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• Convective core boundary defined as the point at which the acceleration of convective elements 
vanishes

• Elements arrive at the boundary with non-zero momentum ⇒ penetrate into stable region: convective 
overshoot

• Implement in stellar models through some form of convective boundary scheme

• Necessary to reconcile observed HB lifetimes with simulations

• Stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA) is furnished with four 
different schemes
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Example

7

Example scheme: standard overshoot
• Time-dependent diffusive process
• Diffusion coefficients decrease exponentially with distance from the 

convective boundary
• Scale of exponential decrease set by free parameter 𝑓𝑜𝑣

• Source of stochastic variation in predictions of 𝑅 – examine in MESA

• Choice of 𝑓𝑜𝑣 systematically shifts 𝑅

• Can only constrain when entire range falls below 95% CL

• Which value of 𝑓𝑜𝑣 do we take?

The issue with 𝑹
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Calculating a robust bound

Advancing globular cluster constraints on the axion-photon coupling

• The goal: calculate a bound on 𝑔10 which accounts for 
the sizeable uncertainty related to mixing across CBs

• 𝑅2 is more restrictive in all cases considered

• Most conservative overall limit 𝑔10 ≤ 0.47 – an 
improvement of 30%

• Complementary constraints on HB convective structure 
from asteroseismology exist

• Support predictive mixing scheme - limits range between 
𝑔10 ≤ 0.34 and 𝑔10 ≤ 0.11

• Evidence not yet conclusive…

Constantino et al., MNRAS, 
452 (2015) 123
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Concluding Remarks
• Observed limits from globular clusters have a strong pedigree for constraining 

axions

• The most restrictive of these on 𝑔𝑎𝛾𝛾, based on the 𝑅-parameter, neglects 

sizeable uncertainty due to mixing across convective boundaries during the HB

• Confronting this naturally leads one to consider 𝑅2, the ratio of asymptotic giant 
branch to horizontal branch stars in globular clusters

• Using 𝑅2 we construct a new and more robust constraint of 𝑔10 = 0.47

• This may improve to 𝑔10 = 0.34 or better as uncertainty surrounding mixing 
across convective boundaries decreases (e.g. through asteroseismology)

Advancing globular cluster constraints on the axion-photon coupling 11
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• Convective boundary separates C/O rich convective region below 
and He-rich stable region above

• Convective elements arrive at the boundary with non-zero 
momentum and penetrate the stable region: convective overshoot

• C/O are more opaque than He ⟹ convective region grows

• Contents of new, larger convective region mix 

• Increased presence of He can cause the convective region to split 
giving rise to intermediate region

• Result: evolution of the core boundary is not stable

• Effects are dire if they occur near the end of the HB ⟹ large 
convective episodes which significantly elongate the HB
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Calculating 𝑅2

Advancing globular cluster constraints on the axion-photon coupling

• Simulate evolution of ~0.8𝑀⊙ star through MS, RGB, HB and 
AGB

• Convert results of simulation to probability density function 
of Δlog10𝐿𝐻𝐵 = log10𝐿 − log10𝐿𝐻𝐵

• A clear minimum exists between HB and AGB peaks

• Calculate 𝑅2 as ratio of the areas either side of this minimum

• Repeat for non-zero values of 𝑔10


