; <0.6 n> 6.0 11

B0 Trackers and Calorimeter (x =-0.15,5.8 <z < 7.0) (32cm, 38m) 6.0 < 0 <225 ~20mrad at ¢=0 4.6 < n> 5.8




Challenges to BO Design

1. The acceptance along z changes due to
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2. The BO constitutes one of the most challengin
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B0 Design

Rails will be used to slide the detector inside
the magnet volume

4 AC-LGAD layers are used for tracking, but
MAPS is also an alternative option if good timing
resolution can be achieved.

Oval shape of the cut off for the hadron beam:
* Account for the 25mrad crossing angle
* Allows to increase the acceptance at large n

Four Si tracking planes occupy 1m of 120cm
2mm of Cu after each tracking layer to model
cooling and readout

They are followed by 10cm PbWO0, Calorimeter

2*2cm granularity

7cm at the back of the Calorimeter are
assumed for its readout

Geant4 Simulation:

Si




B field as coordinate

BO Tracker

e oy BO dipole magnet field is added to the field map of the central

Mean x 115
vy o detector to be passed to the Kallman filter.
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Generated Energy [GeV]
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Reconstructed Energy [GeV]
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The photon energy resolution is found to be below 7% for the studied kinematic region.



Zero-Degree Calorimeter

» High resolution HCAL + EMCAL for detecting neutral forward-going particles (neutrons
and photons)

. AE  50%
» HCAL requires — ~ .

VE
« ALICE FoCal assumptions used for studies thus far (EIC R&D group started last summer).

« Acceptance limited by bore of magnet where the neutron/photon cone exits (0.0 < 8 < 4.5 mrad).

3 mrad

@ 5% and gg~ 5O better.
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« ZDC has dimensions of 60cm x 60cm x 162cm for the needed acceptance (YR)
and consists of PoWO4 crystal, W/Si layer, Pb/Si, and Pb/Scintillator layers
« ZDC provides detection for photons and neutrons (0<6<5.5 mrad)

with the required performance 17



B0 and ZDC applications: Exclusive VM production

Both BO and ZDC can be used to veto events with forward going photons
T. Toll and T. Ullrich

coherent - no saturation
incoherent - no saturation
coherent - saturation (bSat)
incoherent - saturation (bSat)

104

m0

<
=
« B O 0O

m0

o fLdt = 10/A fb™1
. 1< Q2 <10 GeV2, x <0.01

Y T |||||||| T ||||u|_.hl.3_|'

[ IIIIII| I'.F.‘I'Iél
2728

1.z /7
A {1—2}4
v r R V=J, o,p,v
Z \,

10

—

U(E Au — e' Au' Jhp}f‘dt (nb’,rGev2)
)

—
e
L IIIIII| 1 IIIIIII|

N(edecay)l <4 W i
D(E‘decay) >1GeVic
(a) Bth=5%
1ﬂ‘2 L1 1l | L1l | Ll 1 | L1 | L1l | LU | L1 | L1 | LU L
0 0.2 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18
It (GeV?)

Measurement of the coherent spectrum down to the 3" diffractive minimum
requires rejection of incoherent events.
Nuclear breakup in incoherent events produces soft photons (~300 MeV) in the forward direction 18

from the de-excitation of some of the larger nuclear fragments.



B0 and ZDC applications: u-channel DVCS

Deeply Virtual Compton Scattering

DVCS Bethe-Heitler
u-Channel Meson Production Setup

GPD: It is extracted predominantly based

5 GeV 100 GeV :
evieon eve in the forward angle observables.

p' TDA: meson-nucleon Transition Distribution
____________ & —— > Amplitude (TDA) only accessible through
»ZDC J backward (u-channel) meson production
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B0 and ZDC applications: u-channel DVCS

Deeply Virtual Compton Scattering

Using both B0 and ZDC to detect photons from 7t decays allows to cleanly isolate u-channel DVCS

Two photon detection efficiency ZDC + B0 calorimeter
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FOCAL-like detector with pixel planes as ZDC will be essential
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*Studies by Wenliang (Bill) Li (SBU)

to separate the two photons.



Summary

* The EIC will be the first dedicated facility to study the collisions
between electron and ion beams (also polarized) in a wide
energy range.

* There are a lot of opportunities for the Norwegian community to
contribute both in physics studies and detector development in
particular in the far-forward region.

21
Thank you very much for your attention!



EICUG Workshop

2nd Annual 2022 EIC UG Meeting

July 25-26, 2022 Y
Warsaw, Poland

We are pleased to announce the 2nd Annual 2022 EIC UG Meeting Early Career workshop.
This event, dedicated to students and postdocs but open to everyone, will be held on July
25-26, 2022, the Monday and Tuesday before the annual EIC User Group meeting.

Aims of the workshop:

& Increase the visibility of EIC-related contributions from students and postdocs.
& Offer a platform to students and postdocs to connect and exchange knowledge.

@ Provide a venue to present and discuss EIC physics, detector, and accelerator science ahead of the User group meeting.

National Laboratory Muclear Science

Jefferdon Lab (@) Brookhaven U EIC https://indico.jlab.org/event/485/

Financial support for students is expected

Those interested to participate in person are welcome to contact the organizers:

Alexander.bylinkin@gmail.com, wenliang.billlee@googlemail.com,
cvanhuls@mail.cern.ch, jennifer@Ibl.gov
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B0 Design
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B0 Design
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