A FREQUENTIST ANALYSIS OF

DECAYING DARK MATTER

BASED ON ARXIV:2211.01935

EMIL BRINCH HOLM

Dark Side of the Universe 2020 December 6, Sydney, Australia

$-\int \mathrm{d}\beta \ L(\alpha,\beta)$

--- $\max_{\beta} L(\alpha, \beta)$

Invisibly decaying dark matter

model: fraction $f_{\rm DCDM}$ of cold dark matter decaying to dark radiation

Earlier constraints on DCDM

Profile likelihoods

Profile likelihood (PL):

$$PL(\alpha) = -2 \ln \left(\max_{\beta} \frac{L(\alpha, \beta)}{L_{\text{max}}} \right) \stackrel{\text{def}}{=} \min_{\beta} \Delta \chi^{2}(\alpha, \beta) \quad \sim \quad \chi^{2}(1 \text{ DoF})$$

- Parabolic PL:
 - 68 % CI: $PL(\alpha) < 1$
 - 95 % CI: $PL(\alpha) < 3.84$

(but holds approximately even if not parabolic...)

Profile likelihoods: Simulated annealing

Simulated annealing

Iteration 1

Simulated annealing

Iteration 2

Simulated annealing

Iteration 3

Results

Results

Results

Bestfit decays around recombination

Still does not solve H_0

At 68 % CL:

$$H_0 = 68.14^{+0.54}_{-0.49} \text{ km s}^{-1} \text{ Mpc}^{-1}$$
 (Without SH0ES)
 $H_0 = 69.25^{+0.32}_{-0.49} \text{ km s}^{-1} \text{ Mpc}^{-1}$ (With SH0ES)

 H_0 tension: 4.1 σ to 3.6 σ

Conclusions

- Bayesian constraints on DCDM are highly prior-dependent and strongly driven by volume effects
- Bestfit DCDM is not LCDM, but 1.6σ significant intermediate regime with ~3 % of CDM decaying around recombination
- Even without volume effects, DCDM doesn't solve H_0

Outlook

- Expect volume effects in LCDM extensions with abundances or coupling constants
 - → PLs are important!
- Main PL disadvantage (computation) solved in the future:
 - emulators
 - gradient-based optimization
 - → PLs accessible in the future!
- Both MCMC and PL are "correct"
 - → Use together!

Discovering a new well: Decaying dark matter with profile likelihoods

Emil Brinch Holm¹,* Laura Herold², Steen Hannestad¹, Andreas Nygaard¹, and Thomas Tram¹

¹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark and ²Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany (Dated: November 4, 2022)

A large number of studies, all using Bayesian parameter inference from Markov Chain Monte Carlo methods, have constrained the presence of a decaying dark matter component. All such studies find a strong preference for either very long-lived or very short-lived dark matter. However, in this letter, we demonstrate that this preference is due to parameter volume effects that drive the model towards the standard Λ CDM model, which is known to provide a good fit to most observational data.

Using profile likelihoods, which are free from volume effects, we instead find that the best-fitting parameters are associated with an intermediate regime where around 3% of cold dark matter decays just prior to recombination. With two additional parameters, the model yields an overall preference over the Λ CDM model of $\Delta \chi^2 \approx -2.8$ with *Planck* and BAO and $\Delta \chi^2 \approx -7.8$ with the SH0ES H_0 measurement, while only slightly alleviating the H_0 tension. Ultimately, our results reveal that decaying dark matter is more viable than previously assumed, and illustrate the dangers of relying exclusively on Bayesian parameter inference when analysing extensions to the Λ CDM model.

arXiv:2211.01935v1

Code available at

https://github.com/AarhusCosmology/montepython_public/tree/2211.01935