Dark Side of Universe 2022 @UNSW, Sidney December 5-9

Universe with a large lepton asymmetry

Masahiro Kawasaki (ICRR, University of Tokyo)

Refs. MK, Murai arXiv:2203.09713 Kasuya, MK, Murai in preparation

1. Introduction

- He4 is produced in Big Bang Nucleosynthesis (BBN)
- Recent new measurements of He4 (together with previous data)
 determined primordial He4 abundance Matsumoto et al. arXiv: 2203.09617

$$Y_p = 0.2370^{+0.0034}_{-0.0033}$$
 $Y = \rho_{^4\text{He}}/\rho_B$

- ullet $\sim 1\sigma$ smaller than the previous results
- Constraints on the parameters of BBN (including D measurement)
 - Baryon-to-photon ratio $\eta_B = n_B/n_\gamma$
 - Effective number of ν species $N_{\rm eff}$

$$N_{\text{eff}} = 2.37_{-0.24}^{+0.19}$$
$$\eta_B = 5.80_{-0.16}^{+0.13} \times 10^{-10}$$

 $\sim > 2\sigma$ tension between constraint on $N_{
m eff}$ and the standard value

1. Introduction

- Introducing asymmetry between ν_{e} and $\bar{\nu}_{e}$
- Chemical potential parameter $\xi_e = \mu_{\nu_e}/T_{\nu_e}$ $n_{\nu_e} n_{\bar{\nu}_e} \simeq \frac{T^3}{6} \xi_e$

$$n_{\nu_e} - n_{\bar{\nu}_e} \simeq \frac{T^3}{6} \xi_e$$

$$\xi_e = 0.05^{+0.03}_{-0.02}$$

$$N_{\text{eff}} = 3.11^{+0.34}_{-0.31}$$

$$\eta_B = 6.08^{+0.06}_{-0.06} \times 10^{-10}$$

- Large lepton asymmetry
 - All 3 flavors share asymmetry due to oscillation

$$n_L = 3(n_{\nu_e} - n_{\bar{\nu}_e})$$

Lepton asymmetry

$$\eta_L = \frac{n_L}{s} \simeq 5.3 \times 10^{-3}$$

1. Introduction

Lepton asymmetry is much larger than the observed baryon asymmetry

$$\eta_{B, \mathrm{obs}} \sim 10^{-10}$$

• If a lepton number is produced at $T \gtrsim 100$ GeV, it is partially converted to a baryon number through the sphaleron process

- To produce lepton asymmetry much larger than $|\eta_B|$
 - Lepton asymmetry is produced below the EW scale
 - Produced asymmetry is protected against the sphaleron process
- We consider Q-ball (L-ball) formation to realize the latter
 - ho Q-ball is a non-topological soliton in a scalar theory with U(1)
 - Q-balls are produced in the Affleck-Dine leptogenesis
- Large lepton asymmetry is successfully produced by L-ball formation

2. Affleck-Dine mechanism

• Flat directions in the scalar potential of MSSM $\ni (\tilde{q}, \ \tilde{\ell}, \ H)$

Minimal SUSY standard model

- One of flat directions = AD field φ
- AD field has a baryon number or a lepton number

- During inflation ($H\gg m_\phi$) $\,\Phi$ has a large value if $c_H<0$
- After inflation, when $m_{\phi} \simeq H$ φ starts to oscillate

2. Affleck-Dine mechanism

AD field is kicked in phase direction due to A-term

- AD mechanism can generate lepton number efficiently
- Large lepton asymmetry is realized

3.1 Formation of L-balls

- AD field oscillation has spatial instabilities if the potential is flatter than the quadratic one
- AD field fragments into spherical lumps (non-topological solitons) called Q-balls
 - For $U(1) = U(1)_L$, formed Q-balls are called L-balls
- L-ball formation depends on SUSY breaking
- We consider gauge-mediated SUSY breaking models

$$V_{\rm susy} = V_{\rm gauge} + V_{\rm grav} = M_F^4 \left[\log \left(\frac{|\phi|^2}{M_m^2} \right) \right]^2 + m_{3/2}^2 |\phi|^2 \left[1 + K \log \left(\frac{|\phi|^2}{M_*^2} \right) \right]$$

 $m_{3/2} < 1 \text{GeV}$

- \blacktriangleright L-balls are formed if K < 0 when $V_{\rm grav}$ dominates the potential
- \blacktriangleright L-balls are always formed when $V_{\rm gauge}$ dominates the potential
- We assume K>0, so L-balls are formed when $V_{\rm gauge}$ dominates the potential

3.1 L-ball formation

- AD field starts oscillation with amplitude $\varphi_{\rm osc} > \varphi_{\rm eq}$ at $H \sim m_{3/2}$
- Lepton asymmetry $n_L \simeq m_{3/2} \, \varphi_{\rm osc}^2$
- For K > 0 L-balls do not form until $\varphi < \varphi_{eq}$
 - L-ball formation is delayed [delayed-type L-ball]
 - Lepton charge is confined inside L-balls
 (Produced asymmetry is protected against the sphaleron process)

3.1 L-ball formation

Properties of delayed-type L-ball

Hisano Nojiri Okada (2001)

$$M_Q=\frac{4\sqrt{2}\pi}{3}\zeta M_FQ^{3/4}$$

$$Q: \text{L-charge}$$

$$\zeta\sim 2.5$$

$$R_Q=\frac{1}{\sqrt{2}\zeta}M_F^{-1}Q^{1/4}$$

$$\omega_Q=dM_Q/dQ\simeq \sqrt{2}\pi\zeta M_FQ^{-1/4}$$

L-ball charge
$$Q = \beta \left(\varphi_{\rm eq} / M_F \right)^4$$
 $\beta \simeq 6 \times 10^{-4}$

$$\beta \simeq 6 \times 10^{-4}$$

L-balls decay emitting neutrinos with decay rate

$$\Gamma_Q \simeq rac{N_\ell}{Q} rac{\omega_Q^3}{12\pi^2} 4\pi R_Q^2 \qquad \qquad N_\ell : \# ext{ of decay channel } \simeq 3$$

Decay temperature

lepton asymmetry is released

$$T_{\rm D} \simeq \left(\frac{90}{\pi^2 g_*(T_{\rm D})}\right)^{1/4} \sqrt{M_{\rm Pl}\Gamma_Q}$$

$$\simeq 2.69 \text{ MeV} \left(\frac{g_*}{10.75}\right)^{-1/4} \left(\frac{m_{3/2}}{0.5 \text{ GeV}}\right)^{5/2} \left(\frac{M_F}{5 \times 10^6 \text{ GeV}}\right)^{-2}$$

 $T_{\rm D}$ should be higher than ~ 1MeV for successful BBN

3.3 L-ball evolution

- We assume that L-balls dominate the Universe
- Lepton asymmetry

$$\eta_L \simeq \frac{n_L}{4\rho_\phi/3T_{\rm D}} \simeq \frac{m_{3/2}\varphi_{
m osc}^2}{4m_{3/2}^2\varphi_{
m osc}^2/(3T_D)} = \frac{3T_{
m D}}{4m_{3/2}}$$

L-ball domination at L-ball decay

$$\left. \frac{\rho_Q}{\rho_R} \right|_{T_D} \simeq 9.66 \times 10^6 \, \left(\frac{g_*}{10.75} \right)^{1/4} \left(\frac{m_{3/2}}{0.5 \text{ GeV}} \right)^{-9/2} \left(\frac{M_F}{5 \times 10^6 \text{ GeV}} \right)^6 \left(\frac{T_R}{10^5 \text{ GeV}} \right) \left(\frac{\varphi_{\text{osc}}}{10^4 \varphi_{\text{eq}}} \right)^2$$

3.4 L-ball evaporation

- L-balls in thermal plasma emit their charge by evaporation
- A part of lepton number emitted above EW scale is converted into baryon number
- Produced baryon asymmetry

 $\Delta Q_{\rm FW}$: evaporated charge above EW scale

The produced baryon asymmetry should be small not to spoil the success of BBN

$$|\eta_{B,Q}| \lesssim \eta_{B,\rm obs} \sim 10^{-10}$$

3.5 Constraints on model parameters

 Large lepton asymmetry suggested by the recent He4 observation is realized in L-ball scenario

4.1 Gravitational wave production

GWs are produced by the 2nd order effect of curvature
 perturbations
 Ananda Clarkson Wands (2007) Baumann Steinhardt Takahashi Ichiki (2007)

$$h_{ij}^{"} + 2\mathcal{H}h_{ij}^{"} - \nabla^2 h_{ij} = \mathcal{O}(\zeta^2)$$

 h_{ij} : tensor perturbation = GW

Saito Yokoyama (2009) Bugaev Kulimai (2010)

$$\mathcal{H} = a'/a$$

 ζ : curvature perturbation

- Moreover, GW production is much enhanced when there exists an early matter-dominated era with a sharp transition to the radiation-dominated era Inomata Kohri Nakama Terada (2019) Inomata et al. (2020)
- L-balls realize an early MD universe and decay rapidly

$$\Gamma = \frac{1}{Q} \frac{dQ}{dt} = \frac{4}{5} \frac{1}{t_{\text{decay}} - t}$$

$$M_Q = M_Q(0) \left(1 - \frac{t}{t_{\text{decay}}} \right)^{3/5}$$

L-balls enhance the GW production

4.2 Enhancement of GWs by L-balls

Power spectrum of curvature perturbation

$$\mathcal{P}_{\zeta} = C^2 A_s \, \theta(k_{\mathsf{NL}} - k)$$

Present GW spectrum

$$f [\mathrm{Hz}] \qquad A_s \simeq 2.1 \times 10^{-9} \quad [\mathrm{amp. \ at \ CMB \ scale}]$$

• GWs can be detected by the future Pulsar timing array experiment (SKA) for $T_{\rm dec} \sim$ a few MeV and $C \gtrsim$ several

5. Summary

- Recent He4 measurement suggests that our universe has a large lepton asymmetry
- L-ball scenario successfully realizes a large lepton asymmetry suggested by the He4 measurement
- L-balls also dominate the universe and decay rapidly, which significantly enhances gravitational wave production from curvature perturbations.