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Sgr dSph and Fermi Bubbles ‘Cocoon’
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Fermi Bubbles template defined by the Fermi Collaboration
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Sgr dSph is located behind the Fermi bubbles
Aya Tsuboi, Kavli IPMU



Detection significance
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What is the signal?

❖ No gas (lost to tidal and ram pressure stripping)

❖ Star formation ceased 2-3 Gyr ago

❖ ⇒Not hadronic emission (no CR hadrons from SF, no 
target hadrons)

❖ Signal traces stars (proviso: see below)

❖ ⇒Not dark matter

19



The Galactic Plane as seen by Fermi
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What is the signal?
❖ Millisecond pulsars (MSPs)?

❖ Pros: 

❖ MSPs generate ~GeV 𝛾-ray signals amongst old stellar 
populations (e.g., globular clusters, ‘GCE’, M31…)

❖ Signal expected to trace stars 

❖ Cons:

❖ At first sight, spectrum is wrong for MSPs

❖ 𝛾-ray luminosity per stellar mass is much higher than for some 
other putatively MSP-dominated systems 
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Spectrum
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γ-ray luminosity normalised to stellar mass 
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What is the signal?

❖ Unusual ISM conditions in Sgr dSph: 

❖ no gas 

❖ ⇒ no way to anchor magnetic field lines 

❖ ⇒ uISRF (= uCMB) ≫ uB

❖ ⇒ CR e± released into ISM can only radiate via 
Inverse Compton (negligible synchrotron in 
contrast to ‘usual’ situation for MSP pairs)
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What is the signal?
❖ Physics of curvature radiation: 

❖ ~few GeV peak in SED of curvature radiation 

❖ ⇒ ~few TeV CR e±

❖ ⇒ ~few TeV CR e±’s do ~100 GeV IC off CMB as 
required

❖ Can also self consistently relate the spectrum of the 
putative magnetospheric curvature radiation and the 
spectrum of the IC from the pairs released into the ISM
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Spectrum: interpretation
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Spectrum: interpretation
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Spectrum: interpretation
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Spectrum: interpretation
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Ee,cut = 3 TeV



Spectrum: interpretation
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Ee,cut = 3 TeV
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Spectrum: interpretation
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Spectrum: interpretation

❖ Overall spectrum consistent with same population of 
CR e± radiating in MSP magnetospheres

❖ …then leaking into ISM

❖ …then cooling/radiating via IC off CMB
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Spectrum: interpretation
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overall: Χ2/dof = 7.7/(15-4) = 0.7 



(Slight) displacement of signal
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Implications



γ-ray luminosity normalised to 
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γ-ray luminosity normalised to stellar mass 
Gautam+2022



γ-ray luminosity normalised to stellar mass 
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➡ The Sgr dSph is brighter than other systems because its stars are younger



γ-ray luminosity normalised to stellar mass 
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γ-ray luminosity normalised to stellar mass 

➡ The Sgr dSph is brighter than other systems because its stars are younger
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Implications

Largely removes any residual motivation for the idea that Fermi 
Bubbles sub-structure be interpreted as γ-ray jets launched from 
the Galactic nucleus. 

WRT searches for the signatures of DM annihilation: astrophysical 
backgrounds in dwarf spheroidal galaxies can be stronger than 
previously appreciated. In general, a salutary example of how 
MSPs are a problem for indirect WIMP detection (cf. GCE).  

Our study lends support to the argument that MSPs contribute 
significantly to the energy budget of CR e± in galaxies with low 
specific star-formation rates.
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Take-away messages

49

• We have detected ~1-100 GeV γ-ray emission from 
the Sagittarius dwarf spheroidal, the third-most 
massive satellite of the Milky Way (after LMC and 
SMC)

• The signal seems to be explained by millisecond 
pulsars belonging to the dwarf

• This discovery casts new light on MSPs as sources of 
non-thermal radiation and particles
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Sgr dSph and Fermi Bubbles ‘Cocoon’
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Overall spectral fit
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Goodness of fit computation
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Photon count residuals
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The Fermi Bubbles are giant, 𝛾-ray emitting lobes emanating from the nucleus of the 
Milky Way discovered in ~ 1-100 GeV data collected by the Large Area Telescope on 
board the Fermi Gamma-Ray Space Telescope. Previous work has revealed 
substructure within the Fermi Bubbles  that has been interpreted as a signature of 
collimated outflows from the Galaxy’s super-massive black hole. Here we show that 
much of the 𝛾-ray emission associated tothe brightest region of substructure  -- the 
so-called cocoon -- is actually due to the Sagittarius dwarf spheroidal (Sgr dSph) 
galaxy. This large Milky Way satellite is viewed through the Fermi Bubbles from the 
position of the Solar System. As a tidally and ram-pressure stripped remnant, the Sgr 
dSph has no on-going star formation, but we demonstrate that its 𝛾-ray signal is 
naturally explained by inverse Compton scattering of cosmic microwave background 
photons by high-energy electron-positron  pairs injected by the dwarf’s millisecond 
pulsar (MSP) population, combined with these objects' magnetospheric emission. 
This finding suggests that MSPs likely produce significant 𝛾-ray emission amongst 
old stellar populations, potentially confounding indirect dark matter searches in 
regions such as the Galactic Centre, the Andromeda galaxy, and other massive Milky 
Way dwarf spheroidals.
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