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Astrophysical 
object

MACHO, PBH, 
non-particle 

Super-heavy

composite,
WIMPzilla, 

Q-ball,
Fermi-ball,
dark-quark 

nugget,
non-thermal

WIMP

well-motivated,
extensively 

studied,
thermal
No firm 

signal yet!

Light

SIMP,
ELDER,
can be 

thermal

Super-light

sterile ν,
axino,

warm DM,
can be 

thermal

Ultra-light

(QCD) axion,
hidden photon,

scalar field,
fuzzy,

non-thermal

* Also Adam Ritz's, Theresa 

Fruth’s & Tom Melia's Talks!
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Heavy mediator Light mediator

 Ek ~ mv2 , Φ𝜒 = 𝑛𝜒𝑣rel &  𝑛𝜒 = 𝜌𝜒/𝑚𝜒

 lighter DM: smaller Er, but lager flux (lighter target particle)

 low Eth preferred but even OK with small target mass (e-recoil)

Dark Matter Limit Plotter v5.17 (Sep. 12, 2022)

10-22 eV keV MeV GeV TeV PeV 100𝑀⨀~1068 eV

 A way out: 𝒗~𝒄
e.g., Boosted DM

Limited by Eth
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 Superconductor [PRL (2016)] 

 Superfluid He [PRL (2016)] (PRL (1987) for pp solar 𝜈)

 3D Dirac material [PRD (2018)] 

 Polar material [PLB (2018)] 

 Superconducting-nanowire [PRL (2019)] 

 Graphene Josephson junction (GJJ)

[JCP et al. 2002.07821 & In progress]

 …

 The race to prove super-light DM has begun.

 No experiment for O(keV) DM so far.

 𝑬𝒌~𝑚𝑣
2~𝑶(meV) with 𝑚~keV & 𝑣~10−3

 New approaches are required!

10-22 eV keV MeV GeV TeV PeV 100𝑀⨀~1068 eV

Light mediator

No Direct 
Search!

Dark Matter Limit Plotter v5.17 (Sep. 12, 2022)



We proposed a new super-light DM direct detection strategy

adopting the Graphene-based Josephson Junction* (GJJ) 

microwave single photon detector.

* A “state-of-the-art” technology: 

much lower 𝐸𝑡ℎ~𝑂(0.1 meV)



Superconductor-Graphene-Superconductor (SGS)

The device consists of a sheet of mono-layer graphene two sides of 

which are joined to superconductor, forming a superconductor-

normal metal-superconductor Josephson junction.

 A GJJ single-photon detector was proposed, covering from near-IR to microwave.  [Phys. Rev. Applied (2017)]

 G.-H. Lee, K.C. Fong & their collaborators have demonstrated experimentally that the GJJ microwave 

bolometer can have sensitivity to ~𝟎. 𝟏 meV energy deposit.  [Nature (2020)]

 Currently, a GJJ single-photon detector is under testing.

The detection of single near-IR photon (𝑬~𝟏 eV) has been done. [Science (2021)]
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[G.-H. Lee et al. Nature (2020)]
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SC

SC

𝝌

𝝌

𝒆

I. DM scatters off (π-bond) free electrons, transferring some fraction of its incoming 𝐸𝑘.

II. The recoiling e heats up & thermalizes with nearby e’s rapidly via e-e interactions.

III.The JJ is triggered: the temperature rise switches the zero-voltage (non-resistive) of JJ to a non-zero-

voltage (resistive) state.
 GJJ: sensitivity to ~0.1 meV E deposit [Nature (2020)] 

 GJJ detector: sensitivity to the signal even by sub-keV DM.



9

S
u

p
er

co
n

d
u

ct
o

r

S
u

p
er

co
n

d
u

ct
o

r

S
u

p
er

co
n

d
u

ct
o

r

𝝌

𝝌

I. Single graphene strip (a): the 1D assembly of a long graphene strip & 

a number of superconducting material strips

 an array of SC-graphene-SC-graphene-SC-⋯ (SGSGS⋯).

II. Each sequence of SGS represents a single GJJ device.

III. 2D detector unit (b): all GJJs are connected in series so that even a single 

switched GJJ by DM interaction allows the series resistance measured 

between S & D to switch from 0 to a finite value.

 𝐸𝑡ℎ is determined by the strip width 𝑊𝐽𝐽:  𝑊𝐽𝐽 = 3 𝜇m (30 𝜇m)  𝐸𝑡ℎ ≈ 0.1 meV (1 meV).

 A much larger-scale detector can be made of a stack of such detector units (3D).



To calculate experimental sensitivities, we should consider 

the scattering between DM traveling in 3D & free electrons 

living in 3D but confined in 2D graphene layer.
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 Goal: The event rate of DM scattering off free electrons in a 2D graphene sheet.

 Key point: The electron is still confined in the 2D graphene plane even after the collision. 

 No significant momentum change along the surface-normal (𝑧-axis) direction.

 Signal rate depending on the DM incoming direction

 We will calculate the number of events/unit detector mass/unit run time: 

𝑛eve =
𝑁eve
total

𝑀𝑇𝑡run

(𝑁eve
total : total number of events, 𝑀𝑇 : total detector mass, 𝑡run : total time exposure)



12

 𝑛eve =
𝑁eve
total

𝑀𝑇𝑡run
=

1

𝑀𝑇𝑡run
𝐸𝑟>𝐸th

𝑑𝐸𝑟
𝑑𝑵𝐞𝐯𝐞

𝑑𝐸𝑟

=
1

𝑴𝑻𝑡run
𝐸𝑟>𝐸th

𝑑𝐸𝑟 𝑑𝑣𝜒 𝑓MB(𝑣𝜒)
𝑑

𝑑𝐸𝑟
𝑵𝒆𝜎𝑒𝜒𝑣rel

𝜌𝜒

𝑚𝜒
𝑡run

= 𝐸𝑟>𝐸th
𝑑𝐸𝑟𝑑𝑣𝜒𝑓MB(𝑣𝜒)

𝑑𝒏𝒆
𝟑𝑫𝜎𝑒𝜒𝑣rel

𝑑𝐸𝑟

1

𝝆𝑻
𝟑𝑫

𝜌𝜒

𝑚𝜒

= 𝐸𝑟>𝐸th
𝑑𝐸𝑟𝑑𝑣𝜒∥𝑓MB(𝑣𝜒∥)

𝑑𝒏𝒆
𝟐𝑫𝜎𝑒𝜒𝑣rel∥

𝑑𝐸𝑟

1

𝝆𝑻
𝟐𝑫

𝜌𝜒

𝑚𝜒

 𝒏𝒆
𝟐𝑫 = 2

𝑑2𝑝𝑒,𝑖
𝑥𝑦

2𝜋 2 𝑓𝑒,𝑖 𝐸𝑒,𝑖 = 2
𝑑2𝑝𝑒,𝑖

𝑥𝑦

2𝜋 2 
𝑑𝑝𝑒,𝑖

𝑧

(2𝜋)
(2𝜋)𝛿(𝑝𝑒,𝑖

𝑧 − 𝑝𝑒,𝑓
𝑧 )𝑓𝑒,𝑖 𝐸𝑒,𝑖

= 2
𝑑3𝑝𝑒,𝑖

2𝜋 3 (2𝜋)𝛿(𝑝𝑒,𝑖
𝑧 − 𝑝𝑒,𝑓

𝑧 )𝑓𝑒,𝑖 𝐸𝑒,𝑖

 𝑵𝐞𝐯𝐞 = 𝑁𝑒𝜎𝑒𝜒Φ𝜒𝑡run

 Φ𝜒 = 𝑛𝜒𝑣rel &  𝑛𝜒 = 𝜌𝜒/𝑚𝜒


𝑵𝒆

𝑴𝐓
=

𝑁𝑒/𝑉

𝑀T/𝑉
=

𝒏𝒆
𝟑𝑫

𝝆𝑻
𝟑𝑫

=
𝑁𝑒/(𝐴∆𝑙)

𝑀T/(𝐴∆𝑙)
=

𝒏𝒆
𝟐𝑫

𝝆𝑻
𝟐𝑫

 𝑓𝑒,𝑖 𝐸𝑒,𝑖 =1/ 1 + exp(
𝐸𝑒,𝑖−𝜇

𝑇
) ,  (𝜇~𝐸𝐹)

 Fermi-Dirac distribution function

Consistent with the assumption of no significant momentum change 

along the surface-normal direction

2D nature of graphene
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 Graphene-surface-parallel DM velocity profile: 𝑓MB 𝑣𝜒∥ =
2(𝑒

−𝑣𝜒∥
2 /𝑣0

2
−𝑒−𝑣esc

2 /𝑣0
2
)

𝜋𝑣0erf(𝑣esc/𝑣0)−2𝑣esc𝑒
−𝑣esc

2 /𝑣0
2

We take a plane-projection of a modified Maxwell-Boltzmann distribution.  

 Event rate on a (sufficiently thin) 2D material: 𝑛𝑒
2D𝜎𝑒𝜒𝑣rel∥ = 

𝑑3𝑝𝜒,𝑓

2𝜋 3

ℳ 2

16𝜋𝑚𝑒
2𝑚𝜒

2 𝑺𝟐𝐃(𝑬𝒓, 𝒒)

 Structure function for the 2D system:

𝑺𝟐𝑫 𝑬𝒓, 𝒒 = 2 
𝑑3𝑝𝑒,𝑖

2𝜋 3 
𝑑3𝑝𝑒,𝑓

2𝜋 3 (2𝜋)𝛿 𝑝𝑒,𝑖
𝑧 − 𝑝𝑒,𝑓

𝑧 2𝜋 4𝛿 4 (𝑝𝜒,𝑖 + 𝑝𝑒 𝑖 − 𝑝𝜒,𝑓 − 𝑝𝑒,𝑓) 𝑓𝑒,𝑖 𝐸𝑒,𝑖 1 − 𝑓𝑒,𝑓 𝐸𝑒,𝑓

= (2𝜋)𝛿(𝑝𝜒,𝑖
𝑧 − 𝑝𝜒,𝑓

𝑧 ) ∙
1

2𝜋2
𝑑3𝑝𝑒,𝑖𝛿(𝐸𝑟 + 𝐸𝜒,𝑖 − 𝐸𝜒,𝑓)𝑓𝑒,𝑖 𝐸𝑒,𝑖 1 − 𝑓𝑒,𝑓 𝐸𝑒,𝑓

= (2𝜋)𝛿(𝑝𝜒,𝑖
𝑧 − 𝑝𝜒,𝑓

𝑧 ) ∙ 𝑺𝟑𝑫 𝑬𝒓, 𝒒

 The Pauli blocking effects(=phase space suppression) are encoded in the structure function.

 The analytic expression for 𝑆3D 𝐸𝑟 , 𝑞 is available in the non-relativistic limit.  [S. Reddy et al., PRD (1998), Y. Hochberg et al., JHEP (2016)]
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 𝑛eve = 𝐸𝑟>𝐸th
𝑑𝐸𝑟𝑑𝑣𝜒∥𝑓MB(𝑣𝜒∥)

𝑑 𝑛𝑒
2D𝜎𝑒𝜒𝑣rel∥

𝑑𝐸𝑟

1

𝜌gr
2D

𝜌𝜒

𝑚𝜒

𝑓MB 𝑣𝜒∥ =
2(𝑒−𝑣𝜒∥

2 /𝑣0
2
− 𝑒−𝑣esc

2 /𝑣0
2
)

𝜋𝑣0erf(𝑣esc/𝑣0) − 2𝑣esc𝑒
−𝑣esc

2 /𝑣0
2

𝑛𝑒
2D𝜎𝑒𝜒𝑣rel∥ = 

𝑑3𝑝𝜒,𝑓

2𝜋 3

ℳ 2

16𝜋𝑚𝑒
2𝑚𝜒

2 𝑆2D(𝐸𝑟 , 𝑞)

with 𝑆2D 𝐸𝑟 , 𝑞 = (2𝜋)𝛿(𝑝𝜒,𝑖
𝑧 − 𝑝𝜒,𝑓

𝑧 ) ∙ 𝑆3D 𝐸𝑟 , 𝑞

 𝜌𝜒 =0.3 GeV/cm3

 𝑣0=220 km/s, 𝑣esc=500 km/s

 𝜌gr
2D = 7.62 × 10−8g/cm2

 We assume that DM interacts with electrons via an exchange of mediator 𝜙 as done in many of the preceding studies :

𝜎𝑒𝜒 ≈
𝑔𝑒
2𝑔𝜒

2

𝜋

𝜇𝑒𝜒
2

(𝑚𝜙
2+𝑞2)2

 𝜎𝑒𝜒
heavy

≈
𝑔𝑒
2𝑔𝜒

2

𝜋

𝜇𝑒𝜒
2

𝑚𝜙
4 for (𝑚𝜙

2 ≫ 𝑞2)  &  𝜎𝑒𝜒
light

≈
𝑔𝑒
2𝑔𝜒

2

𝜋

𝜇𝑒𝜒
2

𝑞4
for (𝑚𝜙

2 ≪ 𝑞2)  

 The matrix element ℳ 2 is related to the scattering cross section as 𝜎𝑒𝜒 =
ℳ 2

16𝜋 𝑚𝑒
2𝑚𝜒

2 𝜇𝑒𝜒
2 .

 From the linear dispersion of graphene: 𝐸𝐹 = 𝑣𝐹 𝜋𝑛𝑐 with 𝑣𝐹~10
8cm/s & 𝑛𝑐~10

12/cm2.



 The proposed detector can improve the minimum detectable DM mass (𝒎𝑫𝑴~𝟎. 𝟏 keV) by more 

than 3 orders of magnitude over the ongoing/existing experiments.

 Capable of probing the prediction of freeze-in scenarios even with a pg-scale (~𝟏𝟎𝟑 GJJs) detector.

Heavy mediator: 𝐹𝐷𝑀 = 1 Light mediator: 𝐹𝐷𝑀 ∝ 1/𝑞2 with 𝑞ref = 𝛼𝑒𝑚𝑒

~𝟏𝟎𝟑 GJJs

𝐸𝑘~𝑚𝑣
2< 𝑶(eV) 𝐸𝑘~𝑚𝑣

2< 𝑶(eV)

~𝟏𝟎𝟔 GJJs ~𝟏𝟎𝟑 GJJs

~𝟏𝟎𝟔 GJJs 
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~𝟏𝟎𝟗 GJJs ~𝟏𝟎𝟗 GJJs 



SC

SC

𝝌

𝝌

𝒆

𝜽
𝒑𝝌∥

 Electron: confined in the 2D graphene sheet even after the collision. 

Momentum transfer: the change of 𝑝𝜒∥ Signal rate: DM incident direction dependence 

 DM signals: in situ validation by actively rotating the detector or time information of each signal

16



Experimental Status



18

300𝜇𝑚

Large piece of graphene hBN-encapsulated graphene Etched hBN/Graphene/hBN
stack

216 GJJs connected in series

Schematics

LSCLJJ

WJJ

WG

LG

WT

superconductors

S

D
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Device optical image of ~100 GJJ array

Escaping rate measurement: ±4% variation

Fast measurement
by DAQ board

Slow measurement

Device optical image (15 GJJs) Almost same I-V curve  when scaled

Uniform Josephson 
junctions in series 

was fabricated!

Almost same I-V curve  when scaled

±9% variation in switching current
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 GLIMPSE: a new DM detector,

adopting the GJJ device

 Scattering between DM moving in 3D space & e’s confined in 2D graphene: 

Event rate making an effective model  Signal rate: DM incident direction dependence!

 Capable of sensing keV-range DM scattering off e’s due to 𝑬𝐭𝐡~𝟎. 𝟏 meV. 

 Improving the minimum detectable mass: 𝒎𝑫𝑴~𝟎. 𝟏 keV.

 Uniform O(100) GJJs in series: fabricated and under testing. 

 Other light invisible particle searches: ultra-light DM (e.g. dark photon, axion), new possibilities?

LSCLJJ

WJJ

WG

LG

WT

superconductors

S

D

𝝌

𝝌
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10 eV1 eV0.1 eV10 meV1 meV0.1 meVSingle photon energy:

microwave THz-wave Infrared(IR) Near-IRFar-IR visible Ultraviolet(UV)

MKID SPAD, STJ, SNSPD
TES

Detector technology:

GJJ-SPD

[G.-H.Lee,D.K.E.,W.C.Jung et al.,
Nature (2020)]

[E.W.,W.C.Jung,G.-H.Lee, et al.,
Science (2021)]

“On-going”

 Minute electronic heat capacity: ~ 10 kB/μm2

→ Large response in electron temperature (T)

e.g., E=1 meV raises from T=0.01 K to 1.3 K

 Fast thermalization time: τe-e < 1 ps

 Slow cooling time: τe-ph ~ 1 ns

 Graphene

 Sensitive response:  dIc/dT ~ a few μA/K

 Fast response: τp=1/fp~0.1 ns ( ≪ τe-ph)

Superconductor
(SC)

SC Plasma frequency:
fp ~ 100 GHz

 Josephson junction



 Neutrino (mostly pp solar neutrinos): irreducible!

Scatter off nuclei/electrons and deposit a small amount of E    The expected number of events is 𝑂(1)/(kg∙year).

 Radiogenic: (relatively) reducible!

Have characteristic E scales ≫ region of our interest (< eV)  negligible

 Josephson junction detector backgrounds: 

 Thermal fluctuation: Lowering temperature using dilution refrigerator down to ~10 mK.

 Quantum fluctuation: Lowering bias current enough to have low enough dark count

 Electrical fluctuation: Using thermo-coax DC wires to suppress high-frequency noise and galvanically isolated 

measurement circuit

 Electromagnetic radiation: Multiple metal-can shielding in dilution refrigerator

 Dark count analysis: depending on 𝐼𝑐 𝑊𝐽𝐽, 𝐿𝐽𝐽 and 𝐼𝑏

 Intrinsic Radiogenic: C-14  𝑂(1)/(𝜇g∙year).  Reducible by growing a graphene layer with C-14 removed methane gas.  

[R. Essig et al., PRD (2012), Y. Hochberg et al., JHEP (2016)]

 Cosmic muon: 𝑂(1)/(g∙year).  Reducible in the deep underground lab.  
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[Y. Hochberg et al., JHEP (2016)]

[J. Billard et al., PRD (2014)]

C

 Neutrino (mostly pp solar neutrinos): irreducible!

Scatter off nuclei/electrons and deposit a small amount of E    The expected number of events is 𝑂(1)/(kg∙year).

 Radiogenic: (relatively) reducible!

Have characteristic E scales ≫ region of our interest (< eV)  negligible

 Intrinsic Radiogenic: C-14  𝑂(1)/(𝜇g∙year).  Reducible by growing a graphene layer with C-14 removed methane gas.  

 Cosmic muon: 𝑂(1)/(g∙year).  Reducible in the deep underground lab.  
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[R. Essig et al., PRD (2012), Y. Hochberg et al., JHEP (2016)]



 Fix Ib and wait JJ switches

 Sweep Ib and record Ic

Ic

Ir

Settable range of Ib

𝑇esc = 1.10 𝐾
𝐼c0 = 18.89 𝜇𝐴
𝑇bath = 0.02 𝐾

Tesc > Tbath: MQT regime

 For 106-GJJ array, 𝛤dark
106GJJ

~10−9 Hz, 

and dark count ~ 0.03 for 1-year.
(assuming all JJs have uniform Ic .)

 For non-uniform Ic of JJs, the smallest 
Ic will dominate the dark count rate.

For 𝐼b=15.5 mA,

𝛤dark
1GJJ

~10−15 Hz

[Current-voltage characteristics]

[Dark count rate measurement]

D
a

rk
 c

o
u

n
t 

ra
te

, 
G

d
a

rk
(1

/s
)
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 Currently available nanofabrication technology could achieve the

device that we propose.

 We can keep connect multiple GJJs in series without introducing

any resistive part in the device.
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Dilution Refrigerator 
Mixing Chamber 

(𝑂(10) mK)

DC Lines for 
Current Bias and

Measurement

Sample Holder

Fiber for
1550 nm Light

Fiber Collimator
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