Automating the calculation of jet functions

Kevin Brune

with Guido Bell, Goutam Das, and Marcel Wald

LoopFest XX, University of Pittsburgh 12.05.2022

Motivation

Resummation is useful to correctly describe observables at colliders

[Becher, Tormo, Piclum, 16]

- SCET has emerged as an important tool to study IR sector of QCD and resum large logarithms in a systematic framework
- The backbone relies on the underlying factorisation theorems

Soft-Collinear Effective Theory (SCET)

Effective theory:

- Soft and collinear modes
- Integrating out hard modes
- At leading power soft and collinear modes decouple

Typical scaling

- Hard Region: $k_H^{\mu} \sim (1,1,1)Q$
- Collinear Region: $k_c^{\mu} \sim (1, \lambda^2, \lambda)Q$
- Ultra-soft Region: $k_{us}^{\mu} \sim (\lambda^2, \lambda^2, \lambda^2)Q$

⇒ Complete Factorisation

Factorisation

Generic factorisation theorem in SCET

- Each function can be computed perturbatively
- Resummation is performed by calculating them at their characteristic scales and evolving them to a common scale.

Ingredients for Resummation

We need to have all anomalous dimensions and matching coefficients

- Observable-independent quantities are known
- Soft, Beam and Jet quantities are computed on a case-by-case basis
- Need two-loop matching coefficients to achieve NNLL' accuracy

	$\Gamma_{\mathrm{Cusp}}, \beta$	$\gamma^{H,S,B,J}$	$c_{H,S,B,J}$
NLL	2-loop	1-loop	1
NLL'	2-loop	1-loop	α_s
NNLL	3-loop	2-loop	α_s
NNLL'	3-loop	2-loop	α_s^2

Ingredients for Resummation

We need to have all anomalous dimensions and matching coefficients

- Observable-independent quantities are known
- Soft, Beam and Jet quantities are computed on a case-by-case basis
- Need two-loop matching coefficients to achieve NNLL' accuracy

	$\Gamma_{\mathrm{Cusp}}, \beta$	$\gamma^{H,S,B,J}$	$c_{H,S,B,J}$
NLL	2-loop	1-loop	1
NLL'	2-loop	1-loop	α_s
NNLL	3-loop	2-loop	α_s
NNLL'	3-loop	2-loop	α_s^2

Automation of Soft/Jet/Beam functions

- Set up a general framework to automatically calculate Jet, Beam, and Soft functions for a general class of observables
- Soft functions 2-particle final state [Bell,Rahn,Talbert,18,20]
 - Complicated measurement function
- Beam functions 2-particle final state [Bell,KB,Das,Wald (in progress)]
 - Non-trivial matching onto PDFs
- Jet functions 3-particle final state
 - Complicated divergence structures

Jet functions

Definitions:

– Quark jet function $J_q(au,\mu)$

$$\left[\frac{\not h}{2} \right] J_q(\tau, \mu) = \frac{1}{\pi} \sum_{i \in X} (2\pi)^d \delta \left(Q - \sum_i k_i^- \right) \delta^{d-2} \left(\sum_i k_i^\perp \right) \mathcal{M}(\tau, \{k_i\}) \left\langle 0 | \chi | X \right\rangle \left\langle X | \bar{\chi} | 0 \right\rangle$$

– Gluon jet function $J_g(au,\mu)$

$$-g_{\perp}^{\mu\nu}\frac{\pi}{Q}\delta^{AB}g_{s}^{2}J_{g}(\tau,\mu) = \sum_{i\in\mathcal{X}}(2\pi)^{d}\delta\left(Q - \sum_{i}k_{i}^{-}\right)\delta^{d-2}\left(\sum_{i}k_{i}^{\perp}\right)\mathcal{M}(\tau,\{k_{i}\})\left\langle 0\right|\mathcal{A}_{\perp}^{\mu,A}\left|X\right\rangle\left\langle X\right|\mathcal{A}_{\perp}^{\nu,B}\left|0\right\rangle$$

Generic measurement function

 $\mathcal{M}(au, \{k_i\})$

Phase space constraints

Collinear ME

NLO

- **Automation exists at NLO** [KB's master thesis.18] [Basdew-Sharma et al.20]
- Matrix element: LO splitting function $P_{a^* \to aa}^{(0)}(z_k) \; P_{a^* \to aa}^{(0)}(z_k) \; P_{a^* \to a\bar{a}}^{(0)}(z_k)$ [Altarelli,Parisi,77]

$$P_{q^* \to gq}^{(0)}(z_k) \propto \frac{1}{k_-} C_F$$

$$P_{g^* \to gg}^{(0)}(z_k) \propto \frac{1}{k_- p_-} C_A$$
 $P_{g^* \to q\bar{q}}^{(0)}(z_k) \propto T_F n_f$

$$P_{g^* \to q\bar{q}}^{(0)}(z_k) \propto T_F n_f$$

Phase space parametrisation

$$z_k = \frac{k_-}{Q}, \quad k_T = \sqrt{k_+ k_-}, \quad t_k = \frac{1 - \cos(\theta_k)}{2}$$

Measurement

Generic parametrisation of the measurement function in Laplace space

$$\mathcal{M}_1(\tau, z_k, k_T, t_k) = \exp\left(-\tau k_T \left(\frac{k_T}{z_k \bar{z}_k Q}\right)^n f(z_k, t_k)\right)$$
Non-zero in the singular limits of ME

Example:

- Thrust:
$$n = 1$$
 $f(z_k, t_k) = 1$

- Transverse Thrust:
$$n=1$$
 $f(z_k,t_k)=16\frac{t_k\bar{t}_k}{\sin\theta_B}$ - Angularities: $n=1-A$ $f(z_k,t_k)=(1-z)^{1-A}+z^{1-A}$

- Angularities :
$$n = 1 - A$$
 $f(z_k, t_k) = (1 - z)^{1 - A} + z^{1 - A}$

Master Formula

$$J^{(1)}(\tau,\mu) \sim \Gamma\left(\frac{-2\epsilon}{1+n}\right) \int_0^1 dz_k dt_k \ z_k^{-1-2\frac{n}{1+n}\epsilon} \bar{z}_k^{-1-2\frac{n}{1+n}\epsilon} \left(z_k \bar{z}_k \left(P_{q^*}^{(0)}(z_k), P_{g^* \to gg}^{(0)}(z_k), P_{g^* \to q\bar{q}}^{(0)}(z_k)\right)\right) (4t_k \bar{t}_k)^{-\frac{1}{2}-\epsilon} f(z_k, t_k)^{\frac{2}{1+n}\epsilon}$$

All singularities are factorised!

NNLO real-virtual contribution

• Matrix Element: NLO splitting functions $P_{q^* o gq}^{(1)}(z_k)$ $P_{g^* o gg}^{(1)}(z_k)$ $P_{g^* o q\bar{q}}^{(1)}(z_k)$ [Bern,et.al., 95,99] [Kosower,Uwer,99]

- Phase space & measurement function follow NLO
- Master formula

$$J^{(2),\text{RV}}(\tau,\mu) \sim V(\epsilon) \Gamma\left(\frac{-4\epsilon}{1+n}\right) \int_{0}^{1} dz_{k} dt_{k} \, z_{k}^{-1-4\frac{n}{1+n}\epsilon} \bar{z}_{k}^{-1-4\frac{n}{1+n}\epsilon} \left(z_{k} \bar{z}_{k} \left(\tilde{P}_{q^{*}\to qg}^{(1)}(z_{k}), \tilde{P}_{g^{*}\to gg}^{(1)}(z_{k}), \tilde{P}_{g^{*}\to q\bar{q}}^{(1)}(z_{k})\right)\right) (4t_{k} \bar{t}_{k})^{-\frac{1}{2}-\epsilon} f(z_{k}, t_{k})^{\frac{4}{1+n}\epsilon}$$

All singularities are factorised!

NNLO real-real contribution

Matrix element: LO triple collinear splitting function

[Catani, Grazzini, 99]

NNLO real-real contribution: CF TF nf

Sample divergence structure:

$$P_{q^* \to q'\bar{q}'q}^{(0)} \in \frac{1}{s_{123}^2 s_{12}^2 (z_1 + z_2)^2}$$

Phase space parametrisation

$$z_{12} = \frac{k_{-} + l_{-}}{Q}, \quad b = \frac{k_{T}}{l_{T}}$$

$$a = \frac{k_{-}l_{T}}{k_{T}l_{-}}, \quad t_{kl} = \frac{1 - \cos(\theta_{kl})}{2}$$

$$q_{T} = \sqrt{(k_{-} + l_{-})(k_{+} + l_{+})}$$

 Generic parametrisation of the measurement function in Laplace space

$$\mathcal{M}_2(\tau, k, l, p) = \exp\left(-\tau q_T \left(\frac{q_T}{z_{12}Q}\right)^n F(z_{12}, b, a, t_{kl}, t_l, t_k)\right)$$

$$s_{123} = s_{12} + s_{13} + s_{23}, \quad s_{12} = (2k \cdot l), \quad s_{13} = (2k \cdot p), \quad s_{23} = (2l \cdot p)$$

$$z_1 = \frac{k_-}{Q}, \quad z_2 = \frac{l_-}{Q}, \quad z_3 = \frac{p_-}{Q}$$

NNLO real-real contribution

Master formula for NNLO CF TF nf quark jet function

All singularities are factorised!

$$J_{q'\bar{q}'q}^{(2),\mathrm{RR}}(\mu,\tau) \sim \Gamma\left(\frac{-4\epsilon}{1+n}\right) \int_0^1 \mathrm{d}z_{12} \mathrm{d}u \mathrm{d}b \mathrm{d}v \ \ z_{12}^{-1-\frac{4n}{1+n}\epsilon} u^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_k) F(z_{12},u,v,b,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_k)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_l,t_l,t_l)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_l)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l,t_l)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,t_l,t_l)^{\frac{4}{1+n}\epsilon} e^{-1-2\epsilon} \mathcal{W}(z_{12},u,v,b,$$

- For all other structures ⇒ similar phase space parametrisation
- Additional Overlapping singularities
 - Sector decomposition [Heinrich 08]
 - Selector functions
 - Non-linear transformation

Factorised singularities in all regions

SCET renormalization

Jet function fulfils the RG equation

$$\frac{\mathrm{d}}{\mathrm{d} \ln \mu} J_{q,g}(\tau,\mu) = \left[2g(n) \Gamma_{\mathrm{Cusp}}(\alpha_s) L + \gamma^J(\alpha_s) \right] J_{q,g}(\tau,\mu)$$

$$g(n) = \frac{1+n}{n}, L = \ln\left(\frac{\mu\bar{\tau}}{(Q\bar{\tau})^{\frac{n}{1+n}}}\right), \bar{\tau} = \tau e^{\gamma_E}$$

Two loop jet function RGE solution

$$J_{q,g}(\tau,\mu) = 1 + \left(\frac{\alpha_s}{4\pi}\right) \left\{g(n) \mathbf{\Gamma}_0 L^2 + \mathbf{\gamma}_0^J L + \mathbf{c}_1^J\right\} + \left(\frac{\alpha_s}{4\pi}\right)^2 \left\{g(n)^2 \frac{\Gamma_0^2}{2} L^4 + g(n) \left(\gamma_0^J + \frac{2\beta_0}{3}\right) \Gamma_0 L^3 \right\}$$

$$+ \left(g(n) \left(\mathbf{\Gamma}_1 + \Gamma_0 c_1^J\right) + \gamma_0^J \left(\frac{\gamma_0^J}{2} + \beta_0\right)\right) L^2 + \left(\mathbf{\gamma}_1^J + c_1^J \left(\gamma_0^J + 2\beta_0\right)\right) L + \mathbf{c}_2^J \right\}$$

$$\left\{\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2^J, \mathbf{c}_2^J\right\}$$

Implementation in pySecDec [Heinrich et.al. 17,18,21]

preliminary

Thrust

$$\omega_T = k_+ + l_+ + p_+$$

$\gamma_1^{J_q}$	Analytical[1]	This work
$C_{\rm F}T_{\rm F}n_{\rm f}$	-26.699	-26.699(5)
$ m C_F^2$	21.220	21.221(94)
$ m C_F m C_A$	-6.520	-6.522(89)

$\gamma_1^{J_g}$	Analytical[2]	This work
$(T_{\rm F}n_{\rm f})^2$	0	$0 \pm 2 \cdot 10^{-4}$
$C_FT_Fn_f$	-4	-3.999(13)
$\mathrm{C_FC_A}$	-9.243	-9.242(20)
C^2	9.297	9.297(55)

[[1]. Becher, Neubert 06,[2]. Becher, Bell 10]

$c_2^{J_q}$	Analytical[1]	This work
$C_{\rm F}T_{\rm F}n_{\rm f}$	10.787	10.787(9)
$ ho_{ m F}^2$	4.655	4.658(117)
C_FC_A	2.165	2.167(132)

$\mathrm{c}_2^{J_g}$	Analytical[2]	This work
$(T_{\rm F}n_{\rm f})^2$	2.014	2.014(1)
$C_{\mathrm{F}}T_{\mathrm{F}}n_{\mathrm{f}}$	0.900	0.904(50)
C_FC_A	-13.725	-13.727(69)
C_A^2	3.197	3.195(168)

Angularities

Measurement function

$$\omega_{Ang} = k_{+}^{1-A/2} k_{-}^{A/2} + l_{+}^{1-A/2} l_{-}^{A/2} + p_{+}^{1-A/2} p_{-}^{A/2}$$

Check jet anomalous dimensions @ NNLO (against SoftSERVE)

$$\gamma^H + \gamma^S + 2\gamma^J = 0$$

Angularities

Matching coefficients at two loops

Preliminary

Transverse Thrust

$$\omega_{TT} = 4\sin\theta_B \left[(|k_{\perp}| - \left| \vec{n}_{\perp} \cdot \vec{k} \right|) + (|l_{\perp}| - \left| \vec{n}_{\perp} \cdot \vec{l} \right|) + (|p_{\perp}| - |\vec{n}_{\perp} \cdot \vec{p}|) \right]$$

$\gamma_1^{J_q}$	Numerical[1]	Numerical[2]	This work
$C_{\rm F}T_{\rm F}n_{\rm f}$	-41 ⁺² ₋₃	-42.183(5)	-42.172(18)
C_{F}^{2}	21.220	21.220	21.610(338)
C_FC_A	157^{+20}_{-30}	167.54(6)	167.345(312)

$\gamma_1^{J_g}$	Numerical[1]	This work
$(T_{\rm F}n_{\rm f})^2$	0	0 ± 10^{-3}
$C_FT_Fn_f$	-4	-3.991(83)
$ m C_F C_A$	$-16.3^{+1.5}_{-1.0}$	-16.955(78)
C^2_A	91^{+15}_{-10}	96.408(408)

$\mathrm{c}_2^{J_q}$	This work
$C_{\rm F}T_{\rm F}n_{\rm f}$	-5.911(34)
$\mathrm{C_F^2}$	42.548(592)
$\mathrm{C_FC_A}$	116.663(607)

$c_2^{J_g}$	This work
$(T_{\rm F}n_{\rm f})^2$	7.863(6)
$C_{\mathrm{F}}T_{\mathrm{F}}n_{\mathrm{f}}$	-47.275(367)
$\mathrm{C_FC_A}$	30.748(309)
C^2_A	171.897(1459)

[[1]. Becher, Tormo, Piclum 16,[2]. Bell, Rahn, Talbert 19]

Conclusion

- Developed an automated framework to calculate Jet for a wide class of observables at NNLO.
- Using a suitable phase-space parametrisation we are able to completely disentangle IR divergences into monomial form.
- We have presented the first results for event shape observables Thrust, Angularities and Transverse Thrust.
- Future plans:
 - Extend framework to SCET II observables & jet algorithms
 - Development of a automated C++ code.