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Stellar cooling bounds

Axions could be produced in deep stellar interiors, e.g. Primakoff

production (m, < 1 keV)

If sufficiently light and weakly interacting, they can freely escape

the local stellar region — new source of energy-loss
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Clobular Clusters
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Globular clusters — large gravitationally bound collections of old,
metal poor stars
Observed parameters are a source of stellar cooling bound, e.g...
R-parameter: the ratio of horizontal branch (HB) to red giant
branch (RGB) stars in globular clusters
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Convective core boundary defined as the point at which the acceleration of convective elements
vanishes

Elements arrive at the boundary with non-zero momentum = penetrate into stable region: convective
overshoot

Implement in stellar models through some form of convective boundary scheme
Necessary to reconcile observed HB lifetimes with simulations

Stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA) is furnished with four
different schemes
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(Simulate the HB
e Location of the boundary is unstable

which extend HB duration

Example scheme: standard overshoot A
* Time-dependent diffusive process
* Diffusion coefficients decrease exponentially with distance from the
convective boundary
\ " Scale of exponential decrease set by free parameter f,,, y
~\

e Can spark dramatic core breathing pulses - large convective episodes
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* Time-dependent diffusive process
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convective boundary

Example scheme: standard overshoot
* Time-dependent diffusive process
* Diffusion coefficients decrease exponentially with distance from the

Q

\ " Scale of exponential decrease set by free parameter f,,,

(Simulate the HB

which extend HB duration

e Location of the boundary is unstable
e Can spark dramatic core breathing pulses - large convect

y = 0.001 ]

Source of stochastic variation in predictions of R —examine in MESA
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* Time-dependent diffusive process

* Diffusion coefficients decrease exponentially with distance from the
convective boundary

\ " Scale of exponential decrease set by free parameter f,,, y

(Simulate the HB
e Location of the boundary is unstable

e Can spark dramatic core breathing pulses - large convect
which extend HB duration N I D I
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Source of stochastic variation in predictions of R —examine in MESA Can only constrain when entire range falls below 95% CL
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Example scheme: standard overshoot T )

. . . 0 foy =0.001 1

* Time-dependent diffusive process 1

* Diffusion coefficients decrease exponentially with distance from the
convective boundary

\ " Scale of exponential decrease set by free parameter f,,, y

(Simulate the HB

e Location of the boundary is unstable

e Can spark dramatic core breathing pulses - large convect
which extend HB duration

%0 02 04 06 08 10
£10
Source of stochastic variation in predictions of R —examine in MESA Can only constrain when entire range falls below 95% CL
Choice of f,, systematically shifts R Which value of f,,, do we take?
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The R,-parameter
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Other globular cluster parameters exist which can provide complementary constraints on ggyy

The ratio of AGB to HB stars —the R,-parameter —is a particularly appealing candidate for this
NAGB  TAGB

R2 pr— ~J
Nug THB
j AGB helium-burning shell is more sensitive to axion energy-loss (~T7 /p) Dominguez et al., MNRAS
than HB core. Possible to decrease T44p, but not Typ 456 (1999) L1

I New, more statistically significant observed bounds are available — have
I Il never been used to constrain BSM physics

Constantino et al., MNRAS,
456 (2016) 3866
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The R,-parameter

THE UNIVERSITY OF

MELBOURNE
Other globular cluster parameters exist which can provide complementary constraints on ggyy
The ratio of AGB to HB stars —the R,-parameter —is a particularly appealing candidate for this
NAGB  TAGB
R2 p— ~J
Nug THB
j AGB helium-burning shell is more sensitive to axion energy-loss (~T7 /p) Dominguez et al., MNRAS
than HB core. Possible to decrease T44p, but not Typ 456 (1999) L1
I New, more statistically significant observed bounds are available — have
I Il never been used to constrain BSM physics

Historically used to constrain the effects of mixing across convective _
. Constantino et al., MNRAS,
boundaries

456 (2016) 3866
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Comparing R and R, a3
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P foy = 0.001
1]

Convective boundary
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constraints oppositely

PARTICLE DHYSB Advancing



Comparing R and R, a3

THE UNIVERSITY OF

MELBOURNE

E foy =0.001 |
T foy =0.01

Convective boundary
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Comparing R and R, a3

THE UNIVERSITY OF

MELBOURNE

E foy =0.001 |
T foy =0.01

Convective boundary

Both R and R, R, more sensitive at
ARC CENTRE OF EXCELLENCE FOR mOdeI pa rameter(s) affeCt

decrease with g4. low values of g4

constraints oppositely
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fov =0.001
foy = 0.01

Convective boundary
ARC CENTRE OF EXCELLENCE FOR mOdeI pa rameter(s) affeCt

Both R and R, R, more sensitive at
decrease with g4. low values of g4

constraints oppositely
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Calculating a robust bound S
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MELBOURNE
The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs
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' model parameters
The goal: calculate a bound on g, which accounts for (e.8. fop)
the sizeable uncertainty related to mixing across CBs
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' model parameters
The goal: calculate a bound on g9 which accounts for (eg. for) a scheme
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' model parameters
The goal: calculate a bound on g9 which accounts for (eg. for) a scheme

the sizeable uncertainty related to mixing across CBs 1

=realisation of

(" Simulate evolution
from main sequence
through end of the
AGB for different
\ Valuesof g

ARC CENTRE OF EXCELLENCE FOR

PARTICLE DHYSB Adva ncing 10



Calculating a robust bounao

THE UNIVERSITY OF

MELBOURNE

Pick CB scheme and

' model parameters
The goal: calculate a bound on g9 which accounts for (eg. for) a scheme

the sizeable uncertainty related to mixing across CBs 1

=realisation of

(" Simulate evolution
from main sequence
through end of the
AGB for different
\ Valuesof g
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Calculating a robust bounao
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Pick CB scheme and

' model parameters
The goal: calculate a bound on g9 which accounts for (eg. for) a scheme

the sizeable uncertainty related to mixing across CBs 1

=realisation of

(" Simulate evolution
from main sequence
through end of the
AGB for different
\ Valuesof g

4 . 4
Compute Compute
implied limit implied limit
from R from R,
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Calculating a robust bounao

THE UNIVERSITY OF

MELBOURNE

Pick CB scheme and

' model parameters
The goal: calculate a bound on g9 which accounts for (eg. for) a scheme

the sizeable uncertainty related to mixing across CBs 1

=realisation of

(" Simulate evolution
from main sequence
through end of the
AGB for different
\ Valuesof g

2 y

Compute Compute
implied limit implied limit
from R from R,

| I
y

Adopt more
restrictive of
these as limit for
this realisation
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Calculating a robust bounao

The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs
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=realisation of

model parameters

(e.8. fov)
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from main sequence
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a scheme
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AGB for different
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Pick CB scheme and o N
=realisation of

The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs

R, is more restrictive in all cases considered

model parameters

(e.8. fov)

!

(" Simulate evolution
from main sequence
through end of the

a scheme

Repeat for different
realisations of each
scheme

AGB for different
values of g9

\.

2 . 4

Compute
implied limit implied limit
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Calculating a robust bound
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The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs jo-1

Horizontal Branch (R)
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R, is more restrictive in all cases considered

Most conservative overall limit g;9 < 0.47 —an i
improvement of 30%
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Calculating a robust bound

The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs

R, is more restrictive in all cases considered

Most conservative overall limit g;9 < 0.47 —an
improvement of 30%

Complementary constraints on HB convective structure

from asteroseismology exist Constantino et al., MNRAS,
452 (2015) 123
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The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs

R, is more restrictive in all cases considered

Most conservative overall limit g;9 < 0.47 —an
improvement of 30%

Complementary constraints on HB convective structure

from asteroseismology exist Constantino et al., MNRAS,
452 (2015) 123

Support predictive mixing scheme - limits range between
910 < 0.34and g;9 < 0.11
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Calculating a robust bound

The goal: calculate a bound on g4¢ which accounts for
the sizeable uncertainty related to mixing across CBs

R, is more restrictive in all cases considered

Most conservative overall limit g;9 < 0.47 —an
improvement of 30%

Complementary constraints on HB convective structure

from asteroseismology exist Constantino et al., MNRAS,
452 (2015) 123

Support predictive mixing scheme - limits range between
910 < 0.34and g;9 < 0.11

Evidence not yet conclusive...
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Observed limits from globular clusters have a strong pedigree for constraining
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axions
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sizeable uncertainty due to mixing across convective boundaries during the HB
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THE UNIVERSITY OF

MELBOURNE

Observed limits from globular clusters have a strong pedigree for constraining
axions

The most restrictive of these on g4, based on the R-parameter, neglects
sizeable uncertainty due to mixing across convective boundaries during the HB

Confronting this naturally leads one to consider R,, the ratio of asymptotic giant
branch to horizontal branch stars in globular clusters

Using R, we construct a new and more robust constraint of g;o = 0.47

This may improve to g1 = 0.34 or better as uncertainty surrounding mixing
across convective boundaries decreases (e.g. through asteroseismology)
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MIXINg across convective boundaries

Convective boundary separates C/O rich convective region below Helium-burning core
and He-rich stable region above
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Stable

Convective elements arrive at the boundary with non-zero (radiative)
momentum and penetrate the stable region: convective overshoot

C/0O are more opaque than He = convective region grows

Convective
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MIXINg across convective boundaries

Convective boundary separates C/O rich convective region below
and He-rich stable region above

Convective elements arrive at the boundary with non-zero
momentum and penetrate the stable region: convective overshoot

C/O are more opaque than He = convective region grows
Contents of new, larger convective region mix

Increased presence of He can cause the convective region to split
giving rise to

Result: evolution of the core boundary is not stable

Effects are dire if they occur near the end of the HB = large
convective episodes which significantly elongate the HB
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Calculating R,

Simulate evolution of ~0.8M¢ star through MS, RGB, HB and
AGB

Convert results of simulation to probability density function
of Alogi9Lyp = logioL —logioLyp

1 o At; Alog L — Alog L;)?
P(AlogL) = —Z exp ( _{ 572 ) )

T “~ g+ 27
=1

A clear minimum exists between HB and AGB peaks
Calculate R, as ratio of the areas either side of this minimum

Repeat for non-zero values of g
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