Notes from the AMBER Drell-Yan RP meeting on 28/01/2022

https://indico.cern.ch/event/1107557/

Present: C. Ahdida, D. Banerjee, D. Brethoux, A. Devienne, A. Gerbershagen, S. Girod, M. Lazzaroni, F. Malacrida, F. Metzger, C. Quintas, M. Van Dijk

- F. Metzger presented the calculation of transmission along the M2 beam line
 - \circ $\;$ The simulation is performed with BDSIM with realistic magnet geometries
 - 15-20% of particles are lost between COLL5 and CEDAR and additional 5% of intensity are lost between CEDAR and AMBER target
 - This is compatible with the FLUKA simulation results presented by A. Devienne in the previous meeting. The somewhat higher values are due to the realistic beam distribution.
- A. Devienne <u>presented</u> the update of the shielding study in FLUKA
 - The objective of study is to design the new shielding at strategic locations in EHN2 to be compatible with the beam intensity increase requested by AMBER.
 - An additional block has been added to the access chicane close to the CEDAR region of M2.
 - The most recent proposal for AMBER target bunker is named RP2 and it serves two purposes: to lower the prompt radiation outside EHN2 due to sky-shine outside EHN2 and to reduce the residual dose rate contribution of the AMBER target activation.
 - The new version of auxiliary files in FLUKA (V65) has the magnetic fields correctly implemented, in particular for QWL magnets.
 - Compared with the previous version, the losses occur to a larger share in the target region and the beam is well centred on the target.
 - In current version the losses from COLL5 to target are only 8.5%, of which <1% are between CEDAR and the target.
 - Soil material has been included into the simulation, which covers the analysis of RP issues due to high-energy muons propagating along the beam direction.
 - The skyshine contribution comes almost completely from the target. All values at reference points locations are below the legal requirement of 1mSv/year at CERN fence, with the highest one being around 500 microSv/year.
 - Air activation is within the radiation area classification limits.
 - Air release to environment has been calculated and is being reviewed.
- F. Metzger <u>presented</u> the results on the new beam optics
 - The optics as aimed at minimizing the beam divergence in CEDAR to ease the particle identification.
 - The minimization is achieved via new parallel beam optics at CEDAR location and via the collimation of the beam in X and Y planes upstream of CEDAR
 - The collimation helps to notably reduce divergence in X plane, but only minimally in Y plane.
 - The particle background to the experiment is assumed not to increase, due to the collimation being far upstream of the experiment.

Next steps:

- A. Devienne will bring the <u>ECR draft</u> up-to-date with the newest version of the simulations
- <u>ECR draft</u> will be forwarded by A. Devienne to the integration team in order for them to write the contribution on the integration.

The next meeting will be scheduled for the 9th of February at 9am.

A. Gerbershagen, 28/01/2022