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Dynamical Friction

2

A heavy object traveling through a distribution 

of stars, gas, and dark matter can lose 

momentum and energy.

Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction 
Chandrasekhar, S. (1943).
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DYNAMICAL FRICTION3 (Dramatization)
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ULDM Basics
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(ΦU + ΦN)

ULDM BASICS

S =
1
2 ∫ d4x −g (gμν∂μϕ∂νϕ − m2ϕ2)
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i ·ψ = −
1

2m
∇2+

∇2ΦU = 4πm ψ
2

A nonlinear modification to Schrödinger Equation, 
giving the wavefunction an associated mass density.

V ψ

(ΦU + ΦN)

ULDM BASICS
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Schrödinger-Poisson 

External Gravitational Potentials

∇2ΦU = 4πm ψ
2

i ·ψ = −
1

2m
∇2+ (ΦU + ΦExt) ψ

V

Non-Gravitational Self-Interaction

…
Expansion of Universe

8 ULDM BASICS
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(Self ) Gravity Quantum Pressure

Schrödinger-Poisson Solitons

Can obtain the general radial profile 

numerically*. 

Know some scaling laws: lighter 

solitons are puffier.

ULDM BASICS
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10 ULDM BASICS

ψ(t) ≡ ρ(t)eiθ(t)

v = ∇θ

Madelung Picture
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A Foundation for Efficient and Flexible ULDM Simulations
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End 
Iteration?

Init
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ΦU(t + h)
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Φ = ΦU + ∑
j

ϕj
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PYULTRALIGHT2 Under the Hood
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N-body System 

• Particles are represented by 
Plummer Spheres and are allowed 
to move in  following an RK4 
solver. 

• They feel a locally interpolated 
version of . 

• Their gravitational field is resampled 
and fed into the S-P equation 
governing ULDM motion. 

• Can have variable mass.

ℝ3

ΦU

PYULTRALIGHT2 Under the Hood

Numerical Consistency 

• Integrator is fully modular — and 
each component have been 
individually tested against state-of-
the art solvers for N body and 
Schrödinger systems. 

• ULDM Mass Conservation. 

• Good System Energy Conservation. 

• Robust results across resolutions 
and scaling. 

• Convert and shift simulations across 
a variety of reference frames.

ULDM System 

• Built-in soliton profile solver. 

• Can impose a range of boundary 
conditions - periodic, dissipative 
sponge, or reflective sponge. 

• Poisson equation solved either in 
frequency domain or using Green 
functions. 

• (Optional) - Zero-padded density 
field when solving Poisson equation. 
This reduces boundary artifacts.
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14 PYULTRALIGHT2 An Example Simulation
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Linear Pass through Uniform ULDM
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Overdense “Gravitational Wake”

Dynamical Friction from Uniform ULDM

Our First Dynamical Friction Results Dynamical friction in a Fuzzy Dark Matter universe 
Lancaster et al. JCAP(2020).
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17 (Two plots always share color scales as left panel evolves in time)

— de Broglie wavelength 

— System Size ( )vt
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Numerical Solution vs. Coulomb Scattering

Our First Dynamical Friction Results
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Numerical Solution vs. Coulomb Scattering

Our First Dynamical Friction Results
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The tail is not stable under its 
own gravity

Our First Dynamical Friction Results
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w/o Self-gravity

w/ Self-gravity

Full ULDM Density 
Profile with Self-Gravity 
(Along Axis of Symmetry)

Our First Dynamical Friction Results Dynamical friction from ultralight dark matter 
Yourong Wang and Richard Easther. Phys. Rev. D 105, 063523
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Stopping Distances for BH 
is robust across 
resolutions and system 
size (Plummer radii)

Our First Dynamical Friction Results
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A Point Mass Orbiting a Soliton

22IV
II
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23 BH-Soliton Interactions
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Single BH Orbit Decay vs. BH Mass

(Heavy BH)

(Light BH)

(Presented in system frame of reference)BH-Soliton Interactions
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Single BH Orbit Decay vs. Initial Radius

(25 independent runs, each carried out for 14 nominal orbital periods.)BH-Soliton Interactions
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Skipping Stones?

Infalling BH’s with orbital periods near resonance 
with the soliton’s intrinsic breathing modes may 
experience either facilitation or inhibition of the 
orbital decay process.

A stone skipping attempt by author

(This parameter scan is based on a different system than the previous slide)BH-Soliton Interactions
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Soliton Eigenmode Decomposition

BH-Soliton Interactions Schrödinger-Poisson solitons: Perturbation theory 
Zagorac et al. PRD 105, 103506.

Ongoing investigation with Tim Koorey (Auckland) and Luna Zagorac (Perimeter)
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• Effectively, the initial soliton is instantly taken out of equilibrium at t=0, which is unrealistic. 

• No astrophysical systems that we know of would consist of a fully relaxed “ground state” solitonic 
core. 

• Nonlinearity might be dramatically disturbed by the presence of other massive objects and 
structures nearby. 

• Local effects may be significant, like the BH’s accretion of axions. 

• PyUL is a versatile and reliable tool for scratch work, but full-size simulations call for more 
sophisticated numerical routines such as ChplUltra (Yale Cosmology) and AxioNyx (Goettingen 
Cosmology).

28

Caveats of This Toy Model
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29 PYULTRALIGHT2 Another Example Simulation
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30 PYULTRALIGHT2 Another Example Simulation
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Summary

• With PyUltraLight 2, we can now couple arbitrary N body systems to a 
mesh-based ULDM simulation. 

• Comparable results with the simplified dynamical friction models in 
literature. 

• Direct simulations of nonlinear interactions between a ULDM soliton 
and a black hole. 

• Intricate dynamics and complex behavior even with a single black hole.
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Source of Interesting Dynamics 
Local Causes Lead to Non-Local ULDM Behaviour 

Bringing Together Black Holes 
Interactions mediated by dark matter might give 
us a solution to the Final Parsec Problem 

How do two SMBHs find each other during a 
galaxy merger and coalesce?

The Final Parsec Problem  

Milosavljević, M. & Merritt, D. (2003).   

The LISA Collaboration 

LISA Consortium, ESA 
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A computer’s impression of jets from a galaxy merger

FWPhys.com/PyUL
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