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Density profile of dark stars calculable from the Klein-Gordon equation
in curved spacetime (for bosonic DM) and the Einstein equations:

Colpi1 et al’86
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Dark stars are very compact objects
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Protons do not annihilate. DM does not annihilate.
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Ave there other signals
from dark stars?
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Temperature evolution of the DS

AT L+ L.

dt Ty

Photon luminosity: L. = (47r'r't2h) / I(v)dv
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Dark photon luminosity: L~ = (47 Rpg) ospT'e™ T

Heat capacity: The DM plausibly forms a Bose-Einstein condensate
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Temperature evolution of the DS

Proton gas optically thin.
Cooling by dark photon emission

dT /dt ~ —T°/? exp(—m.. /T
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Temperature evolution of the DS

Proton gas optically thin.
Cooling by dark photon emission

dT /dt ~ —T°/? exp(—m.. /T
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Signals from dark stars

Dark stars could still be shining today. They could be detected as a
point source 1in X-rays or y-rays, with a black body spectrum (or
bremsstrahlung), and with no optical counterpart.



Signals from dark stars

Dark stars could still be shining today. They could be detected as a

point source in X-rays or y-rays, with a black body spectrum (or
bremsstrahlung), and with no optical counterpart.

- No association = Pgsgsible agsociation with SNR or PWN « AGN
“ Pulsar = Globular cluster = Starburst Galaxy @ PWN
= Binary + Galaxy o SNR » Nova
+ Star-forming region




Signals from dark stars

Dark stars could still be shining today. They could be detected as a

point source 1in X-rays or y-rays, with a black body spectrum (or
bremsstrahlung), and with no optical counterpart.
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Signals from dark stars

Dark stars could still be shining today. They could be detected as a
point source 1in X-rays or y-rays, with a black body spectrum (or
bremsstrahlung), and with no optical counterpart.

)
c ‘

SPI

COMPTEL

[y
<

De Angelis et al’ 18

p—
S

[
=

‘ EGRET MAGIC
IBIS-PICsI'T
HAWC

Fermi-LAT \
\ HESS/VERITAS
—
IBIS/ISGRI e-ASTROGAM HiSCORE
- CTA South
JEM-X =
- LHAASO

-2 -1 2 3 4 5 6 7 8 9 1
10 10 1 10 10 10 10 10 10 10 10 10 10
Energy (MeV)

o
=

Sensitivity (erg em™ S'l)

o
=]

[a—y

=
o
‘

o
=

[y
]

0

For a luminosity L, a dark star within a distance d < (L/(47S))*/?

1s at the reach of experiments.

7\ /2 g —1/2
d < 1.8kpc | —
= pe (L@> (1011 erg cm 2 sl)




Signals from dark stars

How many dark stars within a distance d ?



Signals from dark stars

How many dark stars within a distance d ?




Signals from dark stars

How many dark stars within a distance d ?

1010

—— Enclosed Mass
------ Galactic center /

108

in Sphere M /M,

100

Enclosed Mass

10*

102

Distance from the Earth [pc]

103




Signals from dark stars

How many dark stars within a distance d ?

1010

—_— Er;closed Mass
------ Galactic center /

108

in Sphere M /M,

100

Enclosed Mass

10*

102

Distance from the Earth [pc]

L=10"*Lg

103




Signals from dark stars

How many dark stars within a distance d ?
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Conclusions

e If the dark matter particle has strong self-interactions, 1t could form dark
stars, that could be detected in MACHO searches.

e If the dark matter particle interacts with the proton, dark stars could capture
protons from the interstellar medium. Electrons are also captured to keep the
dark star electrically neutral. (Similar rationale if the dark matter interacts
with the electron.)

e The captured electrons and protons form a hot gas that emits radiation with
a characteristic spectrum.

e New target for indirect detection of asymmetric dark matter: point sources

in X- or y-rays (from scatterings with protons/electrons, from slow decays or
from slow annihilations). These sources would be also detected as MACHOs.
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