Electroweak global analysis

Impact of recent M_W and m_t measurements on precision fits of the Standard Model

Laura Reina

(Florida State University)

Based on work in collaboration with: J. de Blas, A. Goncalves, M. Pierini, L. Silvestrini, and members of the collaboration.

arXiv:2112.07274, arXiv:2204.04204

The role of electroweak global fits

■ The symmetry structure of the Standard Model defines specific relations among couplings and masses.

- The renormalizability of the theory assures that tree-level relations are modified by finite calculable corrections.
- Precision measurements of masses and couplings:
 - Test the consistency of the theory at the quantum level
 - Indirectly probe new physics via virtual effects

A comprehensive program of EW precision physics combined with emerging precision programs (top, Higgs) can be a very powerful tool to explore physics beyond the Standard Model

A very successful history

Global fits of precision EW observables gave us strong indications of where to find the SM Higgs boson and we now use its mass as one of the EW precision observables of the EW global fit to constrain new physics.

EW Global fit: general framework

- Set of input parameters (α scheme):
 - <u>Fixed</u>: G_F, α
 - Floating: M_z , M_H , m_t , $\alpha_s(M_z)$, $\Delta\alpha_{had}^{(5)}$
- Compute EW Precision observables (EWPO), including all known higher-order SM corrections:
 - Z-pole observables (LEP/SLD): $\Gamma_{\rm Z}$, $\sin^2\theta_{\rm eff}$, $A_{\rm I}$, $A_{\rm FB}$, ...
 - W observables (LEP II, Tevatron, LHC): M_W , Γ_W
 - m_t , M_H , $\sin^2\theta_{eff}$ (Tevatron/LHC)
- Perform best fit to EW precision data (EWPD) through different fitting procedures and compare with experimental measurements.
- Parametrize new physics effects on EWPO (tree-level) and constrain deviations in terms of chosen parameters:
 - Oblique parameters : S,T, U
 - Effective interactions: SMEFT
 - **=**

Framework we used

Open-source tool

Statistical framework based on a Bayesian MCMC analysis as implemented in BAT (Bayesian Analysis Toolkit)
Caldwell et al., arXiv:0808.2552

Supports SM (fully implemented) and BSM models (some already implemented)

Includes EW, Higgs, flavor, top observables

http://hepfit.roma1.infn.it

For these papers/talk: fit limited to EW precision observables

<u>arXiv:2112.07274</u>: De Blas et al., *Global analysis of electroweak data in the Standard Model* (update of arXiv:1608:01509) <u>arXiv:2204.04204</u>: De Blas et al., *Impact of recent measurements of the top-quark and W-boson mass on electroweak precision fits*

The second paper updates m_t and M_W and study the impact of the new measurements.

Experimental inputs

- Input parameters: α , $G_{F_{,}}\alpha_{s}(M_{Z})$, M_{Z} , M_{H} , m_{t} , $\Delta\alpha_{had}^{(5)}$
- To get $\alpha(M_Z) \longrightarrow \Delta \alpha_{had}^{(5)}$: from Lattice QCD + perturbative running
- For m_t we combine:
 - 2016 Tevatron combination
 - ATLAS Run 1 and Run2 results
 - CMS Run 1 and Run 2 results
 - Recent CMS I+j measurement $[m_{t}=(171.77\pm0.38) \text{ GeV}]$

previous average

$$m_t$$
=172.58 ± 0.45 GeV

mew average
 m_t =171.79 ± 0.38 GeV
"standard"

new average m_t=171.79 ±1.00 GeV ***** "conservative"

New CMS measurement dominates "standard" average but shows 3.5σ tension with respect to Tevatron average (m_t = 174.34 \pm 0.64 GeV) \longrightarrow consider "conservative" scenario as well

Experimental inputs

■ For M_w we combine:

- All LEP 2 measurements
- Previous Tevatron average
- ATLAS and LHCb measurements
- Recent CDF measurement $[M_W=(80.4335\pm0.0094)]$ GeV

$$M_W = 80.379 \pm 0.012 \text{ GeV} \longrightarrow M_W = 80.4133 \pm 0.0088 \text{ GeV} \quad M_W = 80.4133 \pm 0.015 \text{ GeV}$$

new average

$$M_W = 80.4133 \pm 0.0088 \text{ GeV}$$

"standard"

new average

$$M_W = 80.4133 \pm 0.015 \text{ GeV}$$

"conservative"

New CDF results dominates standard average but tensions between LEP 2, Tevatron, and LHC results → consider "conservative" scenario

From global SM fit, omitting the experimental information on MW (previous pull: 1.8σ)

Model	Pred. M_W [GeV] Pull	Pred. M_W [GeV] Pull			
	standard average	conservative average			
$\overline{\text{SM}}$	80.3499 ± 0.0056 6.5 σ	80.3505 ± 0.0077 3.7σ			

Results of global fit

``standard'' scenario

	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11762 ± 0.00095	0.11685 ± 0.00278	0.3	0.12181 ± 0.00470	-0.8	0.1177 ± 0.0010	_
(5)		[0.1157 <mark>6</mark> , 0.11946]	[0.11145, 0.12233]		[0.1126, 0.1310]		[0.1157, 0.1197]	
$\Delta lpha_{ m had}^{(5)}(M_Z)$	0.02766 ± 0.00010	I		4.3	0.028005 ± 0.000675	-0.5	0.02766 ± 0.00010	_
		[0.027349, 0.027726]	[0.025522, 0]026826]		[0.02667, 0.02932]		[0.02746, 0.02786]	
M_Z [GeV]	91.1875 ± 0.0021	91.1911 ± 0.0020	91.2314 ± 0.0069	-6.1	91.2108 ± 0.0390	-0.6	91.1875 ± 0.0021	_
		[91.187 <mark>2</mark> , 91.1950]	[91.2178, 9 <mark>1.2447]</mark>		[91.136, 91 288]		[91.1834, 91.1916]	
$m_t \; [\mathrm{GeV}]$	171.79 ± 0.38	172.36 ± 0.37	181.45 ± 1.49	-6.3	187.58 ± 9.52	-1.7	171.80 ± 0.88	_
[67.77]	107 01 1 0 10	[171.64, 173.09]	[178.53, 184.42]	4.0	[169.1, 206.1]	0.0	[171.05, 172.54]	
m_H [GeV]	125.21 ± 0.12	125.20 ± 0.12	93.36 ± 4.99	4.3	247.98 ± 125.35	-0.9	125.21 ± 0.12	_
M [C M]	00.4100 0.0000	[124.97, 125.44]	[82.92, 102.89]	0.5	[100.8, 640 4]	0.1	[124.97, 125.45]	0.5
M_W [GeV]	80.4133 ± 0.0080	80.3706 ± 0.0045	80.3499 ± 0.0056	6.5	80.4129 ± 0.0080	0.1	80.3496 ± 0.0057	6.5
T [C V]	2.085 ± 0.042	[80.3617, 80.3794]	[80.3391, 80.3610]		[80.3973, 80.4284]	0.0	[80.3386, 80.3608]	0.0
Γ_W [GeV]	2.085 ± 0.042	2.08903 ± 0.00053	Describe of the of		2.09430 ± 0.00224	-0.2	2.08744 ± 0.00059	0.0
· 2 alepta	a a riba a la tal	[2.08800, 2.09006]	Result of the f	Iτ	[2.0900, 2.0988]	0.0	$\frac{[2.0]}{0.23}$ Prediction	าร บรม
$\sin^2 heta_{ m eff}^{ m lept}($	perimental	0.231471 ± 0.000055	not using the		0.231460 ± 0.000138	0.8	0.20	15 4511
ppol 4 Val	ues used as	[0.231362, 0.231580]	not using the	_	[0.23119, 0.23173]		$\frac{[0.23]}{0.1}$ measuren	nents
$P_{ au}^{ m pol}=\mathcal{A}$ Val	ues useu as	0.14742 ± 0.00044	corresponding		0.14750 ± 0.00108	-0.3	0.1	
n G vi inn	uts	[0.14656, 0.14827]	corresponding	5	[0.1454, 0.1496]	0.0	$\begin{bmatrix} 0.1 \\ 2.4 \end{bmatrix}$ SM param	neters
$\overline{\Gamma_{Z} \; [{ m GeV}]} \; \; { m Inp}$	iuts	2.49455 ± 0.00065	measurement	-	2.49530 ± 0.00204	0.0	2.4	
0 [1]	41 400 0.000	[2.49329, 2.49581]	measurement	•	[2.4912, 2.4993]		[2.49262, 2.49531]	0.4
σ_h^0 [nb]	41.480 ± 0.033	41.4892 ± 0.0077	[41 4757 41 5070]	-0.3	4 Decult of the	~ c:r	1923 ± 0.0080	-0.4
R_ℓ^0	20.767 0.025	[41.4741, 41.5041]	[41.4757, 41.5070]	0.8	Result of th	епт	4766, 41.5081	0.7
κ_ℓ	20.767 ± 0.025	20.7487 ± 0.0080	20.7451 ± 0.0087	0.8	1 not using a		7468 ± 0.0087	0.7
40.ℓ	0.0171 0.0010		[20.7281, 20.7621]	0.8	not using a	ııy	7298, 20.7637	1.0
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	Results of the	0.016291 ± 0.000096	0.8	measureme	nts	of 615 ± 0.00011	1.0
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	alabal £:	$ \begin{array}{c} [0.016102, 0.016480] \\ 0.14745 \pm 0.00045 \end{array} $	1.8		21163	OT $1594, 0.01636$] 675 ± 0.00049	2.1
\mathcal{A}_{ℓ} (SLD)	0.1313 ± 0.0021	global fit	$[0.14745 \pm 0.00045]$	1.0	SM parame	ters	4580, 0.14770	2.1
R_b^0	0.21629 ± 0.00066	0.215892 ± 0.000100	0.215886 ± 0.000102	0.6	0.2	CCIS	591 ± 0.00010	0.6
r_b	0.21023 ± 0.00000	$\begin{bmatrix} 0.215692 \pm 0.000100 \\ [0.215696, 0.216089] \end{bmatrix}$	[0.215688, 0.216086]	0.0	[0.21469, 0.21611]		[0.21571, 0.21611]	0.0
R_c^0	0.1721 ± 0.0030	0.172198 ± 0.000054		-0.1	0.172404 ± 0.000183	-0.1	0.172189 ± 0.000054	L =0 1
$I \iota_C$	0.1721 ± 0.0000	$ \begin{bmatrix} 0.172190 \pm 0.000094 \\ [0.172093, 0.172302] \end{bmatrix} $	$[0.172197 \pm 0.000004]$	0.1	$[0.172404 \pm 0.000109]$	0.1	$[0.172103 \pm 0.000054]$	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10335 ± 0.00030	, ,	-2.3	0.10338 ± 0.00077	-2.1	0.10288 ± 0.00034	-2.0
¹ FB	0.0000 ± 0.0010	[0.10276, 0.10396]	[0.10275, 0.10400]	2.0	[0.10189, 0.10490]	2.1	[0.10220, 0.10354]	2.0
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07385 ± 0.00023	0.07387 ± 0.00023	-0.9	0.07392 ± 0.00059	-0.9	0.07348 ± 0.00025	-0.8
² FB	0.0101 ± 0.0000	[0.07341, 0.07430]	[0.07341, 0.07434]	0.5	[0.07275, 0.07507]	0.5	[0.07298, 0.07398]	0.0
\mathcal{A}_b	0.923 ± 0.020	0.934770 ± 0.000039	,	-0.6	0.934593 ± 0.000166	-0.6	, ,	-0.6
	0.020 ± 0.020	[0.934693, 0.934847]	[0.934693, 0.934849]	0.0	[0.93426, 0.93491]	0.0	[0.934642, 0.934801]	
\mathcal{A}_c	0.670 ± 0.027	0.66796 ± 0.00021	0.66797 ± 0.00021	0.1	0.66817 ± 0.00054	0.1	0.66766 ± 0.00022	0.1
	0.0.0	[0.66754, 0.66838]	[0.66755, 0.66839]		[0.66712, 0.66922]		[0.66722, 0.66810]	
$\overline{\mathcal{A}_s}$	0.895 ± 0.091	0.935678 ± 0.000039	, ,	-0.4	0.935716 ± 0.000098	-0.5	0.935621 ± 0.000041	-0.5
		[0.935600, 0.935755]	[0.935599, 0.935754]		[0.935523, 0.935909]	- 0	[0.935541, 0.935702]	
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108388 ± 0.000022	, ,	0.2	0.108291 ± 0.000109	0.3	0.108386 ± 0.000023	
_		[0.108345, 0.108431]	[0.108345, 0.108431]		[0.10808, 0.10851]		[0.108340, 0.108432]	
$\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC)	0.23143 ± 0.00025	1 .	0.231474 ± 0.000056	-0.2	,	-0.1		
еп		[0.231362, 0.231580]	[0.231363, 0.231584]		[0.23119, 0.23173]		[0.231436, 0.231679]	
R_{uc}	0.1660 ± 0.0090	0.172220 ± 0.000031	, , , , , , , , , , , , , , , , , , ,	-0.7	0.172424 ± 0.000180	-0.7	0.172212 ± 0.000032	2 - 0.7
==		[0.172159, 0.172282]	[0.172159, 0.172282]		[0.17209, 0.17279]	- '	[0.172149, 0.172275]	
	I	11	11		[

Results of global fit

"conservative" scenario

$lpha_s(M_Z)$ $\Delta lpha_{ m had}^{(5)}(M_Z)$	0.1177 ± 0.0010	0.11786 ± 0.00095	· · · · · · · · · · · · · · · · · · ·					
$\Delta lpha_{ m had}^{(5)}(M_Z)$		0.11760 ± 0.00095	0.11930 ± 0.00281	-0.5	0.12174 ± 0.00473	-0.8	0.1177 ± 0.0010	
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$		[0.11603, 0.11972]	[0.11371, 0.12482]		[0.1126, 0.1311]		[0.1157, 0.1197]	
	0.02766 ± 0.00010	0.027614 ± 0.000097	0.026895 ± 0.000394	1.9	0.027987 ± 0.000699	-0.5	0.02766 ± 0.00010	_
nau v		[0.027422, 0.027804]	[0.026123, 0.027677]		[0.02661, 0.02935]		[0.02747, 0.02786]	
M_Z [GeV]	91.1875 ± 0.0021	91.1887 ± 0.0021	91.2227 ± 0.0105	-3.3	91.2111 ± 0.0390	-0.6	91.1875 ± 0.0021	_
		[91.1847, 91.1927]	[91.2024, 91.2434]		[91.135, 91.289]		[91.1834, 91.1916]	
$m_t \; [\text{GeV}]$	171.8 ± 1.0	173.12 ± 0.92	180.10 ± 2.25	-3.3	187.16 ± 9.83	-1.6	171.8 ± 1.0	_
		[171.30, 174.92]	[175.66, 184.55]		[167.9, 206.4]		[169.8, 173.8]	
$m_H [GeV]$	125.21 ± 0.12	125.21 ± 0.12	102.19 ± 9.79	1.9	245.25 ± 125.35	-0.9	125.21 ± 0.12	_
		[124.97, 125.45]	[87.01, 127.30]		[98.1, 640.4]		[124.97, 125.45]	
M_W [GeV]	80.413 ± 0.015	80.3634 ± 0.0068	80.3505 ± 0.0077	3.7	80.4116 ± 0.0146	0.0	80.3497 ± 0.0079	3.7
		[80.3500, 80.3769]	[80.3355, 80.3655]		[80.383, 80.440]		[80.3342, 80.3653]	
$\Gamma_W [{ m GeV}]$	2.085 ± 0.042	2.08859 ± 0.00066	2.08859 ± 0.00066	-0.1	2.09426 ± 0.00245	-0.2	2.08743 ± 0.00073	0.0
		[2.08731, 2.08988]	[2.08732, 2.08988]		[2.0894, 2.0990]		[2.08601, 2.08889]	
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.231491 ± 0.000059	0.231490 ± 0.000059	0.8	0.231461 ± 0.000136	0.8	0.231558 ± 0.000068	0.7
		[0.231376, 0.231608]	[0.231374, 0.231607]		[0.23119, 0.23173]		[0.231426, 0.231691]	
$P_{\tau}^{\text{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14725 ± 0.00046	0.14727 ± 0.00047	-0.2	0.14750 ± 0.00108	-0.3	0.14674 ± 0.00053	-0.1
·		[0.14634, 0.14817]	[0.14635, 0.14820]		[0.1454, 0.1496]		[0.14570, 0.14779]	
Γ_Z [GeV]	2.4955 ± 0.0023	2.49453 ± 0.00066	2.49434 ± 0.00070	0.5	2.49528 ± 0.00205	0.1	2.49396 ± 0.00072	0.6
		[2.49324, 2.49584]	[2.49295, 2.49572]		[2.4912, 2.4993]		[2.49257, 2.49538]	
σ_h^0 [nb]	41.480 ± 0.033	41.4908 ± 0.0077	41.4929 ± 0.0080	-0.4	41.4616 ± 0.0304	0.4	41.4924 ± 0.0080	-0.4
		[41.4757, 41.5059]	[41.4772, 41.5087]		[41.402, 41.522]		[41.4767, 41.5083]	
R_ℓ^0	20.767 ± 0.025	20.7491 ± 0.0080	20.7458 ± 0.0086	0.8	20.7589 ± 0.0218	0.2	20.7470 ± 0.0087	0.8
		[20.7333, 20.7649]	[20.7287, 20.7627]		[20.716, 20.802]		[20.7297, 20.7638]	
$A_{\mathrm{FB}}^{0,\ell}$	0.0171 ± 0.0010	0.01626 ± 0.00010	0.01625 ± 0.00010	0.8	0.01631 ± 0.00024	0.8	0.01615 ± 0.00012	1.0
1.5		[0.01606, 0.01647]	[0.01605, 0.01646]		[0.01585, 0.01679]		[0.01592, 0.01638]	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14725 ± 0.00046	0.14728 ± 0.00049	1.9	0.14750 ± 0.00108	1.6	0.14674 ± 0.00053	2.1
		[0.14634, 0.14817]	[0.14632, 0.14824]		[0.1454, 0.1496]		[0.14570, 0.14779]	
R_b^0	0.21629 ± 0.00066	0.21587 ± 0.00010	0.21586 ± 0.00011	0.7	0.21542 ± 0.00037	1.2	0.21591 ± 0.00011	0.6
		[0.21566, 0.21607]	[0.21565, 0.21607]		[0.21467, 0.21613]		[0.21570, 0.21611]	
R_c^0	0.1721 ± 0.0030	0.172210 ± 0.000054	0.172210 ± 0.000054	0.0	0.172400 ± 0.000185	-0.1	0.172190 ± 0.000055	-0.1
		[0.172102, 0.172316]	[0.172103, 0.172317]		[0.17205, 0.17277]		[0.172082, 0.172297]	
$A_{\mathrm{FB}}^{0,b}$	0.0996 ± 0.0016	0.10324 ± 0.00033	0.10325 ± 0.00035	-2.2	0.10338 ± 0.00076	-2.1	0.10287 ± 0.00037	-2.0
		[0.10259, 0.10388]	[0.10258, 0.10393]		[0.10188, 0.10489]		[0.10214, 0.10361]	
$A_{\mathrm{FB}}^{0,c}$	0.0707 ± 0.0035	0.07377 ± 0.00024	0.07377 ± 0.00026	-0.9	0.07391 ± 0.00059	-0.9	0.07348 ± 0.00028	-0.8
r b		[0.07328, 0.07425]	[0.07327, 0.07428]		[0.07275, 0.07507]		[0.07293, 0.07403]	
A_b	0.923 ± 0.020	0.934746 ± 0.000040	0.934746 ± 0.000040	-0.6	0.934594 ± 0.000169	-0.6	0.934721 ± 0.000041	-0.6
		[0.934668, 0.934825]	[0.934668, 0.934826]		[0.93426, 0.93492]		[0.934640, 0.934802]	
A_c	0.670 ± 0.027	0.66789 ± 0.00023	0.66789 ± 0.00023	0.1	0.66816 ± 0.00054	0.1	0.66766 ± 0.00024	0.1
		[0.66743, 0.66834]	[0.66743, 0.66835]		[0.66712, 0.66922]		[0.66718, 0.66814]	
A_s	0.895 ± 0.091	0.935663 ± 0.000043	0.935663 ± 0.000043	-0.4	0.935714 ± 0.000099	-0.5	0.935622 ± 0.000045	-0.5
		[0.935580, 0.935746]	[0.935580, 0.935746]		[0.935522, 0.935909]		[0.935533, 0.935709]	
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108382 ± 0.000022	0.108382 ± 0.000022	0.2	0.108293 ± 0.000110	0.3	0.108386 ± 0.000023	0.2
ŧ.		[0.108339, 0.108425]	[0.108339, 0.108425]		[0.10808, 0.10851]		[0.108340, 0.108432]	
$\sin^2 \theta_{\text{eff}}^{\text{lept}}$ (HC)	0.23143 ± 0.00025	0.231491 ± 0.000059	0.231496 ± 0.000061	-0.2	, ,	-0.1	0.231558 ± 0.000068	-0.5
en (-/)		[0.231376, 0.231608]	[0.231376, 0.231616]		[0.23119, 0.23173]		[0.231426, 0.231691]	
R_{uc}	0.1660 ± 0.0090	0.172231 ± 0.000033	0.172231 ± 0.000033	-0.7	. /	-0.7		-0.7
		[0.172167, 0.172295]	[0.172168, 0.172296]	- 1	[0.17208, 0.17279]	- •	[0.172145, 0.172277]	- •

Interplay between m_t and M_W

Custodial SU(2) violated by Yukawa interactions $\rho=M_W^2/M_Z^2c_W^2=1$ tree-level prediction modified by loop corrections $\propto G_F m_t^2$.

after "standard"

after "conservative"

Interplay between M_W and $sin^2\theta_{eff}$

"standard" scenario

"conservative" scenario

Theory and parametric errors

Theory intrinsic uncertainties on input parameters

$$\delta_{th}M_W = 4 \text{ MeV}$$
, $\delta_{th}\sin^2 q_W = 5 \times 10^{-5}$

$$\delta_{\text{th}}\Gamma_{\text{Z}}$$
 = 0.4 MeV, $\delta_{\text{th}}\sigma^{0}_{\text{had}}$ = 6 pb

$$\delta_{\text{th}} R^0_{\ \ \ \ \ \ } = 0.0005$$

 $\delta_{\text{th}} R^0_{\ \ \ \ \ \ \ \ } = 0.0001$

Still small compared to experimental uncertainties. Small impact on fit's outcome.

Parametric uncertainties

					standard	scenario	conservati	ve scenario
	Prediction	$\alpha_s(M_Z^2)$	$\Delta \alpha_{ m had}^{(5)}(M_Z^2)$	M_Z	m_t	Total	m_t	Total
M_W [GeV]	80.3545	± 0.0006	± 0.0018	± 0.0027	± 0.0027	± 0.0042	± 0.0060	± 0.0069
Γ_W [GeV]	2.08782	± 0.00040	± 0.00014	± 0.00021	± 0.00021	± 0.00052	± 0.00047	± 0.00066
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.108386	± 0.000024	± 0.000000	± 0.000000	± 0.000000	± 0.000024	± 0.000000	± 0.000024
$\sin^2 \theta_{\rm eff}^{ m lept}$	0.231534	± 0.000003	± 0.000035	± 0.000015	± 0.000013	± 0.000041	± 0.000030	± 0.000048
Γ_Z [GeV]	2.49414	± 0.00049	± 0.00010	± 0.00021	± 0.00010	± 0.00056	± 0.00023	± 0.00060
σ_h^0 [nb]	41.4929	± 0.0049	± 0.0001	± 0.0020	± 0.0003	± 0.0053	± 0.0007	± 0.0053
R_ℓ^0	20.7464	± 0.0062	± 0.0006	± 0.0003	± 0.0002	± 0.0063	± 0.0004	± 0.0063
$A_{ m FB}^{0,\ell}$	0.016191	± 0.000006	± 0.000060	± 0.000026	± 0.000023	± 0.000070	± 0.000052	± 0.000084
$\mathcal{A}_{\ell}^{^{1}}$	0.14692	± 0.00003	± 0.00028	± 0.00012	± 0.00010	± 0.00032	± 0.00023	± 0.00038
R_b^0	0.215880	± 0.000011	± 0.000001	± 0.000000	± 0.000015	± 0.000019	± 0.000034	± 0.000035
R_c^0	0.172198	± 0.000020	± 0.000002	± 0.000001	± 0.000005	± 0.000020	± 0.000011	± 0.000023
$A_{\mathrm{FB}}^{0,b} \ A_{\mathrm{FB}}^{0,c}$	0.10300	± 0.00002	± 0.00020	± 0.00008	± 0.00007	± 0.00023	± 0.00016	± 0.00027
$A_{\mathrm{FB}}^{0,c}$	0.07358	± 0.00001	± 0.00015	± 0.00006	± 0.00006	± 0.00018	± 0.00013	± 0.00021
$\mathcal{A}_b^{^{\Gamma}B}$	0.934727	± 0.000001	± 0.000023	± 0.000010	± 0.000003	± 0.000025	± 0.000007	± 0.000026
\mathcal{A}_c	0.66775	± 0.00001	± 0.00012	± 0.00005	± 0.00005	± 0.00014	± 0.00011	± 0.00017
\mathcal{A}_s	0.935637	± 0.000002	± 0.000022	± 0.000010	± 0.000009	± 0.000026	± 0.000020	± 0.000031
R_{uc}	0.172220	± 0.000019	± 0.000002	± 0.000001	± 0.000005	± 0.000020	± 0.000011	± 0.000023

Beyond the SM

Very broadly, two main options:

■ Add new physics that breaks residual $SU(2)_V$ custodial symmetry and allows $\rho \neq 1$ at tree level \longrightarrow not considered here

- Add heavy new physics that decouples and leaves virtual effects:
 - Mainly in gauge boson propagators: "Oblique corrections" ("oblique" models)
 - S,T,U parameters
 - In a complete set of gauge-invariant higher dimension effective operators

$$m{ ilde{L}_{eff}}=\mathcal{L}_{SM}+\sum_{i,d}rac{C_i^{(d)}}{\Lambda^{d-4}}\mathcal{O}_i^{(d)}$$

Beyond the SM: {S,T,U}

$$S = -16\pi\Pi_{30}^{\text{\tiny NP}}{}'(0) = 16\pi[\Pi_{33}^{\text{\tiny NP}}{}'(0) - \Pi_{3Q}^{\text{\tiny NP}}{}'(0)]$$

$$T = rac{4}{s_W^2 c_W^2 M_Z^2} [\Pi_{11}^{ ext{NP}}(0) - \Pi_{33}^{ ext{NP}}(0)]$$

$$U = 16\pi [\Pi_{11}^{NP\prime} - \Pi_{33}^{\text{NP}\prime}(0)]$$

U=0, (S,T) reabsorb impact of M_W

	Result	Correlation	Result	Correlation				
	$(IC_{ST}/IC_{SM} =$		$(IC_{STU}/IC_{SM} = 25.3/80.2)$					
\overline{S}	0.100 ± 0.073	1.00	0.005 ± 0.096	1.00				
T	0.202 ± 0.056	0.93 1.00	0.040 ± 0.120	0.91 1.00				
U	_		0.134 ± 0.087	-0.65 -0.88 1.00				

Beyond the SM: SMEFT (d=6)

Very loose prediction of M_W from $\Gamma_W(M_W)$

Model	Pred. M_W [GeV] Pull	Pred. M_W [GeV] Pull		
	standard ave	rage	$conservative \ average$			
SMEFT	80.66 ± 1.68	-0.1σ	80.66 ± 1.68	-0.1σ		

Only 8 independent combinations enter EWPO

$$\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2} C_{\varphi D}, \quad f = l, q, e, u, d,$$

$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2} C_{\varphi D} + \frac{c_w}{s_w} C_{\varphi WB}, \quad f = l, q,$$

$$\hat{C}_{ll} = \frac{1}{2} ((C_{ll})_{1221} + (C_{ll})_{2112}) = (C_{ll})_{1221},$$

	$C_{\varphi D}$	$C_{\varphi WB}$	$C_{\varphi L}^{(3)}$	C_{LL}	$C_{\varphi L}^{(1)}$	$C_{\varphi e}$	$C_{\varphi Q}^{(1)}$	$C_{\varphi Q}^{(3)}$	$C_{\varphi u}$	$C_{\varphi d}$
M_W	√	√	√	\checkmark						
$\sin^2 \theta_{eff,l}$	√	✓	√	√	✓	✓				
Γ_W	✓	✓	✓	✓	✓		✓			✓
:										
Γ_Z	✓	✓	✓	✓	√	√	✓	✓	✓	✓

Global fit of all coefficients

Fit of individual coefficients

No substantial impact of new mt and MW measurements, within uncertainty of the fit.

Adding Higgs and top observables will lift the degeneracy

All 10 coefficients constrained independently by the global fit

	$C_{\varphi D}$	$C_{\varphi WB}$	$C_{\varphi L}^{(3)}$	C_{LL}	$C_{\varphi L}^{(1)}$	$C_{\varphi e}$	$C_{\varphi Q}^{(1)}$	$C_{\varphi Q}^{(3)}$	$C_{\varphi u}$	$C_{\varphi d}$
M_W	√	√	√	\checkmark						
$\sin^2 \theta_{eff,l}$	√	✓	√	√	✓	✓				
Γ_W	✓	✓	✓	\checkmark	✓		✓			✓
:										
Γ_Z	√	✓	√	√	√	√	√	√	√	√

Conclusions

- EW global fits stress-test the SM and provide a very strong indirect constraint on new physics.
- New measurement of M_W (and m_t) taken at face value implies a 6.5 σ discrepancy with the SM global fit.
- Oblique corrections can reabsorb it with NP at the electroweak scale if loop-mediated (excluded) and at the TeV scale if tree-level.
- A more conservative averaging procedure greatly reduces the tension and the need for a NP explanation.

New independent measurements of M_W (and m_t) become crucial!