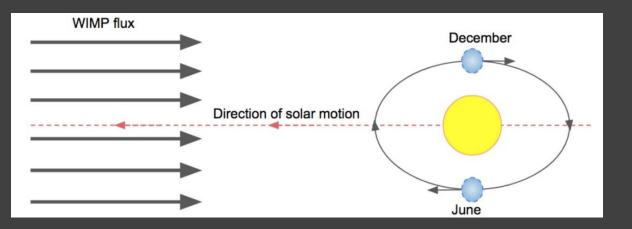


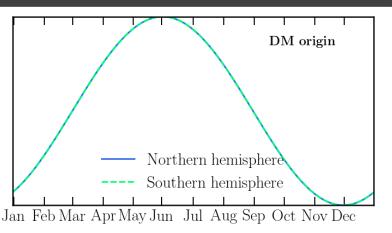
Radio-impurity studies for dark matter detection with the SABRE South experiment

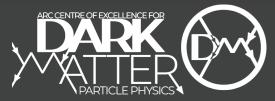
Dr. Zuzana Slavkovská Australian National University

On behalf of the SABRE South collaboration

DSU2022



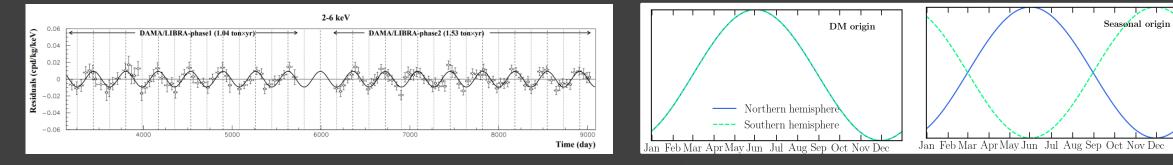

• Australia news


Laboratory to study dark matter opens 1km under Australian town - with no bananas allowed

From deep inside a gold mine in Stawell, Victoria, researchers are hunting for the invisible substance thought to make up 85% of the matter in the universe

SABRE Motivation

Plot from M.Zurowski


Standard halo model hypothesis: Spherical halo of cold, dark matter (WIMP particles) permeating the galaxy

Annual modulation with a 1 year period due to Earth orbiting the Sun

Maximum and minimum expected on June 2nd and December 2nd

SABRE Motivation – DAMA results

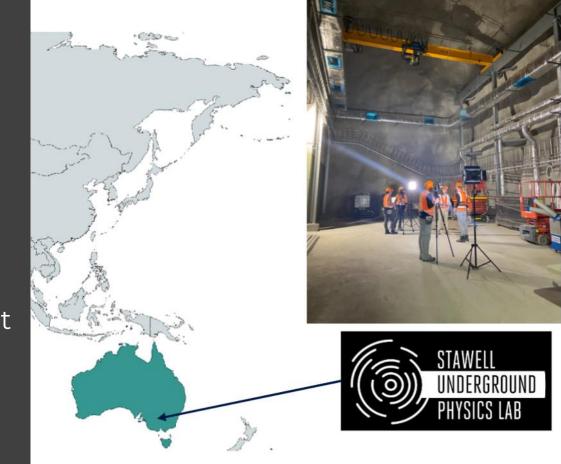
- DAMA/LIBRA (DArk MAtter Large sodiumlodide Bulk RAre processes) experiment
- Located at Laboratori Nazionali der Gran Sasso (LNGS) in Italy
- 250 kg of NaI(TI)
- Observed ~0.01 cpd/kg/keV modulation in the 1-6 keV energy range
- DM signal? Seasonal modulation?

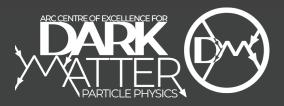
Berbabei et al. 2021 https://arxiv.org/abs/2110.04734


Plots from M.Zurowski

DSU2022

SABRE Collaboration

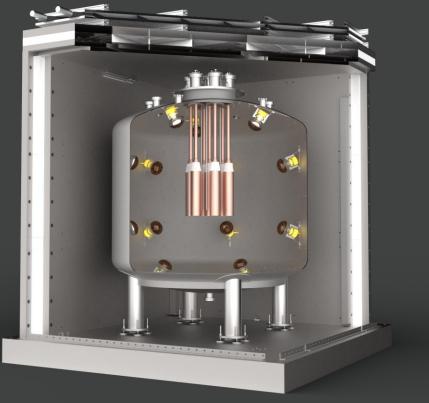



Scientific program includes the deployment of two detectors

SABRE South

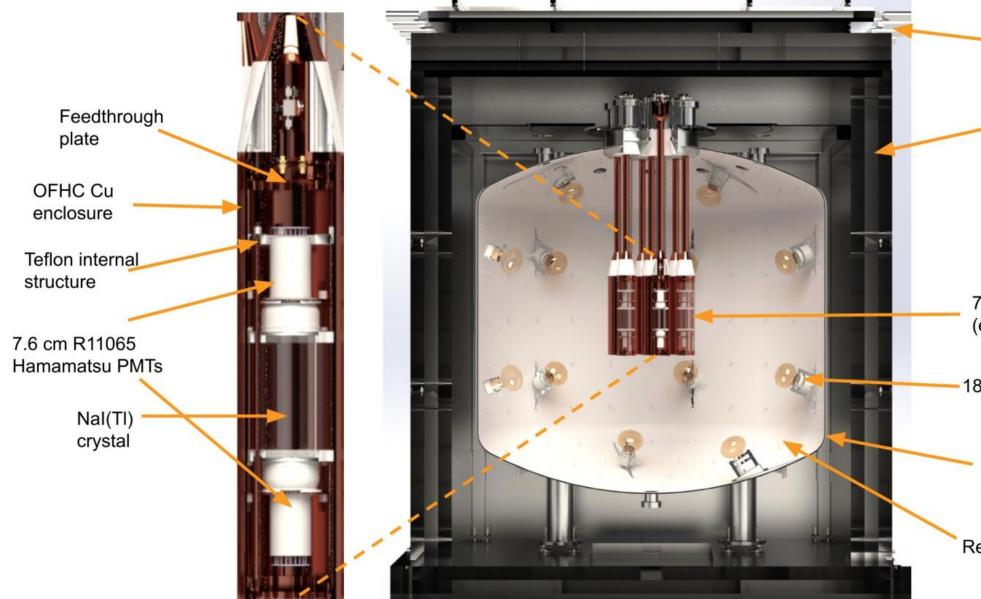
Stawell Underground Physics Laboratory (SUPL)

- Within a working **gold mine**
- 1,025 m underground
- Protection from interference from cosmic radiation
- In site in the **Southern hemisphere** important to exclude seasonal effects





SABRE Collaboration


SABRE (Sodium lodide with Active Background REjection) experiment

- The detector is an array of **ultra-pure NaI(TI)** scintillating crystals
- Principle: **direct detection** of DM via scattering off nuclei

6

9.6 m² EJ200 scintillators for muon detection and rejection

Shielding to reduce external background: - 8 cm of steel - 10 cm of PE - 8 cm of steel

7 NaI(TI) crystals in Cu enclosures (each with 2 low radioactivity PMTs)

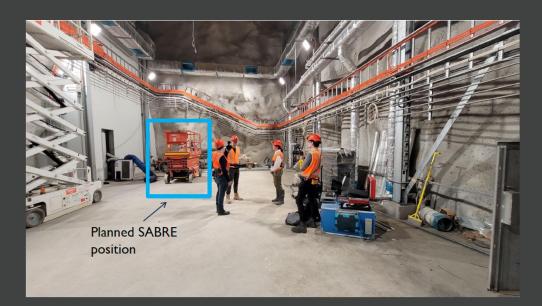
18 R5912 PMTs for veto

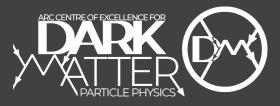
Veto vessel filled with 10T of LAB from JUNO doped with PPO (3.5 g/L) and Bis-MSB (15 mg/L)

Reflective lumirror coating

Zuzana Slavkovska: Radio-impurity studies for SABRE South DSU2022

22


Introduction to SABRE South One of the challenges of SABRE South: Radio-purity


Radioactive and cosmic contaminants

-> might mimic dark matter signals

- Identify +
- Quantify +
- Reduce

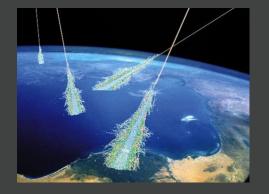
the radio-impurities in the crystal + the detector material

Radioactive isotopes -> in detector materials

SABRE South Collab arxiv:2205.13849

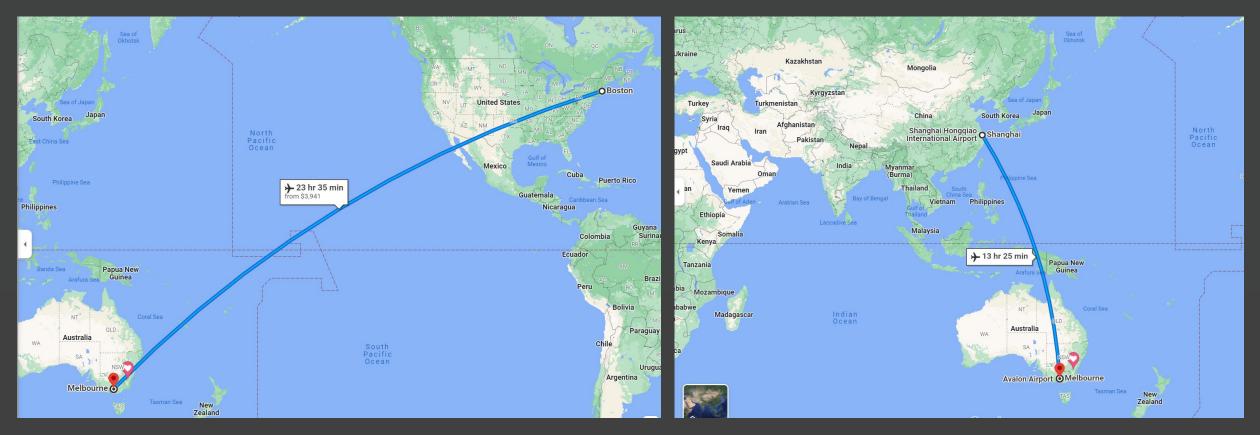
-> around the detector material (+ environment)

⁴⁰K, ⁸⁷Rb, ¹²⁹I, ²¹⁰Pb, ²³²Th, ²³⁸U


- in particular radon (radioactive chains from Th and U, decays in ²¹⁰Pb)

Neutrinos: solar and from outside the Solar System (Supernovae), atmospheric

Cosmic rays: originate from the Sun or outside the Solar System interaction with atmosphere particles -> particle shower


(important for crystal transport)

Potential crystal providers

RMD (Radiation Monitoring Devices, Boston, MA, US) <u>SICCAS (Shangha</u>i Institute or Ceramics, Chinese Academy of Sciences)

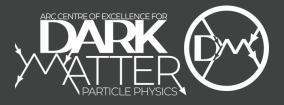
Boston to Stawell

Shanghai to Stawell

- Crystal powder
- Crystal growing
- Crystal handling
- Material screening, cleaning and selection

Crystal powder

- Ultra-pure Astro-grade quality powder
- 100 kg at University of Melbourne
- Powder dried based on a process designed at Princeton: vacuum baking and inert purging
- SICCAS also uses Kunshan powder for crystal growth development

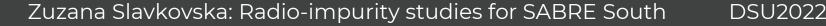

Certificate of Analysis

Product: Material No.:	Sodium lodide, 99.999+%, astro grade, Optipur® 1.89333.9999					
Production Date:	03/09/2020		Lot No.:	0000089188		
Expiration Date:	03/09/2022		CoA Issue Date:	11/29/2018		
Test Parameter		Unit	Specification	Result		
Appearance (Color)			White	White		
Appearance (Form)			Powder	Powder		
Water (by Karl Fischer)		ppm	≤ 300	224		
ICP Major Analysis			Confirmed	Confirmed		
Purity			Confirmed	Confirmed		
Trace Metal Analysis		ppm	≤ 10,0	0,8		
Aluminum (Al)		ppm		0,3		
Potassium (K)		ppb	≤ 100,0	3,0		
Lithium (Li)		ppm		0,5		

DSU2022


Remarks

ICP Major Analysis: Confirms Sodium Component Purity: >=99.999% Based on Trace Metals Analysis



Crystal growing

- Crystals grown in a carbon coated synthetic fused quartz crucible
- Cut into an octagonal shape using a diamond saw
- Polished with semiconductor grade ethanol/isopropyl alcohol to remove any surface contamination
 - B. Suerfu et al., Phys. Rev. Research 2, 013223 (2020)
- Purification techniques
- INFN-Princeton zone refining -> contribution from ²¹⁰Pb reduced
- Combined with ²¹⁰Pb removal from PTFE

Phys. Rev. Applied 16 (2021), 01406

Crystal Nal-33

Crystal growing

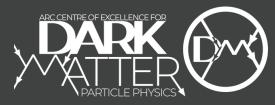
- **Requirements** based on simulations and DAMA/LIBRA purity
- Desired total intrinsic radiogenic crystal background < 0.4 cpd/kg/keV
- ²¹⁰Pb and ⁴⁰K levels of critical importance

Crystal Nal-33

- Desired light yield > 10 pe/keV corresponding to ~ 30 photons/keV

Crystal handling

- Crystal glove box design complete and in production
- Testing with a mock-up glove box successful



LNGS design

Material screening, cleaning and selection: intrinsic + cosmogenic crystal radiation > 90% total background

	Rate	-		
	[cpd/kg/keV _{ee}]		Isotope	Rate, veto ON
Crystal radiogenic	$5.2 \cdot 10^{-1}$			[cpd/kg/keV _{ee}]
Crystal cosmogenic	$1.6 \cdot 10^{-1}$		²¹⁰ Pb	$2.8 \cdot 10^{-1}$
Crystal PMTs	$3.8 \cdot 10^{-2}$			
PTFE wrap	$4.5 \cdot 10^{-3}$		⁸⁷ Rb	$< 2.2 \cdot 10^{-1}$
Enclosures	$3.2 \cdot 10^{-3}$		⁴⁰ K	$1.3 \cdot 10^{-2}$
Conduits	$1.9 \cdot 10^{-5}$		²³⁸ U	$< 5.4 \cdot 10^{-3}$
Liquid scintillator	$4.9 \cdot 10^{-8}$		⁸⁵ Kr	$< 1.9 \cdot 10^{-3}$
Steel vessel	$1.4 \cdot 10^{-5}$		²³² Th	$< 3.4 \cdot 10^{-4}$
Veto PMTs	$1.9 \cdot 10^{-5}$		129 _T	
Shielding	$3.9 \cdot 10^{-6}$		¹²⁹ I	$9.2 \cdot 10^{-5}$
External	O(10 ⁻⁴)		Total	$< 5.2 \cdot 10^{-1}$
Total	$7.2 \cdot 10^{-1}$			

ARC CENTRE OF EXCELLENCE FOR DARK PARTICLE PHYSICS

Careful cleaning in clean room environment

Material screening, cleaning and selection: intrinsic + cosmogenic crystal radiation > 90% total background

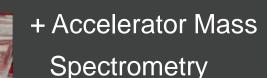
Isotope	Rate, veto ON [cpd/kg/keV _{ee}]		
²¹⁰ Pb	$2.8 \cdot 10^{-1}$		
⁸⁷ Rb	$< 2.2 \cdot 10^{-1}$		
⁴⁰ K	$1.3 \cdot 10^{-2}$		
²³⁸ U	$< 5.4 \cdot 10^{-3}$		
⁸⁵ Kr	$< 1.9 \cdot 10^{-3}$		
²³² Th	$< 3.4 \cdot 10^{-4}$		
¹²⁹ I	$9.2 \cdot 10^{-5}$		
Total	$< 5.2 \cdot 10^{-1}$		

²¹⁰Pb produces spectrum in the low energy region that cannot be vetoed

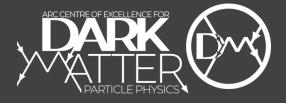
Present in environment due to naturally occurring ²³⁸U and ²²⁶Rn, also in dust

Need to develop a measurement technique for material screening

Material screening, cleaning and selection


https://doi.org/10.1016/j.nimb.2022.08.015

- Focus on ²¹⁰Pb
- Accelerator Mass Spectrometry used: Not enough Pb to produce AMS sample after Nal extraction
- Optimal carrier, as low ²¹⁰Pb content as possible
- 18th century roof, detector shielding, Roman lead, Hampton Court Palace roof



- Chemical processing



Material screening, cleaning and selection

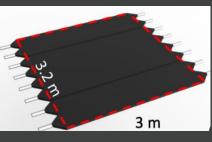
- All materials in the copper enclosure will require careful cleaning in a clean room environment
- Total background model:

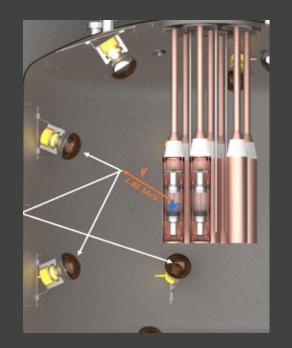
_	_					
Rate [cpd/kg/keV _{ee}]	SABRE South	Nal Radiogenic	PMTs	Component	Rate (cpd/kg/keV)	Veto efficiency (%)
10 IV	Preliminary	a (Crystal intrinsic	<5.2 x 10 ⁻¹	13
d/k	-	Nal Cosmogenic	Enclosure	Crystal cosmogenic	1.6 x 10 ⁻¹	45
[cb		PTFE Wrap	Total	Crystal PMTs	3.8 x 10 ⁻²	57
late]			Crystal wrap	4.5 x 10 ⁻³	11
ш				Enclosures	3.2 x 10 ⁻³	85
10-			*********	Conduits	1.9 x 10 ⁻⁵	96
			Steel vessel	1.4 x 10 ⁻⁵	>99	
		********	*****************	Veto PMTs	1.9 x 10 ⁻⁵	>99
10-2	E	10000000000000000000000000000000000000	*****	Shielding	3.9 x 10 ⁻⁶	>99
		************		Liquid scintillator	4.9 x 10 ⁻⁸	>99
	Contributions < 10 ⁻³ not shown		External	5.0 x 10 ⁻⁴	>93	
10-3	0 2 4 6 8	10 12 14	16 18 20	Total	0.72	27
		Ene	ergy [keV _{ee}]			

SABRE South Collab arxiv:2205.13849

- Crystal powder
- Crystal growing
- Crystal handling
- Material screening, cleaning and selection

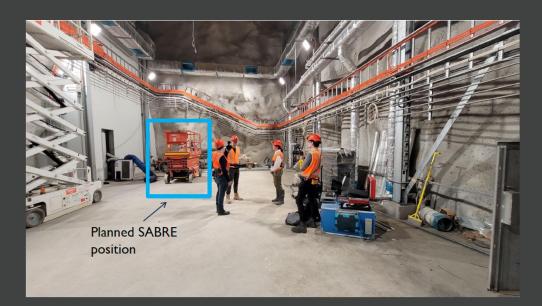
• Active background rejection


removal of decay products observed in the veto


scintillator

- Muon detection system

tagging of muon modulation

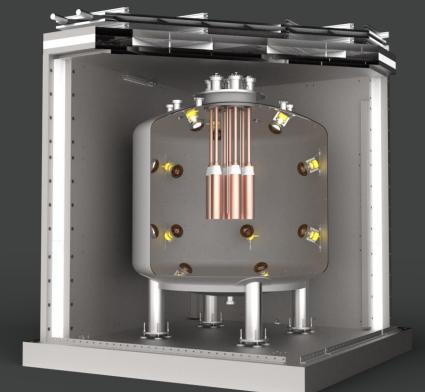

Introduction to SABRE South One of the challenges of SABRE South: Radio-purity

Radioactive and cosmic contaminants

-> might mimic dark matter signals

- Identify +
- Quantify +
- Reduce

the radio-impurities in the crystal + the detector material



SABRE South

SABRE South is the first dark matter direct detection experiment in the Southern It will be located in SUPL

SUPL completed in 2022

SABRE South commissioning in late 2023

Australian Government Australian Research Council

INTERNATIONAL PARTNER ORGANISATIONS:

Universiteit van Amsterdam

