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Why are Wilson loops with Lagrangian 
insertions (in planar maximally 

supersymmetric Yang-Mills) interesting?

Their similarity to (finite parts of QCD) scattering amplitudes 
allows us to shed light on the relevant function space, and on 
novel ways of dealing with infrared divergences. 

They are well-defined, finite quantities in an interacting QFT, 
whose integrand is completely known (in principle). Can we 
understand the integrations, and derive all-order results?

They display many surprising properties, such as hidden 
symmetries, positivity properties, and a duality to all-plus 
amplitudes in pure Yang-Mills.



Outline

2. Finite Wilson loop with Lagrangian insertion: 
definition; properties; overview results.

1. Integrand-level duality between Wilson loops and 
scattering amplitudes 

3. Surprising new features



Part 1 :  Integrand-level duality between 
Wilson loops and scattering amplitudes 



Wilson loop/MHV scattering amplitude duality 
in planar N=4 sYM
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Wn ∼ An/A(0)
n

(Dual) conformal 
symmetry in x-space

Conformal 
symmetry in p-space

xi+1 − xi = piDual variables: 

Wilson loop has ultraviolet divergences, amplitude has infrared 
divergences. Better formulate duality at level of integrands!



Integrand for scattering amplitudes
Mn = An/A(0)

n Mn = 1 + g2M(1)
n + g4M(2)

n + …

M(L)
n (x1, …, xn) ∼ ∫ dDy1…dDyLℐ(L)

n (x1, …xn; y1, …yL)

Integrand is a rational function, defined in D=4. dimensions.

Various methods to obtain integrands: 
•  Generalized unitarity

•  Loop-level on-shell recursion; on-shell graphs

•  Canonical form on Amplituhedron geometry

•  Bootstrap from symmetry and analyticity

[Bern et al., 1994]

[Arkani-Hamed et al., 2010]

[Arkani-Hamed, Trnka, 2013]

[Bourjaily at al.; Eden et al., 2011]

Four-point integrand explicitly known to 10 loops!



Wilson loop integrand via Lagrangian insertion
Wilson loop integrands are Born-level correlators

hWni = 1 + g2 W (1)

n + g4 W (2)

n + . . . , g2 ⌘ Ncg2

YM

16⇡2

Lagrangian insertion formula

g2@g2hWni =
Z

ddy

i⇡
d
2

hWnL(y)i

with chiral on-shell form of N = 4 sYM Lagrangian, L = � 1

2
trF↵�F↵� + . . .

One-loop correction

W (1)

n =

Z
ddy

i⇡
d
2

hWn L(y)iBorn| {z }
one-loop integrand

L-loop correction

W (L)
n =

1

(i⇡
d
2 )LL!

Z
ddy1 . . . d

dyL hWn L(y1) . . .L(yL)iBorn| {z }
L-loop integrand

The integrands are finite rational functions in four dimensions
4

Lagrangian insertion formula

g2∂g2⟨Wn⟩ ∼ ∫ dDy⟨Wnℒ(y)⟩

L-loop generalization:

W(L)
n ∼ ∫ dDy1…dDyL ⟨Wnℒ(y1)…ℒ(yL)⟩Born

L−loop integrand

One-loop integrand:

W(1)
n ∼ ∫ dDy ⟨Wnℒ(y)⟩Born

1−loop integrand



Duality at integrand level

One-loop example:

ℐ(L)
n (x1 , …xn; y1 , …yL) = ⟨Wn(x1 , …xn)ℒ(y1)…ℒ(yL)⟩Born

[Eden, Korchemsky, Sokatchev 2010; Mason, Skinner 2010]

Perturbative expansion

Fn = g2 F (0)

n| {z }
Born-level

+ g4 F (1)

n| {z }
one-loop

+ g6 F (2)

n| {z }
two-loop
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Nontrivial parity properties at n � 5
8

Perturbative expansion

Fn = g2 F (0)

n| {z }
Born-level

+ g4 F (1)

n| {z }
one-loop

+ g6 F (2)

n| {z }
two-loop

+ . . .

Born-level

F (0)

4
:

x3 x4

x1x2

x0

x3 x4

x1x2

x0

x3 x4

x1x2

x0

Finite dual-conformal rational functions, e.g.

F (0)

4
=� x2

13
x2
24

x2
10
x2
20
x2
30
x2
40

,

F (0)

5
=� 1

2x2
10
x2
20
x2
30
x2
40
x2
50

h
x2
24
x2
35
x2
10

+ x2
14
x2
35
x2
20

+ x2
14
x2
25
x2
30

+ x2
13
x2
25
x2
40

+ x2
13
x2
24
x2
50

+ ✏123450
i

Nontrivial parity properties at n � 5
8

⟨W4(x1 , …x4)ℒ(x0)⟩ =
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=
−(x1 − x3)2(x2 − x4)2

(x0 − x2)2(x0 − x1)2(x0 − x3)2(x0 − x4)2



Recap part 1

Duality between amplitudes and Wilson loops in planar 
N=4 sYM can be formulated at the level of rational 
loop integrands. Integrands are known explicitly to high 
loop orders, and in principle at any loop order.

ℐ(L)
n (x1 , …xn; y1 , …yL) = ⟨Wn(x1 , …xn)ℒ(y1)…ℒ(yL)⟩Born

Performing the loop integrations leads to 
divergences. We investigate a closely related, 
infrared and ultraviolet finite quantity. 

Amplitude integrand in 
dual coordinates

Wilson loop with 
Lagrangian insertions



Part 2 : Finite Wilson loop with Lagrangian 
insertion: definition; properties; overview results.



Finite Wilson loop with Lagrangian insertion

log⟨Wn(x1 , … , xn)⟩
Wilson loop divergences exponentiate - this means  
                            is free of subdivergences. [Korchemsky et al.]

Use Lagrangian insertion trick:

g2∂g2 log⟨Wn⟩ ∼ ∫ dDx0
⟨Wnℒ(x0)⟩

⟨Wn⟩

≡Fn

     can be computed in four dimensions. Divergences 
occur only upon integration over     . 
Fn

x0

log⟨Wn⟩g2L ∼
1

L2ϵ2
Γ(L)

cusp + …

Remark: the full-color four-loop cusp anomalous dimension was first computed 
using this approach from the three-loop result for F. (In the present talk however 
we consider the planar limit.) [JMH, Korchemsky, 

Mistlberger, 2019]



Overview different Wilson loop correlators

Divergent Finite Finite

Anomalous dual conformal 
symmetry

Exact dual conformal 
symmetry

Exact dual conformal 
symmetry

Transcendental functions Transcendental functions Rational

… …

…
…

⟨Wnℒ(y1)…ℒ(yL)⟩Born
⟨Wnℒ(x0)⟩

⟨Wn⟩
⟨Wn⟩



n Number of 
variables Variables Alphabet letters Function space

4 2 ‘Harmonic polylogarithms’
[Gehrmann, Remiddi; Maître]

5 5 20 parity-even letters, 
5 parity-odd letters 

‘Planar pentagon functions’
[Gehrmann, JMH; LoPresti; 

Chicherin, Sotnikov]

6 8 (one Gram 
condition)

Under investigation Under investigation

si,i+1

si,i+1; si,i+1,i+2

s, t {s, t, s + t}

Can use dual conformal symmetry to send      to infinity:x0

F (equivalently, f) depends on (3n-10) dimensionful variables.

fn(p1, …, pn) = lim
x0→∞

(x2
0)4Fn(p1, …, pn; x0)

F depends on the same kinematics and functions 
as planar massless QCD scattering amplitudes



Known results and general structure

Loop order Number of points References
Tree-level Any n [JMH, Chicherin, 2022]

One loop Any n [Alday, Heslop, Sikorowski, 2012]
[JMH, Chicherin, 2022]

Two loops n=4,5 [Alday, JMH, Sikorowski, 2013]
[JMH, Chicherin, 2022]

Three loops n=4 [JMH, Korchemsky, Mistlberger, 2019]

All loops n=4 ‘tree geometries’ [Arkani-Hamed, JMH,Trnka, 2021]

Strong coupling n=4 [Alday, Buchbinder, Tseytlin, 2011]

Expected form: f (L)
n = ∑

i,j

ci,j rn,i g(2L)
j

Constants Leading singularities (rational, algebraic)

Transcendental 
functions of 
weight 2L



Part 3 : Surprising new features



Leading singularities are conformally invariant

Example: f (0)
4 = lim

x0→∞
(x2

0)4F(0)
4 = − x2

13x2
24 = − st

(PT )4 f (0)
4 ∼

[34]2

⟨12⟩2

𝕂α ·α(PT )nrn,i = 0 , 𝕂α ·α = ∑
j

∂
∂λα

j

∂
∂λ̃ ·α

j

Momentum-space conformal 
generator, cf. [Witten, 2003]

(PT )n =
1

⟨12⟩…⟨(n − 1)n⟩

𝕂α ·α [34]2

⟨12⟩2
= 0 .

We checked this in all known cases.

We found a Grassmannian formula that gives all 
leading singularities that have appeared so far. Is it 
the unique answer to the conformal invariance?

[JMH, Chicherin, 2022]

[JMH, Chicherin, 2022]



F has definite sign in the Amplituhedron region

The four-point Amplituhedron implies                  . 
In that region, we have:

s < 0,t < 0

(−1)L+1 f (L)
4 > 0 L = 0,1,2,3 [Arkani-Hamed, JMH, Trnka, 2021]



F has definite sign in the Amplituhedron region

At five points, the Amplituhedron ‘lives’ in a subspace of 
the Euclidean region defined by:

si,i+1 < 0 , ϵ5 = 4iϵμνρσ pμ
1 pμ

2 pμ
3 pμ

4 > 0

In this region, we find the positivity property:

(−1)L+1 f (L)
5 > 0 L = 0,1,2

Nontrivial, individual terms can have other signs.

ϵ5 < 0Is not true for            !

[Chicherin, JMH, 2022]

The four-point Amplituhedron implies                  . 
In that region, we have:

s < 0,t < 0

(−1)L+1 f (L)
4 > 0 L = 0,1,2,3 [Arkani-Hamed, JMH, Trnka, 2021]



Four- and five-point (multi-)Regge limit 
are governed by the same formula

log ( fn
g2 f (0)

n ) = (−g2 + π2g4 + 𝒪(g6)) L2 + (4ζ3g4 + 𝒪(g6)) L + …

n=4 Euclidean Regge limit: s
t

s ≫ t

L = log
s
t

≫ 1

n=5 Multi-Regge limit:
s

t1 s1
s2t2

s ≫ s1, s2 ≫ t1, t2
L = log

s
t1t2

≫ 1

We find in both cases:

Can one understand this formula from first principles?



Duality with Yang-Mills all-plus amplitude

•Have the same cyclic symmetry
•Depend on the same kinematics (as             )x0 → ∞
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N=4 sYM Pure YM

•One-loop all-plus amplitude is conformally invariant
(also coefficients of two-loop transcendental functions)

[JMH, Power, Zoia, 2019; Badger et al, 2019]

?



Duality with Yang-Mills all-plus amplitude

6 Prediction for the three-loop all-plus pure Yang-Mills amplitude

The scattering amplitude of n gluons in the all-plus helicity configuration in the pure Yang-
Mills theory on the one hand, and the Lagrangian insertion in the n-cusp Wilson loop in
N = 4 sYM on the other hand, are closely related. In reference [25] we conjectured that
the maximal transcendentality parts of the two quantities agree in the planar limit. Let us
briefly review this duality in the general, n-point case, and then specialize to the five-point
amplitude.

The all-plus amplitude vanishes at the tree level. The one-loop n-particle color-ordered
all-plus partial amplitude A

(1)

YM,n is a rational function [71]. It equals to the Born-level
n-particle observable fn (2.5) normalised with the Parke-Taylor factor (2.9),

A
(1)

YM,n = PTn f
(0)

n . (6.1)

We have already mentioned the four-particle (2.23) and five-particle (3.15) instances of this
duality relation.

Higher orders of the all-plus amplitude A
YM
n perturbative expansion contain diver-

gences. We consider them in the dimensional regularization with d = 4 � 2✏. The leading
color two-loop all-plus amplitude is calculated in [72, 73]. The duality is formulated in
terms of the finite remainders HMHV

n and HYM
n of the four-particle planar leading-color am-

plitudes. They refer to the MHV amplitude of N = 4 sYM and the all-plus YM amplitude,
respectively,

HMHV

n =
A

MHV
n

A
MHV
n,treeZMHV

IR

, HYM

n =
A

YM
n

g2A
(1)

YM,nZYM

IR

. (6.2)

The infrared renormalization constants ZIR minimally subtract divergences, namely
✏-expansion of logZIR contains ✏-pole terms but it does not contain finite terms,

ZIR = 1� g
2

 
n

✏2
+

1

✏

nX

i=1

log

✓
µ
2

�si i+1

◆!
+O(g4) . (6.3)

The maximally transcendental parts of the renormalization constants coincide in both the-
ories [65], ZMHV

IR
⇠ ZYM

IR
, that we denote with ⇠. Let us note that logHMHV

n + logZMHV

IR

is known at any loop order at n  5 due to the ABDK/BDS ansatz [74, 75]6. Then, the
conjecture expresses the maximally transcendental part of the finite all-plus amplitude re-
mainder HYM

n in the planar leading-color approximation in terms of the finite n-particle
observables in N = 4 sYM theory,

logHYM

n ⇠ log

 
fn

g2f
(0)

n

!
+ logHMHV

n +O(✏) . (6.4)

The appearance of the MHV amplitude in the duality relation (6.4) is explained by the
well-known duality A

MHV
n ⇠ hWni between the planar MHV amplitudes and the polygonal

Wilson loops (see [13, 52] for reviews).
6Usually the ABDK/BDS ansatz is presented in a form with non-minimal infrared subtraction.
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•One-loop all-plus amplitude is conformally invariant
(also coefficients of two-loop transcendental functions)

[JMH, Power, Zoia, 2019; Badger et al, 2019]

At leading order, objects are equal!
[Chicherin, JMH, 2022]



Duality with Yang-Mills all-plus amplitude

At higher loops, the maximal weight part of the 
infrared-renormalised amplitude              matches with 
the Wilson loop         .f (L)

n

AYM (L+1)
n

        and        predict the maximal weight part of the 
4-loop 4-gluon and 3-loop 5-gluon all-plus amplitude!
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Checks: [Dunbar et al., 2016]f (1)
n ⟷ AYM (2)

n

f (2)
4 ⟷ AYM (3)

4
[Jin, Luo, 2019; Caola et al, 2021]

f (3)
4 f (2)

5

[Chicherin, JMH, 2022]



Discussion

Wilson loop with Lagrangian insertion in N=4 sYM has 
similarities to finite parts of massless QCD amplitudes.

We found several remarkable properties:

• Conformal symmetry of leading singularities
• Positivity in Amplituhedron kinematics

• Simplicity in Regge limit
• Duality with all-plus Yang-Mills amplitudes


