Observational signals of compact dark stars

Alejandro Ibarra

In collaboration with Boris Betancourt, Anja Brenner and Chris Kouvaris. arXiv: 2211.05845

The dark matter zoo

Explain xkcd

The dark matter zoo

The dark matter zoo

Explain xkcd

Asymmetric dark matter. Some symmetry protects DM against annihilations (as for protons).
spin

Scattering cross-section to nucleons/electrons
Annihilation cross-section into SM particles

Decay width

The dark matter zoo

Explain xkcd

Asymmetric dark matter. Some symmetry protects DM against annihilations (as for protons).
spin

Scattering cross-section to nucleons/electrons
${ }^{4}$ Annihilation cross-section into SM particles
Sizable self-interactions (as for protons)
Self-coupling
Decay width

The dark matter zoo

Protons do not annihilate.
Protons have strong self-interactions
Protons form stars

The dark matter zoo

Protons do not annihilate.
Protons have strong self-interactions
Protons form stars

The dark matter zoo

Protons do not annihilate.
Protons have strong self-interactions Protons form stars

DM does not annihilate.
DM has strong self-interactions
DM form dark stars

The dark matter zoo

Density profile of dark stars calculable from the Klein-Gordon equation in curved spacetime (for bosonic DM) and the Einstein equations:

$$
\begin{aligned}
& g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi-m^{2} \phi-\lambda|\phi|^{2} \phi=0 \\
& R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G T_{\mu \nu}
\end{aligned}
$$

The dark matter zoo

Density profile of dark stars calculable from the Klein-Gordon equation in curved spacetime (for bosonic DM) and the Einstein equations:

Colpi et al'86

$$
g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi-m^{2} \phi-\lambda|\phi|^{2} \phi=0
$$

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G T_{\mu \nu}
$$

(For $\mathrm{m}=1 \mathrm{GeV}, \lambda=1$)

The dark matter zoo

Density profile of dark stars calculable from the Klein-Gordon equation in curved spacetime (for bosonic DM) and the Einstein equations:

Colpi et al'86

$$
g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi-m^{2} \phi-\lambda|\phi|^{2} \phi=0
$$

Dark stars are very compact objects

The dark matter zoo

Protons do not annihilate.
Protons have strong self-interactions Protons form stars

DM does not annihilate.
DM has strong self-interactions
DM form dark stars

The dark matter zoo

Protons do not annihilate.
Protons have strong self-interactions Protons form stars

DM does not annihilate.
DM has strong self-interactions
DM form dark stars

Are there other signals from dark stars?

The dark matter zoo

Explain xkcd

Asymmetric dark matter. Some symmetry protects DM against annihilations (as for protons).

The dark matter zoo

Explain xkcd

The dark matter zoo

Explain xkcd

The dark matter zoo

Explain xkcd

Asymmetric dark matter. Some symmetry protects DM against annihilations (as for protons).

The dark matter zoo

Explain xkcd

Asymmetric dark matter. Some symmetry protects DM against annihilations (as for protons).

Proton capture in compact dark stars

Proton capture in compact dark stars

Proton capture in compact dark stars

Proton capture in compact dark stars

Proton capture in compact dark stars

Proton capture in compact dark stars

Proton capture in compact dark stars

Proton capture in compact dark stars

Temperature evolution of the DS

$$
\frac{d T}{d t}=-\frac{L_{\gamma}+L_{\gamma^{\prime}}}{C_{V}}
$$

Temperature evolution of the DS

$$
\frac{d T}{d t}=-\frac{L_{\gamma}+L_{\gamma^{\prime}}}{C_{V}}
$$

Photon luminosity: $\quad L_{\gamma}=\left(4 \pi r_{\text {th }}^{2}\right) \int_{0}^{\infty} I(\nu) d \nu$

Temperature evolution of the DS

$$
\frac{d T}{d t}=-\frac{L_{\gamma}+L_{\gamma^{\prime}}}{C_{V}}
$$

Photon luminosity: $\quad L_{\gamma}=\left(4 \pi r_{\mathrm{th}}^{2}\right) \int_{0}^{\infty} I(\nu) d \nu$

$$
r_{\mathrm{th}} \sim T^{1 / 2} \quad I(\nu)=\frac{2 h}{c^{2}} \frac{\nu^{3}}{\mathrm{e}^{\frac{h \nu}{k_{B} T}}-1}\left(1-\mathrm{e}^{-\tau(\nu)}\right)
$$

Temperature evolution of the DS

$$
\frac{d T}{d t}=-\frac{L_{\gamma}+L_{\gamma^{\prime}}}{C_{V}}
$$

Photon luminosity: $\quad L_{\gamma}=\left(4 \pi r_{\text {th }}^{2}\right) \int_{0}^{\infty} I(\nu) d \nu$

$$
r_{\mathrm{th}} \sim T^{1 / 2}
$$

$$
I(\nu)=\frac{2 h}{c^{2}} \frac{\nu^{3}}{\mathrm{e}^{\frac{h}{k^{B} T}}-1}
$$

Dark photon luminosity: $L_{\gamma^{\prime}}=\left(4 \pi R_{\mathrm{DS}}^{2}\right) \sigma_{\mathrm{SB}} T^{4} \mathrm{e}^{-\frac{m_{\gamma^{\prime}}}{T}}$

Temperature evolution of the DS

$$
\frac{d T}{d t}=-\frac{L_{\gamma}+L_{\gamma^{\prime}}}{C_{V}}
$$

Photon luminosity: $\quad L_{\gamma}=\left(4 \pi r_{\text {th }}^{2}\right) \int_{0}^{\infty} I(\nu) d \nu$

$$
r_{\mathrm{th}} \sim T^{1 / 2}
$$

$$
I(\nu)=\frac{2 h}{c^{2}} \frac{\nu^{3}}{\mathrm{e}^{\frac{h \nu}{k_{B}}}-1}
$$

Dark photon luminosity: $L_{\gamma^{\prime}}=\left(4 \pi R_{\mathrm{DS}}^{2}\right) \sigma_{\mathrm{SB}} T^{4} \mathrm{e}^{-\frac{m_{\gamma^{\prime}}}{T}}$

Heat capacity: The DM plausibly forms a Bose-Einstein condensate

$$
C_{\mathrm{V}} \sim T^{3 / 2}
$$

Temperature evolution of the DS

Temperature evolution of the DS

Proton gas optically thin.
Cooling by dark photon emission

$$
d T / d t \sim-T^{5 / 2} \exp \left(-m_{\gamma^{\prime}} / T\right)
$$

Temperature evolution of the DS

Proton gas optically thin.
Cooling by dark photon emission $d T / d t \sim-T^{5 / 2} \exp \left(-m_{\gamma^{\prime}} / T\right)$

Proton gas optically thick. Cooling by photon emission

$$
d T / d t \sim-T^{7 / 2}
$$

DS luminosity

DS luminosity

Signals from dark stars

Dark stars could still be shining today. They could be detected as a point source in X-rays or γ-rays, with a black body spectrum (or bremsstrahlung), and with no optical counterpart.

Signals from dark stars

Dark stars could still be shining today. They could be detected as a point source in X-rays or γ-rays, with a black body spectrum (or bremsstrahlung), and with no optical counterpart.

Signals from dark stars

Dark stars could still be shining today. They could be detected as a point source in X-rays or γ-rays, with a black body spectrum (or bremsstrahlung), and with no optical counterpart.

De Angelis et al' 18

Signals from dark stars

Dark stars could still be shining today. They could be detected as a point source in X-rays or γ-rays, with a black body spectrum (or bremsstrahlung), and with no optical counterpart.

De Angelis et al' 18

For a luminosity L, a dark star within a distance $d<(L /(4 \pi S))^{1 / 2}$ is at the reach of experiments.

$$
d<1.8 \mathrm{kpc}\left(\frac{L}{L_{\odot}}\right)^{1 / 2}\left(\frac{S}{10^{-11} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}}\right)^{-1 / 2}
$$

Signals from dark stars

How many dark stars within a distance d ?

Signals from dark stars

How many dark stars within a distance d ?

Signals from dark stars

How many dark stars within a distance d ?

Signals from dark stars

How many dark stars within a distance d ?

Signals from dark stars

How many dark stars within a distance d ?

$$
N_{\mathrm{DS}}=\mathcal{F}_{\mathrm{DS}} \frac{M(d)}{M_{\mathrm{DS}}}
$$

Consider $M_{\mathrm{DS}}=M_{\odot}, \mathcal{F}_{\mathrm{DS}}=10^{-2}$

Signals from dark stars

How many dark stars within a distance d ?

$$
N_{\mathrm{DS}}=\mathcal{F}_{\mathrm{DS}} \frac{M(d)}{M_{\mathrm{DS}}}
$$

Consider $M_{\mathrm{DS}}=M_{\odot}, \mathcal{F}_{\mathrm{DS}}=10^{-2}$

Signals from dark stars

$$
\begin{gathered}
L=10^{-4} L \\
N_{\mathrm{DS}} \sim 1
\end{gathered}
$$

~ 1 event if all DSs formed $\sim 10^{17} \mathrm{~s}$ ago

Signals from dark stars

Signals from dark stars

Dark stars could form continuously over time.

Signals from dark stars

Dark stars could form continuously over time.

Conclusions

- If the dark matter particle has strong self-interactions, it could form dark stars, that could be detected in MACHO searches.
- If the dark matter particle interacts with the proton, dark stars could capture protons from the interstellar medium. Electrons are also captured to keep the dark star electrically neutral. (Similar rationale if the dark matter interacts with the electron.)
- The captured electrons and protons form a hot gas that emits radiation with a characteristic spectrum.
- New target for indirect detection of asymmetric dark matter: point sources in X - or γ-rays (from scatterings with protons/electrons, from slow decays or from slow annihilations). These sources would be also detected as MACHOs.

