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Dark Matter

@ No confirmed detection of
dark matter (DM) to date

@ Searches focus on Weakly
Interacting Massive Particles
(WIMPs) at GeV to TeV
scale

@ Sub-GeV WIMPs are less
researched

SM DM

Direct Detection

SM DM

Ashlee Caddell DSU 2022 (V]e) 2 /10



Dark Matter

SM DM

Direct Detection

o Could scatter off atomic SM DM

electrons at detectable
rates [1]

Ashlee Caddell DSU 2022 (V]e) 2 /10



Direct Detection: XENON Experiments

XENON detectors are dual
phase xenon time-projection
chambers

Gives two types of scintillation
signals:
@ S1: prompt scintillation
signal in liquid xenon (LXe)
o S2: delayed
electroluminescence in
gaseous xenon (GXe)

More detectors planned with
same working principle
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Calculations

@ To compare theory to direct detection experiments, we need
to calculate the DM-electron cross-section,

dov Te

q f(v) q+2d o 2 (E
dE _2me/ v V/C /q 904 q| X(q)| ( 7CI)
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Calculations

@ To compare theory to direct detection experiments, we need
to calculate the DM-electron cross-section,

dov Te

= /dvf(V) /q+a2d|F”()|2K(E )
dE — 2m, V/C . 094q| Fx(q )y d

K(E, q) is the ‘atomic excitation factor’:

Knjt = En Y Y | (1™ njim) | o¢ (E)
m f
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Considerations when calculating K

The nucleus is a very important region for DM-electron scattering!

Kne(q, E) = En Y > | (fle"97|nkm) of (E)
m f
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Final state wavefunctions cannot be
approximated as plane waves [3]
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Considerations when calculating K

The nucleus is a very important region for DM-electron scattering!
Knw(a, E) = En Y Y | (fle'T7|nim) [Por (E)
m f

Final state wavefunctions cannot be Initial state wavefunctions
approximated as plane waves [3] need to be relativistic [1,4]

So, for a ‘full’ calculation, we need to:
© use the relativistic Hartree-Fock method for each bound state,
then;
© take the resulting Hartree-Fock potential, and;
© solve the Dirac equation for each continuum state in the
energy and momentum grid.
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Approximating K

Why?
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Approximating K

Why? .

@ Makes calculations
faster (hours to =l
minutes) =

@ Results are easier to use Eiw

&
When E > I, the shell
‘opens’ 14

@ Below this point,
chance of ionisation is 1
zero )

@ Past this point, chance é‘fmr
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Cross-Sections
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Cross-Sections
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Cross-Sections
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Event Rates

For a perfect detector, the event rate, dR/dE, is directly
proportional to the (velocity-averaged differential) cross section
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Event Rates

For XENONI1T, we reach the observable event rate, dS/dE, by
accounting for:

@ the energy resolution [2] by smearing dR/dE using a
Gaussian, g with an energy-dependent width, o, and;

e the detection efficiency [2] by correcting the smeared rate
with the total efficiency, ¢(E).

das * p dR(E") . _,
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Event Rates: Theoretical vs. Observable
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Event Rates: Theoretical vs. Observable
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@ The low-energy detector response has a significant impact on
the results for DM-electron scattering
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@ The low-energy detector response has a significant impact on
the results for DM-electron scattering

@ The Gaussian energy resolution allows low energy events to
‘leak’ into the high energy regions
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Conclusion & Next Steps

@ Accurate atomic physics depiction necessary for DM-electron
scattering

Detector response in low energy range has a large effect on
event rates

Consider many-body effects
Release atomic factors for public use
o K—values largely independent of DM model, so easy for others
to use
Compare to the XENONNT excess

Public release of code
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