



## The Dark Side of the Universe DSU 2022 5-9 December

## Gravitational production during reheating phase: the possibility of purely Gravitational reheating

Md Riajul Haque Department of Physics, IIT Guwahati, Assam, India

| ☐ Motiv | vation                                                                                      |
|---------|---------------------------------------------------------------------------------------------|
|         | possible to explain our current universe from purely gravitational action during reheating? |
| □ Non-g | gravitational couplings: where do gravitational reheating lies?                             |

# Observational challenges in probing the early Universe

Our knowledge about the cosmic history of the Universe



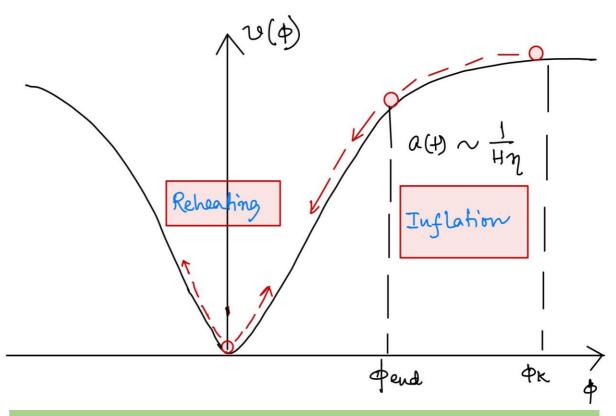
Cosmic microwave background (CMB)



Big-Bang Nucleosynthesis (BBN)

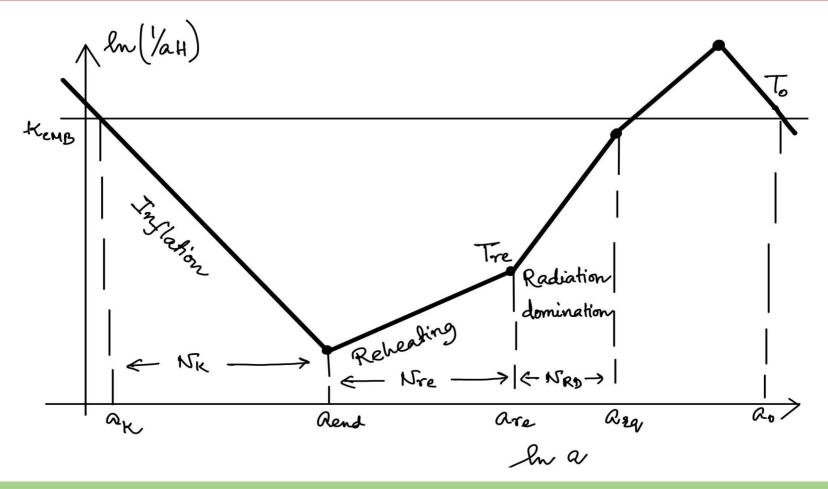


Provides evidence for an early inflationary phase with


- ullet Energy scale  $\sim 10^{16}\, {\rm GeV}$
- riangle Duration  $\Delta t_{inf} \geq 10^{-36}$  Sec

Predicts quantities such as light-element abundances

- $\clubsuit$  Energy scale  $E_{BBN} \sim 1 \ \text{MeV}$
- ${f \cdot}$  Time scale  $t_{BBN}\sim 1$  Sec
- There is a massive gap in terms of energy (and time) scale between the periods of inflation and BBN, which is poorly understood from both theory and observation

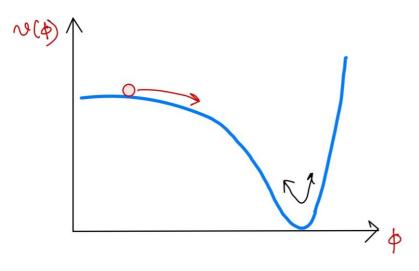

## Why do we need reheating phase?

- ☐ The end point of inflation
- The universe is cold, dark, and dominated by the homogeneous inflaton field.
- □ How does the Universe transition to a the hot, thermalized, radiationdominated state after inflation, which is required for nucleosynthesis.
- □ Reheating!



□ Natural consequence after inflation: fill the empty space with matter (generate entropy)

# Schematic diagram of the evolution of the comoving Hubble radius




We need to understand how the modified expansion history influences the prediction for cosmological observables.

# Inflationary parameters: Initial conditions for reheating

- $lacksquare{f \Box}$  Slow roll parameters:  $\epsilon_v = rac{M_p^2}{2} \left(rac{V'}{V}
  ight)^2$   $\eta_v = M_p^2 \left(rac{V''}{V}
  ight)$
- □ e-folding number & inflationary energy scale:

$$N_k = \log\left(\frac{a_{end}}{a_k}\right) = \int_{\phi_k}^{\phi_{end}} \frac{|d\phi|}{\sqrt{2\epsilon_v} M_p}, H_k = \frac{\pi M_p \sqrt{r_k A_s}}{\sqrt{2}}$$



#### □ CMB observable :

$$n_s = 1 - 6\epsilon_k(\phi_k) + 2\eta_k(\phi_k), r = 16\epsilon_k(\phi_k)$$

 $f\square$  End of inflation: Initial condition for reheating

$$\epsilon(\phi_{end}) = \frac{1}{2M_p^2} \left( \frac{V'(\phi_{end})}{V(\phi_{end})} \right)^2 = 1$$

## Reheating phenomenology

- □ Usual approach: Through parametric resonance (Preheating)/ Perturbative decay
- $g\phi S^2, g_1\phi^2 S^2, h\phi \bar{f}f, ....$

☐ Gravitational decay



$$\sim \frac{1}{M_P} h_{\mu\nu} T_i^{\mu\nu}, i = S, f, X, \phi$$

The gravitational decay channel was always ignored due to this Planck mass suppression. It was always thought that only gravitational production could not be sufficient to reheat the universe successfully.

## Gravitational reheating set up

☐ Inflaton gravitationally decaying into Radiation (massless) + Dark matter (massive)

$$\dot{\rho}_{\phi} + 3H(1 + \omega_{\phi})\rho_{\phi} + \Gamma_{\phi}^{T}\rho_{\phi}(1 + \omega_{\phi}) = 0,$$

$$\dot{\rho}_{R} + 4H\rho_{R} - \Gamma_{\phi\phi\to RR}^{Rad}\rho_{\phi}(1 + \omega_{\phi}) = 0,$$

$$\dot{n}_{Y} + 3Hn_{Y} - \frac{\Gamma_{\phi\phi\to YY}^{DM}}{m_{\phi}}\rho_{\phi}(1 + \omega_{\phi}) = 0$$

$$\Gamma_{\phi\phi\to SS} = \frac{\rho_{\phi} \, m_{\phi}}{1024 \, \pi \, M_p^4} \left( 1 + \frac{m_S^2}{2 \, m_{\phi}^2} \right) \sqrt{1 - \frac{m_S^2}{m_{\phi}^2}} \,,$$

$$\Gamma_{\phi\phi\to ff} = \frac{\rho_{\phi} \, m_f^2}{4096 \pi \, M_p^4 m_{\phi}} \left( 1 - \frac{m_f^2}{m_{\phi}^2} \right)^{\frac{3}{2}} \,, \qquad (0.1)$$

$$\Gamma_{\phi\phi\to XX} = \frac{\rho_{\phi} \, m_{\phi}}{32768 \, \pi \, M_p^4} \left( 4 + 4 \frac{m_X^2}{m_{\phi}^2} + 19 \frac{m_X^4}{m_{\phi}^4} \right) \sqrt{1 - \frac{m_X^2}{m_{\phi}^2}} \,.$$

$$\begin{split} \Omega_X h^2 &= \frac{\rho_X(T_F)}{\rho_R(T_F)} \frac{T_F}{T_{now}} \Omega_R h^2, \\ &= \langle E_X \rangle \frac{X(T_F)}{R(T_F)} \frac{T_F}{T_{now}} \frac{A_F}{m_\phi} \Omega_R h^2 \end{split}$$

Parameters:  $H_{end}, \, \omega_{\phi}, \, M_{DM}$   $\Gamma^{Rad} = (\Gamma^S + \Gamma^f + \Gamma^X)$ 

$$\phi/SM$$
  $X/SM$   $T_{\phi/SM}^{\mu\nu}$   $M_P$   $h_{\mu\nu}$   $X/SM$   $X/SM$ 

#### Initial conditions and constraints

□ Initial conditions: 
$$\rho_{\phi}^{in} = 3M_p^2 H_{end}^2$$
,  $\rho_R = \rho_{DM} = 0$ 

- Constraint conditions: Present state of our universe
  - 1. Entropy conservation

$$T_{re} = \left(\frac{43}{11\,g_*^{re}}\right)^{1/3}\,\left(\frac{a_0\,H_{end}}{k}\right)\,e^{-(N_k+N_{re})}\,T_0\,, \qquad {
m with} \quad k/a_0 = 0.05~{
m Mpc}_*^{-1}, \quad T_0 = 2.725^0~{
m K}$$

- 2. Present DM abundance  $\Omega_X h^2 = 0.12$
- 3. Universe must be radiation dominated before  $|T_{re}>T_{BBN}\sim 10 MeV$
- 4. Upper limit on Inflationary energy scale  $|H_{end}^{max}>\pi M_p\sqrt{r\,A_s/2}\sim 5\times 10^{13} GeV|$

Present state of the universe is completely fixed by  $|H_{end},\,\omega_{\phi},\,M_{DM}|$ 

$$H_{end},\,\omega_{\phi},\,M_{DM}$$

- L. Dai, M. Kamionkowski and J. Wang, PRL. 113, 041302 (2014)
- J. L. Cook, et al JCAP 1504 (2015) 047

### Model independent predictions

☐ Assuming Slow-roll inflation (with out taking any particular model)

$$m_{\phi}^{end} \simeq \sqrt{(1+\omega_{\phi})(4+12\omega_{\phi})/(1-\omega_{\phi})^2} H_{end}$$

$$N_{re} = \frac{1}{3\omega_{\phi} - 1} \ln \left( \frac{512 \pi M_p^2 (1 + 15 \omega_{\phi})}{3 (1 + \gamma) H_{end} m_{\phi}^{end} (1 + \omega_{\phi})} \right) \qquad n_S^{com} = 8n_X^{com} = \frac{3H_{end}^3 (1 + \omega_{\phi})}{512 (\pi + 3\pi\omega_{\phi})},$$

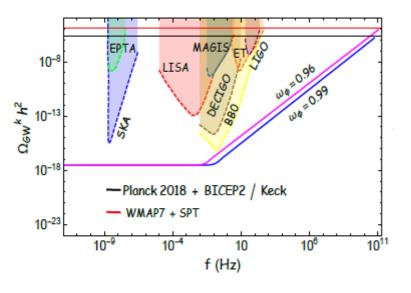
$$T_{re} = \left(\frac{9(1+\gamma)H_{end}^{3} m_{\phi}^{end}(1+\omega_{\phi})}{512 \beta \pi (1+15\omega_{\phi})} e^{-4N_{re}}\right)^{1/4}$$

$$n_f^{com} \simeq \frac{3H_{end}^3}{2048\pi} \frac{1 + \omega_{\phi}}{1 - \omega_{\phi}} \left( \frac{m_f}{m_{\phi}^{end}} \right)^2 \left( 1 - e^{-\frac{3N_{re}}{2}(1 - \omega_{\phi})} \right),$$

$$n_S^{com} = 8n_X^{com} = \frac{3H_{end}^3 \left( 1 + \omega_{\phi} \right)}{512(\pi + 3\pi\omega_{\phi})},$$

Gravitational Reheating prediction:

Dark matter sector


Inflaton sector

Inflaton equation of state  $\omega_{\varphi} = (0.6,0.99)$ 

.Fermionic DM:  $2\times 10^5 < m_f < 3\times 10^8~GeV$  . Energy scale  $H_{end} = (1\times 10^9, 5\times 10^{13})~GeV$ 

Inflationary e-folds  $62 < N_{efold} < 63$ 

## Predictions from primordial gravitational waves



#### Spectrum of the gravitational today

$$\Omega_{GW}^{k} h^{2} \simeq \Omega_{R} h^{2} P_{T}(k) \frac{4\mu^{2}}{\pi} \Gamma^{2} \left( \frac{5 + 3\omega_{\phi}}{2 + 6\omega_{\phi}} \right) \left( \frac{k}{2\mu k_{re}} \right)^{n_{GW}}$$

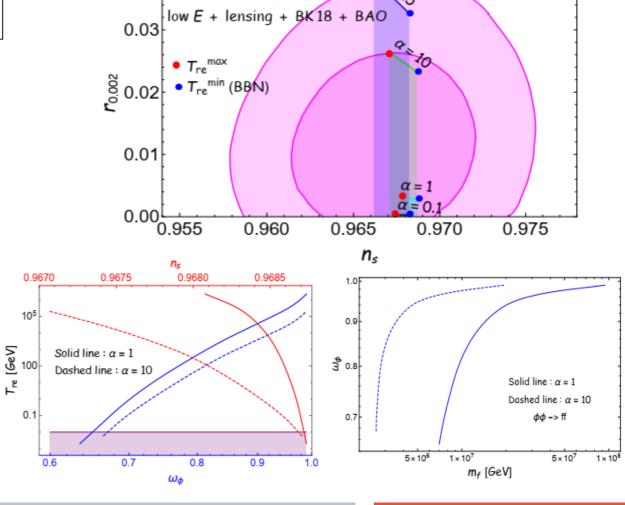
$$\mu = \frac{1}{2} (1 + 3\omega_{\phi}) \quad P_{T}(k) = H_{end}^{2} / 12\pi^{2} M_{n}^{2}.$$

#### Index of the GW spctrum:

$$n_{GW} = \frac{\left(6\omega_{\phi} - 2\right)}{\left(3\omega_{\phi} + 1\right)}$$

#### From BBN bounds set by Plank 2018 data:

$$\omega_{\phi} \rightarrow 0.98 \sim 1.0$$


### Constraining specific models

0.04

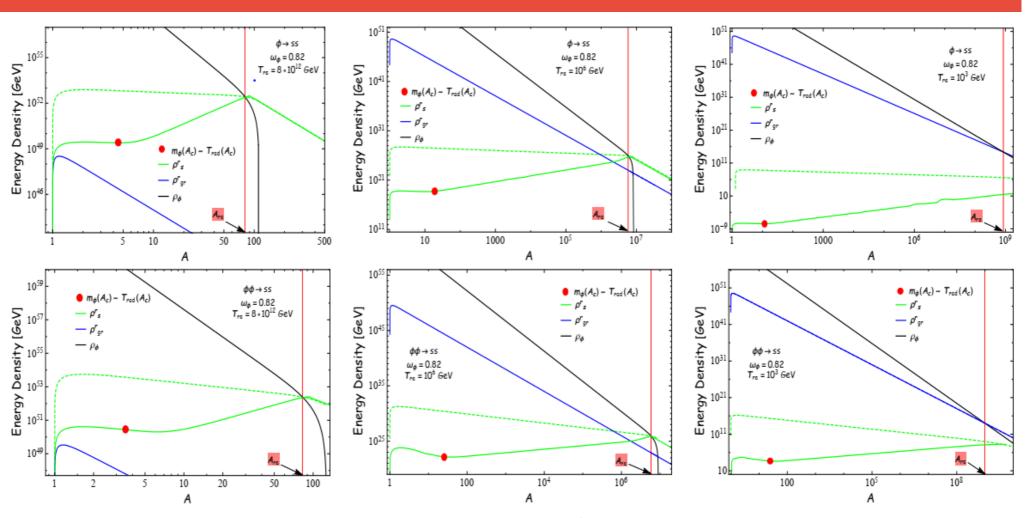
$$V(\phi) = \Lambda^4 \left[ 1 - e^{-\sqrt{\frac{2}{3\alpha}}\phi/M_p} \right]^{2n}$$

#### Predictions:

$$\alpha = 1 \rightarrow 0.9681 \leq n_s \leq 0.9687$$
 $n \geq 4.75$ 
 $7 \times 10^6 < m_f < 9 \times 10^7 \text{ GeV}$ 
 $\alpha = 10 \rightarrow 0.9611 \leq n_s \leq 0.9687$ 
 $n \geq 5.15$ 
 $3 \times 10^6 < m_f < 2 \times 10^7 \text{ GeV}$ 



Planck TT, TE, EE


### Non-gravitational couplings

Non-gravitational decay rate (Taking the effect of both Bose enhancement and Pauli blocking)

$$\Gamma_{s/f} = \begin{cases} \Gamma_{\phi \to ss} &= \frac{(g_1^r)^2}{8\pi m_{\phi}(t)} (1 + 2f_B(m_{\phi}/2T)), & \text{for } g_1^r \phi s^2 \\ \Gamma_{\phi \to ss} &= \frac{(g_2^r)^2 \rho_{\phi}(t)}{8\pi m_{\phi}^3(t)} (1 + 2f_B(m_{\phi}/T)), & \text{for } g_2^r \phi^2 s^2 \\ \Gamma_{\phi \to \bar{f}f} &= \frac{h^2}{8\pi} m_{\phi}(t) (1 - 2f_F(m_{\phi}/2T)), & \text{for } h^r \phi \bar{f}f \end{cases}$$

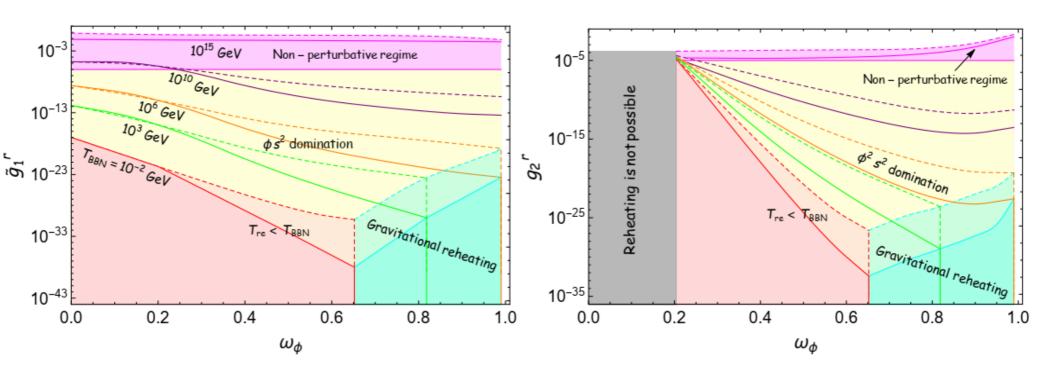
- Based on their dominating effect, we find three distinct regions of coupling where reheating evolution will be different:
- 1) Case-I: Entire reheating dynamics will be dominated by direct non-gravitational coupling.
- 2) Case-II: Both the decay processes will partially dominate the reheating dynamics.
- 3) Case-III: Entire reheating dynamics will be dominated by gravity mediated process (Gravitational reheating).

# Evolution of inflaton and radiation energy density as a function of normalized scale factor (Bosonic reheating)



**Left panel:** Coupling is in the range of  $g_i^r > \mathcal{G}_{ci}^{1,\,th}$ . **Middle panel:** Coupling is in the range of  $\mathcal{G}_{ci}^{2,\,th}/\mathcal{G}_{ci}^2 < g_i^r < \mathcal{G}_{ci}^{1,\,th}$ . **Right panel:** Coupling is in the range of  $g_i^r < \mathcal{G}_{ci}^{2,\,th}/\mathcal{G}_{ci}^2$ .

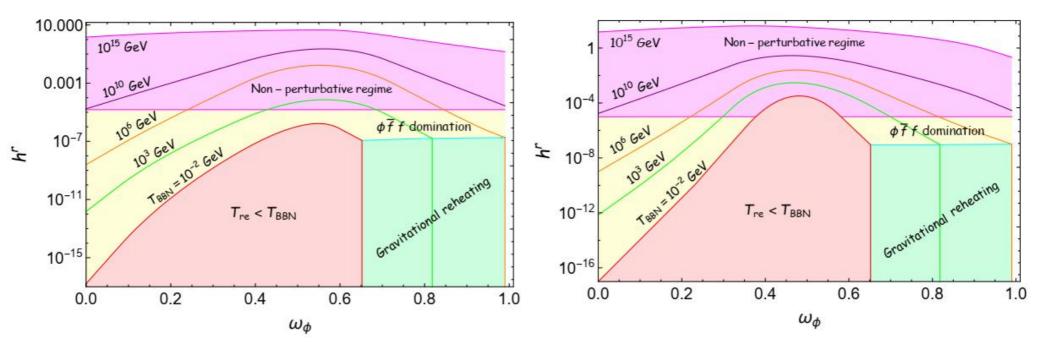
## Variation of the radiation temperature with respect to the scale factor


#### \* Bosonic reheating

|                   | $T \ll m_{\phi}(t)$ (With      | out thermal effect) | $T \gg m_{\phi}(t)$ (With thermal effect) |               |
|-------------------|--------------------------------|---------------------|-------------------------------------------|---------------|
| Channel           | Non-gravitational              | Gravitational       | Non-gravitational                         | Gravitational |
| $\phi \to ss$     | $A^{-\frac{3(1-w_{\phi})}{8}}$ | $A^{-1}$            | $A^{-\frac{(1-3w_{\phi})}{2}}$            | $A^{-1}$      |
| $\phi\phi \to ss$ | $A^{-\frac{9(1-w_{\phi})}{8}}$ | $A^{-1}$            | $A^{-\frac{(3-5w_{\phi})}{2}}$            | $A^{-1}$      |

#### \* Fermionic reheating

|                    | $T \ll m_{\phi}(t)$ (Without thermal effect)                        |               | $T \gg m_{\phi}(t)$ (With thermal effect)                                             |               |
|--------------------|---------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------|---------------|
| Channel            | Non-gravitational                                                   | Gravitational | Non-gravitational                                                                     | Gravitational |
| $\phi 	o \bar{f}f$ | $A^{-\frac{3(1+3w_{\phi})}{8}}(A^{-1})$ for $w_{\phi} < 5/9 (>5/9)$ | $A^{-1}$      | $A^{-\frac{3(1+5w_{\phi})}{10}}(A^{-1})$ for $w_{\phi} < \frac{7}{15}(>\frac{7}{15})$ | $A^{-1}$      |


# Variation of the dimensionless bosonic coupling parameters as a function of inflaton EoS (Bosonic reheating)



The pink-shaded region corresponds to the non-perturbative regime where bounds on coupling  $\tilde{g}_1^r \geq \left(V_{end}^{1/2} m_\phi^{end}/(24 M_p \phi_{end}^2)\right)^{1/2}$  and  $g_2^r \geq \left(V_{end}^{1/8}/\phi_{end}\right) \left(V_{end}^{1/2} (m_\phi^{end})^3/(\sqrt{2} M_p \phi_{end}^4)\right)^{1/4}$  are obtained from resonance condition of Mathieu equation for scalar field.

L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. D **56**, 3258-3295 (1997)

# Variation of the fermionic coupling parameters as a function of inflaton EoS (Fermionic reheating)



- For the Bosonic reheating, Bose enhancement factor induces the decay rate, which decreases the lower limit of inflaton-Boson coupling above which the Boson decay dominated reheating (bosonic reheating) is possible.
- On the other hand, for fermionic decay of inflaton, the thermal bath induces an additional Pauli blocking factor into the decay rate, which requires a higher value of coupling h for successful fermionic reheating.

## Summary

- □ I initially provided a brief description about the importance of reheating.
- ☐ Then discuss a model-independent approach to acquire a precise cosmological prediction. We switch off all possible unknown parameters, implying that the inflaton sector is coupled with the observable sector only through gravitational interaction.
- ☐ Finally, discussed where do gravitational reheating lie with respect to different non-gravitational couplings.

## Thank You