Scintillating Bubble Chambers for GeV-scale Dark Matter Searches

Russell Neilson, Drexel University for the SBC Collaboration

Dark Side of the Universe Dec 2022, Sydney

Bubbles chambers: then and now

➤ 1970s: Neutrino Beam Physics

> Sensitive to minimum ionizing particles

- ➤ 2000-today: Nuclear Recoil Detectors
 - Insensitive to minimizing ionizing particles no electron recoil background.

PICO-60

Operation and neutron scatter event

PICO-2L

Electron recoil rejection (C₃F₈)

- Superb ER rejection for >3keV threshold.
- ➤ ER background becomes dominant below 1 keV need to improve for GeV-scale WIMP search.

Probing the threshold frontier

LXe bubble chamber

30g demonstration detector at Northwestern

D. Baxter et al., Phys. Rev. Lett. 118, 231301 (2017)

Gamma insensitivity in LXe

Gamma rejection in LXe much better than C₃F₈ below 1 keV.

Gamma insensitivity in LXe

Gamma rejection in LXe much better than C₃F₈ below 1 keV.

We should have known:

"When the chamber was filled with liquid xenon and run under closely similar conditions immediately after the ethylene experiments, no tracks were obtained."

- from Liquid Xenon Bubble Chamber
- J. L. Brown, D. A. Glaser, and M. L. Perl Phys. Rev. **102**, 586 – Published 15 April 1956

Gamma insensitivity in LXe

Gamma rejection in LXe much better than C₃F₈ below 1 keV.

But nuclear recoils still make bubbles!

SBC

(Scintillating Bubble Chamber)

- > 10 kg liquid argon bubble chamber for GeV-scale dark matter and reactor CEvNS.
- Under construction now, with goal of 100 eV nuclear recoil threshold while remaining electron recoil blind.
- Bubbles detected with cameras and acoustics.
- ➤ O(100) ppm xenon for wavelength shifting and SiPMs for scintillation detection – scintillation threshold few keV.

SBC program

- SBC-Fermilab now under construction for calibrations in shallow site. Target nuclear threshold is 100 eV.
 - Science operation 2023-25
- ➤ Dark matter search with duplicate detector, SBC-SNOLAB.
 - Physics ~2024
- Fermilab at a nuclear reactor to look for neutrinos with the CEνNS process.

Inner vessel

Outer vessels

Readout

SiPM performance in LCF₄ arxiv:2207.12400

Acoustic sensors

Relay lens system

Current status

- Pressure vessel empty (no inner vessel).
- Ready for cooldown tests with liquid argon.
- Inner vessel will be transported from Canada to Fermilab this month.

SBC-Fermilab goals

- > Stable operation
 - Thermal model verification
 - Manageable wall nucleation rate.
- > Gamma calibration
 - Investigateelectron-recoilrejection atO(100 eV) scale
- Nuclear recoil calibration

SBC-Fermilab goals

- > Stable operation
 - Thermal model verification
 - Manageable wall nucleation rate.
- Gamma calibration
 - Investigate
 electron-recoil
 rejection at
 O(100 eV) scale
- Nuclear recoil calibration

SBC-Fermilab goals

- > Stable operation
 - Thermal model verification
 - Manageable wall nucleation rate.
- > Gamma calibration
 - Investigateelectron-recoilrejection atO(100 eV) scale
- Nuclear recoil calibration

SBC-SNOLAB sensitivity: 10kg-scale

Ton-scale sensitivity

- Monolithic liquid detector.
 - Potential for large exposure and low background.
- A 1 t device would probe the solar neutrino fog.
 - Also sensitive to CE ν NS physics from solar ν s, SN, pre-SN.

Backgrounds

- Detector is intrinsically blind to ER, so primary concern is NR backgrounds.
- \triangleright (α ,n) in detector materials (e.g. SiPMs, cameras, connectors, cables, SS pressure vessel)
 - Materials screening and design.
- Muon-induced neutrons
 - Water and HDPE shielding.
- \triangleright Nuclear Thomson scattering from U/Th gammas < 0.4 keV_{NR}.
 - ➤ High density gamma shielding (e.g. Cu, Pb).
- > Solar neutrino CEνNS: irreducible
- Scintillation vetos
 - \triangleright Argon scintillation channel used to veto high energy recoils (threshold ~5 keV_{NR}).
 - ➤ While testing SiPMs, we discovered LCF₄ hydraulic liquid also scintillates. Will have extra SiPMs facing LCF₄ for active veto.

SBC-CEVNS concept at ININ

- 1 MW TRIGA Mark-III reactor near Mexico City.
- Borated concrete shields from cosmic rays, water shields from reactor neutrons, lead from reactor gammas (Thomson scattering).
- Detector could be ready for deployment in 2024+
- Physics measurements: Z' gauge boson, weak mixing angle, neutrino magnetic moment etc.
- L. J. Flores, et. al , Phys. Rev. D 103 (2021)

https://arxiv.org/abs/2101.08785

Summary

- > The SBC collaboration is developing liquid argon bubble chambers as a scalable, electron recoil blind, GeV-scale WIMP and reactor CEνNS detection technique.
- ➤ A calibration detector with 10kg LAr active mass is currently under construction at Fermilab. Goal is 100eVnr threshold.
- > SBC-SNOLAB will conduct a GeV-scale WIMP search. A future 1 t device will have sensitivity down to the solar neutrino floor.
- > SBC- CE ν NS at a research or power reactor could detect reactor CE ν NS and has potential for precision studies of new physics.
- Check out our Snowmass white paper arxiv:2207.12400

Backup slides

How low in threshold can we go?

- ➤ Xe bubble chamber was technically limited to >~0.5keV threshold.
- ➤ Liquid Ar bubble chambers have seen tracks with threshold O(10eV).
- We also expect spontaneous nucleation from thermal fluctuations at a similar threshold, but not above 40eV.
- → Design goal of SBC is 40eV Seitz threshold. Dark matter/CEνNS projections based on 100eV_{nr} threshold.

Seitz Model

- > A bubble chamber is filled a superheated fluid in meta-stable state.
- \triangleright Energy deposition greater than E_{th} in radius less than r_c from particle interaction will result in expanding bubble (Seitz "Hot-Spike" Model).
- A smaller or more diffuse energy deposit will create a bubble that immediately collapses.
- ➤ Classical Thermodynamics says-

$$p_v-p_l=\frac{2\sigma}{r_c}$$

$$E_{th}=4\pi r_c^2\left(\sigma-T\frac{\partial\sigma}{\partial T}\right)+\frac{4}{3}\pi r_c^3\rho_v h$$
 Surface energy

Bubble chambers as nuclear recoil detectors

Thermodynamic parameters are chosen for sensitivity to nuclear recoils but not electron recoils.

➤ Better than 10⁻¹⁰ rejection of electron recoils (betas, gammas).

Photoneutron Calibrations

 9 Be(γ ,n), Q=1664keV gives $^{\sim}$ monoenergetic neutrons.

²⁰⁷Bi: 90keV

¹²⁴Sb: 23keV

⁵⁸Co: 9keV

Scattering on Ar gives keV-scale recoils.

Thomson Scattering Calibrations

Thomson Scattering Calibrations

⁴⁰Ar Neutron Capture

CEVNS - Coherent Elastic Neutrino Nucleus Scattering

- > Sensitivity to O(10 keV) with low background is also what's needed to detect O(10 MeV) neutrinos via CEvNS.
 - ➤ Has been observed at the SNS for pion decay-atrest neutrinos (~50MeV).
- ➤ Reactors provide very high flux for precision studies, but 1-10 MeV neutrinos is a challenge.
- > 100 eV threshold gives sensitivity to CEVNS from >1.4MeV neutrinos, covering much of the the reactor antineutrino spectrum.

SBC-CEVNS rates for different reactors

Physics reach: Z'

Z' (B-L gauge boson)

$$\mathcal{L}_{\text{eff}} = -\frac{g'^2 Q_l Q_q}{q^2 + M_{Z'}^2} \left[\sum_{\alpha} \bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\alpha} \right] \left[\sum_{q} \bar{q} \gamma_{\mu} q \right]$$

Physics reach in 1-year of reactor-on time:

Setup A (ININ): 10kg, 1MW_{th}, 3m, 2.4% flux uncertainty Setup B: 100kg, 2GW_{th}, 30m, 2.4% flux uncertainty Setup B(1.5): 100kg, 2GW_{th}, 30m, 1.5% flux uncertainty

For setups B/B(1.5) project O(1000) CE ν NS events per day.

L. J. Flores, et. al , Phys. Rev. D 103 (2021) https://arxiv.org/abs/2101.08785

Physics reach: mixing angle, magnetic moment

Weak mixing angle

- Physics can be done even with a 10-kg detector at a research reactor.
- Higher statistics and improved precision at a power reactor.

Neutrino magnetic moment

L. J. Flores, et. al , Phys. Rev. D 103 (2021)