Impact of Sommerfeld Enhancement and Bound State Effects on Simplified Dark Matter Models

```
DIPAN SENGUPTA
```


with

1. Matthias Becker (TU, Munich), Emanuelle Capello (TU Munich), Julia Harz (Mainz), Kirtimaan A. Mohan, DS JHEP 08 (2022) 145 2. Kirtimaan A. Mohan (MSU), DS, C.P Yuan (MSU) , Tim Tait (UC Irvine), Bin Yan (Argonne) JHEP 05 (2019) 115

THE UNIVERSITY of ADELAIDE

Evidence for Dark Matter

Dark Sector Candidates, Anomalies, and Search Techniques

Can we improve limits, open up new parameter space for WIMPS ?

Simplified Models

Simplified Models

Going beyond effective interactions

$$
\mathcal{L} \supset \sum_{i}\left(D_{\mu} X_{i}\right)^{\dagger}\left(D^{\mu} X_{i}\right)+\sum_{i, j}\left(g_{\mathrm{DM}, i j} X_{i}^{\dagger} \bar{\chi} P_{R} q_{j}+g_{\mathrm{DM}, i j}^{*} X_{i} \bar{q}_{j} P_{L} \chi\right)
$$

$(3,1)_{-1 / 3}$,
$(3,2)_{-1 / 6}$
U_{R}

A Majorana Fermion Dark Matter interacting with Colored Scalar Mediators

$$
\langle\sigma v\rangle \simeq N_{c}^{f} g_{D M}^{4}\left[\frac{m_{f}^{2} \sqrt{1-\frac{m_{f}^{2}}{m_{\chi}^{2}}}}{64 \pi\left(m_{\tilde{q}}^{2}+m_{\chi}^{2}-m_{f}^{2}\right)^{2}}+\beta^{2}\left\{\frac{m_{\chi}^{2} \sqrt{m_{\chi}^{4}+m_{\tilde{q}}^{4}}}{32 \pi\left(m_{\chi}^{2}+m_{\tilde{q}}^{2}\right)^{4}}+\mathcal{O}\left(m_{f}^{2}\right)\right\}\right]
$$

A Simplified Dark Matter

$$
\begin{aligned}
& \tilde{Y}=Y_{\chi}+\sum_{i=u, c, t}\left(Y_{X_{i}}+Y_{X_{i}}^{\dagger}\right)=Y_{\chi}+2 \sum_{i=u, c, t} Y_{X_{i}} \\
& \frac{\mathrm{~d} \tilde{Y}}{\mathrm{~d} x}=-c g_{*, \mathrm{eff}}^{1 / 2} \frac{\left\langle\sigma_{\mathrm{eff}} v_{\mathrm{rel}}\right\rangle}{x^{2}}\left(\tilde{Y}^{2}-\tilde{Y}_{\mathrm{eq}}^{2}\right) \\
& Y_{\chi}^{\mathrm{eq}} \simeq \frac{90}{(2 \pi)^{7 / 2}} \frac{g_{\chi}}{g_{* S}} x^{3 / 2} e^{-x} \\
& Y_{X}^{\mathrm{eq}}=Y_{X^{\dagger}}^{\mathrm{eq}} \simeq \frac{90}{(2 \pi)^{7 / 2}} \frac{g_{X}}{g_{* S}}[(1+\delta) x]^{3 / 2} e^{-(1+\delta) x}
\end{aligned}
$$

$$
\delta \equiv \frac{m_{X}-m_{\chi}}{m_{\chi}} \equiv \frac{\Delta m}{m_{\chi}}, \quad \Delta m \equiv m_{X}-m_{\chi}
$$

Sommerfeld Enhancement

Radiative Corrections in annihilation

$$
\frac{v}{v^{2}+\frac{m_{Z}^{2}}{m_{\chi}^{2}}} \stackrel{m_{\chi} \gg m_{Z}}{\longrightarrow} \frac{1}{v}
$$

$$
\begin{array}{r}
V(r)=\frac{g_{Z}^{2} \delta e^{-\delta r}}{1-e^{-\delta r}} \\
\delta \approx \frac{\pi^{2}}{6} m_{Z}
\end{array}
$$

Large Enhancements for slowly moving particles for massless gauge bosons

Treat it as a non-relativistic Schrodinger equation with a long range potential

\rightarrow Resummation required since $\alpha \sim v$
\rightarrow Reduces to Schrödinger Equation for $v \ll 1$.

Modified Coannihilation $($ Ellis Luo. oivee(2005)]

$$
\left\langle\sigma_{\mathrm{eff}} v\right\rangle=\sum_{i, j \in\{\chi, X\}}\left\langle S\left(\alpha / v_{i j}\right) \cdot \sigma_{i j} v_{i j}\right\rangle \frac{n_{i}^{\mathrm{eq}}}{n^{\mathrm{eq}}} \frac{n_{j}^{\mathrm{eq}}}{n^{\mathrm{eq}}}+\left\langle\sigma_{\mathrm{BSF}} v\right\rangle_{\mathrm{eff}}\left(\frac{n_{X}^{\mathrm{eq}}}{n^{\mathrm{eq}}}\right)^{2}
$$

Color Decomposition and Sommerfeld Effect

A schematic color algebra of two incoming particles

$$
\mathbf{R}_{\mathbf{1}} \otimes \mathbf{R}_{2}=\bigoplus_{\hat{\mathbf{R}}} \hat{\mathbf{R}}
$$

Gluonic Coulomb Potential

$$
V_{[\hat{\mathbf{R}}]}(r)=-\frac{\alpha_{g}^{[\hat{\mathbf{R}}]}(Q)}{r} \quad \alpha_{g}^{[\hat{\mathbf{R}}]}(Q)=\alpha_{s}(Q) \times \frac{1}{2}\left[C_{2}\left(\mathbf{R}_{\mathbf{1}}\right)+C_{2}\left(\mathbf{R}_{\mathbf{1}}\right)-C_{2}(\hat{\mathbf{R}})\right] \equiv \alpha_{s}(Q) \times k_{[\hat{\mathbf{R}}]}
$$

$\mathbf{3} \otimes \overline{\mathbf{3}}=\mathbf{1} \oplus \mathbf{8}$ and $\mathbf{3} \otimes \mathbf{3}=\overline{\mathbf{3}} \oplus \mathbf{6}$

Sommerfeld Enhancement factor

$$
V(r)_{\mathbf{3} \otimes \overline{\mathbf{3}}}=\left\{\begin{array}{ll}
-\frac{4}{3} \frac{\alpha_{s}}{r} & {[\mathbf{1}]} \\
+\frac{1}{6} \frac{\alpha_{s}}{r} & {[\mathbf{8}]}
\end{array} \quad ; \quad V(r)_{\mathbf{3} \otimes \mathbf{3}}= \begin{cases}-\frac{2}{3} \frac{\alpha_{s}}{r} & {[\overline{\mathbf{3}}]} \\
+\frac{1}{3} \frac{\alpha_{s}}{r} & {[\mathbf{6}]}\end{cases}\right.
$$

$$
\sigma_{\mathrm{SE},[\mathbf{R}]} v_{\mathrm{rel}}=c_{[\mathbf{R}]} S_{0,[\mathbf{R}]} \sigma_{0}
$$

Color Decomposition and Sommerfeld Effect

$$
\sigma_{\mathrm{SE},[\mathbf{R}]} v_{\mathrm{rel}}=c_{[\mathbf{R}]} S_{0,[\mathbf{R}]} \sigma_{0}
$$

$$
\begin{aligned}
\sigma_{\mathbf{3} \otimes \overline{\mathbf{3}} \rightarrow g g} v_{\mathrm{rel}} & =\sigma_{\mathbf{3} \otimes \overline{\mathbf{3}} \rightarrow g g, 0}\left(\frac{2}{7} S_{0,[\mathbf{1}]}+\frac{5}{7} S_{0,[\mathbf{8}]}\right), \\
\sigma_{\mathbf{3} \otimes \overline{\mathbf{3}} \rightarrow q \bar{q}} v_{\mathrm{rel}} & =\sigma_{\mathbf{3} \otimes \overline{\mathbf{3}}, 0}\left(f_{[\mathbf{1}]}\left(g_{s}, g_{\mathrm{DM}}\right) S_{0,[\mathbf{1}]}+f_{[\mathbf{8}]}\left(g_{s}, g_{\mathrm{DM}}\right) S_{0,[\mathbf{8}]}\right) \\
\sigma_{\mathbf{3} \otimes \mathbf{3} \rightarrow q q} v_{\mathrm{rel}} & =\sigma_{\mathbf{3} \otimes \mathbf{3} \rightarrow q q, 0} S_{0,[\mathbf{6}]} \\
\sigma_{\mathbf{3}_{i} \otimes \mathbf{3}_{j} \rightarrow q_{i} q_{j}} & =\sigma_{\mathbf{3}_{i} \otimes \mathbf{3}_{j} \rightarrow q_{i} q_{j}, 0}\left(\frac{1}{3} S_{0,[\overline{\mathbf{3}}]}+\frac{2}{3} S_{0,[\mathbf{6}]}\right) .
\end{aligned}
$$

$$
S_{0,[\mathbf{1}]}=S_{0}\left(\frac{4 \alpha_{s}^{S}}{3 v_{\mathrm{rel}}}\right), S_{0,[\mathbf{8}]}=S_{0}\left(\frac{-\alpha_{s}^{S}}{6 v_{\mathrm{rel}}}\right), S_{0,[\overline{\mathbf{3}}]}=S_{0}\left(\frac{2 \alpha_{s}^{S}}{3 v_{\mathrm{rel}}}\right), S_{0,[\mathbf{6}]}=S_{0}\left(\frac{-\alpha_{s}^{S}}{3 v_{\mathrm{rel}}}\right)
$$

$$
S_{0}\left(\zeta_{s}\right)=\frac{2 \pi \zeta_{s}}{1-e^{-2 \pi \zeta_{s}}} \quad \zeta_{s}=\alpha_{g,[\mathbf{R}]} / v_{\mathrm{rel}}=k_{[\mathbf{R}]} \alpha_{s} / v_{\mathrm{rel}}
$$

At small velocities

$$
S_{0} \sim \zeta_{s} \sim \alpha_{g,[\mathbf{R}]} v_{\mathrm{rel}}^{-\mathrm{I}}
$$

Can be positive or negative depending on the sign

For I partial waves

$$
S_{\ell}(\zeta)=S_{0}(\zeta) \prod_{k=1}^{\ell}\left(1+\frac{\zeta^{2}}{k^{2}}\right)
$$

Singlet States form the most attractive potential

Does not work for light DM: Large Yukawa Exponential Suppression Bohr radius needs to be smaller than inverse mass of force mediator

$$
\left(\alpha m_{X} / 2\right)^{-1} \lesssim m_{A}^{-1}
$$

Color Decomposition and Bound States Effect

Colored Particles can form Unstable Bound States

$X_{1}+X_{2} \rightarrow \mathcal{B}\left(X_{1} X_{2}\right)+g$
wavefunction of the bound state Schrödinger equation
binding energies $\mathcal{E}_{n \ell m}=-\kappa^{2} /\left(2 \mu n^{2}\right)$

Average momentum transfer between bound states

Capture into either singlet or octet states

Bohr momentum $\quad \kappa_{[\hat{\mathbf{R}}]} \equiv \mu \alpha_{g,[\hat{\mathbf{R}}]}^{B}=\mu k_{[\hat{\mathbf{R}}]} \alpha_{s,[\hat{\mathbf{R}}]}^{B}$

$$
\begin{aligned}
\left(X+X^{\dagger}\right)_{[8]} & \rightarrow\left\{\mathcal{B}\left(X X^{\dagger}\right)_{[\mathbf{1}]}+g\right\}_{[8]}, \\
\left(X+X^{\dagger}\right)_{[\mathbf{1}]} & \rightarrow\left\{\mathcal{B}\left(X X^{\dagger}\right)_{[8]}+g\right\}_{\left[\mathbf{1}_{S}\right]}, \\
\left(X+X^{\dagger}\right)_{[8]} & \rightarrow\left\{\mathcal{B}\left(X X^{\dagger}\right)_{[8]}+g\right\}_{\left[\mathbf{8}_{S}\right]} \text { or }[8]_{A}
\end{aligned}
$$

$$
S_{\mathrm{BSF}}\left(\zeta_{S}, \zeta_{B}\right)=\left(\frac{2 \pi \zeta_{S}}{1-e^{-2 \pi \zeta_{S}}}\right)\left(1+\zeta_{S}^{2}\right) \frac{\zeta_{B}^{4} e^{-4 \zeta_{S} \operatorname{arccot}\left(\zeta_{B}\right)}}{\left(1+\zeta_{B}^{2}\right)^{3}}
$$

$$
\begin{aligned}
\zeta_{S} & \equiv \alpha_{g}^{S} / v_{\mathrm{rel}} \\
\zeta_{B} & \equiv \alpha_{g}^{B} / v_{\mathrm{rel}}
\end{aligned}
$$

Color Decomposition and Bound States Effect : Ionisation

Bound States can be ionized Energetic Gluons in the thermal Plasma and dissociate into constituents : High Temperature or can directly decay to constituents

$$
\Gamma_{\text {dec },[\mathbf{R}]}=\left(\sigma_{\text {amn },[\mathbf{R}]}^{s \text {-wav }]} v_{\text {rel }}\left|\psi_{n 00}^{[\mathbf{R}]}(0)\right|^{\mid} \quad\left|\psi_{100}^{[1]}(0)\right|^{2}=8 m_{X}^{3}\left(\alpha_{s,[1]}^{B}\right)^{3} / 27 \pi\right.
$$

Formation and Subsequent annihilation of Bound States open up a new annihilation channel

Incorporated in a system of coupled Boltzmann Equations

$$
\left\langle\sigma_{\mathrm{BSF}} v_{\mathrm{rel}}\right\rangle_{\mathrm{eff}} \equiv\left\langle\sigma_{\mathrm{BSF}}^{[8] \rightarrow[\mathbf{1}]} v_{\mathrm{rel}}\right\rangle \frac{\left\langle\Gamma_{\mathrm{dec}[\mathbf{1}]}\right\rangle}{\left\langle\Gamma_{\mathrm{dec}[\mathbf{1}]}\right\rangle+\left\langle\Gamma_{\mathrm{ion},[\mathbf{1}]}\right\rangle}
$$

At Large Temperatures : Ionisation processes dominates over decays $->$ Effective Contribution of Bound States in dark sector evolution is negligible.
Relic density is independent of contribution of Bound States

As Universe cools down decays dominate, efficiently depleting the dark sector, ionisation rate is exponentially suppressed

$$
\left\langle\sigma_{X X^{\dagger}} v_{\mathrm{rel}}\right\rangle_{\mathrm{eff}}=\sum_{i}\left(\left\langle\sigma_{X_{i} X_{i}^{\dagger}} v_{\mathrm{rel}}\right\rangle+\left\langle{\left.\left.\left.\sigma_{\mathrm{BSF}}^{[8] \rightarrow[\mathbf{1}]} v_{\mathrm{rel}}\right\rangle \frac{\Gamma_{\mathrm{dec}[\mathbf{1}]}}{\Gamma_{\mathrm{dec}[\mathbf{1}]}+\Gamma_{\mathrm{ion},[\mathbf{1}]}}\right) . .\right) ~}_{\text {. }}\right.\right.
$$

Color Decomposition and Sommerfeld Effect

Process	Contribution to $\langle\sigma v\rangle$	$v_{\text {rel }}$	Color Structure	BSF
$\chi \chi \rightarrow q_{i} \bar{q}_{i}$	$g_{\text {DM }}^{4}$	$\begin{aligned} & v_{\mathrm{rel}}^{2}\left(m_{q}=0\right) \\ & v_{\mathrm{rel}}^{0}\left(m_{q} \neq 0\right) \end{aligned}$	none	x
$X_{i} X_{j}^{\dagger} \rightarrow g g$	$g_{s}^{4} e^{-2 x \delta}$	$v_{\text {rel }}^{0}$	$\|\mathcal{M}\|^{2} \sim \frac{2}{7}[\mathbf{1}]+\frac{5}{7}[\mathbf{8}]$	
$X_{i} X_{j}^{\dagger} \rightarrow q_{i} \bar{q}_{j}$	$\left(\alpha g_{\mathrm{DM}}^{2}+\beta g_{s}^{2}\right)^{2} e^{-2 x \delta}$	$\begin{aligned} & v_{\mathrm{rel}}^{2}\left(m_{q}=0\right) \\ & v_{\mathrm{rel}}^{0} \quad\left(m_{q} \neq 0\right) \end{aligned}$	$\begin{gathered} \|\mathcal{M}\|^{2} \sim f_{1}\left(g_{\mathrm{DM}}, g_{s}\right)[\mathbf{1}] \\ \quad+f_{8}\left(g_{\mathrm{DM}}, g_{s}\right)[\mathbf{8}] \end{gathered}$	\checkmark
$X_{i} X_{j} \rightarrow q_{i} q_{j}$	$g_{\text {DM }}^{4} e^{-2 x \delta}$	$v_{\text {rel }}^{0}$	$\|\mathcal{M}\|^{2} \sim \frac{1}{3}[\overline{\mathbf{3}}]+\frac{2}{3}[\mathbf{6}]$	
$X_{i} X_{i} \rightarrow q_{i} q_{i}$	$g_{\text {DM }}^{4} e^{-2 x \delta}$	$v_{\text {rel }}^{0}$	$\|\mathcal{M}\|^{2} \sim[6]$	\checkmark
$X_{i} \chi \rightarrow q_{i} A$	$g_{\text {DM }}^{2} g_{\text {gauge }}^{2} e^{-x \delta}$	$v_{\text {rel }}^{0}$	none	x

$$
\mathcal{L} \supset \sum_{i}\left(D_{\mu} X_{i}\right)^{\dagger}\left(D^{\mu} X_{i}\right)+\sum_{i, j}\left(g_{\mathrm{DM}, i j} X_{i}^{\dagger} \bar{\chi} P_{R} q_{j}+g_{\mathrm{DM}, i j}^{*} X_{i} \bar{q}_{j} P_{L} \chi\right)
$$

Implemented the full effect of Sommerfeld Effect and Boltzmann Equations in micrOMEGAS 2.7

Relic Abundance

Determine $g_{D M, 0}$ for each data point ($m_{D M}, \Delta m$) such that DM is not overproduced.

Figure from [MB,Copello,Harz,Mohan,Sengupta(2022)]

Direct Detection 101

Look for elastic scattering of WIMPS with nuclei.

$$
\begin{gathered}
\frac{d \sigma}{d E}=\frac{m_{A}}{2 \mu_{A}^{2} v^{2}} \cdot\left(\sigma_{0}^{\mathrm{SI}} \cdot F_{\mathrm{SI}}^{2}(E)+\sigma_{0}^{\mathrm{SD}} \cdot F_{\mathrm{SD}}^{2}(E)\right) \\
\sigma_{0}^{\mathrm{SI}}=\sigma_{p} \cdot \frac{\mu_{A}^{2}}{\iota^{2}} \cdot\left[Z \cdot f^{p}+(A-Z) \cdot f^{n}\right]^{2}
\end{gathered}
$$

- LO calculation tells us

Source: KIPAC that model has only a spin dependent cross-section.

- Limits from direct detection are weaklarge values of gdm allowed.

Direct Detection Constraints

Majorana Fermion : Tree level Spin-Independent DD cross section vanishes

$$
\begin{aligned}
& \mathcal{M}=\left(-i g_{D M}\right)^{2}\left(\bar{\chi} P_{R} u\right) \frac{i}{p^{2}-M_{\tilde{u}}^{2}}\left(\bar{u} P_{L} \chi\right) \\
& \mathcal{L}_{S I}^{\mathrm{eff}}=\sum_{q=u, d, s} \mathcal{L}_{q}^{\mathrm{eff}}+\mathcal{L}_{g}^{\mathrm{eff}} \\
& \mathcal{M}_{D D} \approx \frac{l g_{D M}^{\leftharpoonup}}{M_{\tilde{q}_{L}}^{2}-M_{\chi}^{2}} \frac{1}{8}\left[\left(\bar{\chi} \gamma^{\mu} \chi\right)\left(\bar{u} \gamma_{\mu} u\right)-\left(\bar{\chi} \gamma^{\mu} \gamma^{5} \chi\right)\left(\bar{u} \gamma_{\mu} \gamma_{5} u\right)\right]
\end{aligned}
$$

Direct Detection at 1 loop

DD @ 1-Loop

$$
\begin{aligned}
\mathcal{O}_{\mu \nu}^{q} & \left.\equiv \frac{1}{2} \bar{q} i\left(D_{\mu} \gamma_{\nu}+D_{\nu} \gamma_{\mu}-\frac{1}{2} g_{\mu \nu} \not D\right)\right) q \\
\mathcal{O}_{\mu \nu}^{g} & \equiv\left(G_{\mu}^{a \rho} G_{\rho \nu}^{a}+\frac{1}{4} g_{\mu \nu} G_{\alpha \beta}^{a} G^{a \alpha \beta}\right)
\end{aligned}
$$

Determine Wilson Coefficients for effective operators

$$
\begin{aligned}
\mathcal{L}_{q}^{\mathrm{eff}} & =f_{q} m_{q} \overline{\tilde{\chi}} \tilde{\chi} q+\frac{g_{q}^{(1)}}{m_{\chi}} \overline{\tilde{\chi}} i \partial^{\mu} \gamma^{\nu} \tilde{\chi} \mathcal{O}_{\mu \nu}^{q}+\frac{g_{q}^{(2)}}{m_{\chi}^{2}} \bar{\chi}\left(i \partial^{\mu}\right)\left(i \partial^{\nu}\right) \tilde{\chi} \mathcal{O}_{\mu \nu}^{q} \\
\mathcal{L}_{g}^{\mathrm{eff}} & =f_{G} \overline{\tilde{\chi}} \tilde{\chi} G_{\mu \nu}^{a} G^{a \mu \nu}+\frac{g_{G}^{(1)}}{m_{\chi}} \bar{\chi} i \partial^{\mu} \gamma^{\nu} \tilde{\chi} \mathcal{O}_{\mu \nu}^{g}+\frac{g_{G}^{(2)}}{m_{\chi}^{2}} \overline{\tilde{\chi}}\left(i \partial^{\mu}\right)\left(i \partial^{\nu}\right) \tilde{\chi} \mathcal{O}_{\mu \nu}^{g}
\end{aligned}
$$

Spin 0

Evaluate matrix element for the elastic scattering process
in the non-relativistic limit.

$$
\begin{aligned}
f_{N} / m_{N} & =\sum_{q=u, d, s} f_{q} f_{T q}+\sum_{q=u, d, s, c, b} \frac{3}{4}(q(2)+\bar{q}(2))\left(g_{q}^{(1)}+g_{q}^{(2)}\right) \\
& -\frac{8 \pi}{9 \alpha_{s}} f_{T G} f_{G}+\frac{3}{4} G(2)\left(g_{G}^{(1)}+g_{G}^{(2)}\right) .
\end{aligned}
$$

Tools: FeynArts, FORM, PackageX

Direct Detection : RG evolution

RGE

- Nucleon DM cross-sections at Non-Relativistic velocities.
- At what scale do we define coupling and masses? If at scale $\mu \sim 0$, then to compare with LHC we should run up. If at $\mu \sim$ LHC energy, then to compare we should run down.
- RGE not necessary if no comparisons being made at different energy scales.

How we run

Wilson coefficients

Strategy

- Calculate RGE in full Theory.
- Apply matching conditions at each threshold of the theory.
- We will have to recalculate for every different model.
- Alternate approach available - RGE with EFT.

Operators for Spin Independent Interactions

$O_{q}^{(0)}=m_{q} \bar{q} q$	$O_{g}^{(0)}=G_{\mu \nu}^{A} G^{A \mu \nu}$	Spin 0	Sum Rules Relate operators
$O_{q}^{(2) \mu \nu}=\frac{1}{2} \bar{q}\left(\gamma^{\{\mu} i_{-}^{\nu\}}-\frac{q^{\mu \nu}}{4} i D_{-}\right) q$	$O_{g}^{(2) \mu \nu}=-G^{A \mu \lambda} G^{A \nu} \lambda_{\lambda}+\frac{q^{\mu \nu}}{4}\left(G_{\alpha \beta}^{A}\right)^{2}$	Spin 2	
Quark	Gluon		

Spin Dependent Operators

$$
A_{q}^{\mu}=\bar{q} \gamma^{\mu} \gamma_{5 q}
$$

Determine Anomalous dimensions

$$
\frac{d}{d \log \mu} O_{i}=-\gamma_{i j} O_{j}, \quad \frac{d}{d \log \mu} c_{i}=\gamma_{j i} c_{j}
$$

Evolve and Match at each threshold

$$
\begin{aligned}
c_{i}\left(\mu_{l}\right) & =R_{i j}\left(\mu_{l}, \mu_{h}\right) c_{j}\left(\mu_{h}\right) . \\
c_{i}\left(\mu_{Q}\right) & =M_{i j}\left(\mu_{Q}\right) c_{j}^{\prime}\left(\mu_{Q}\right)
\end{aligned}
$$

How important is RGE?

Factor ~4 enhancement in cross-section

SI Limits (Loop)

SD Limits (LO)

Constraints improve by an order of magnitude.

- Colored scalar mediator pair production - production crosssection (mostly QCD) depends on mass of mediator alone.
- Acceptance depends on mass of dark matter candidate also.

- Associated production of colored mediator and dark matter candidate- depends on all three model parameters.

LHC constraints

K factors

Complementarity of DD \& LHC experiments

Full Impact in this seemingly trivial model

RGE improved Direct Detection [Mohan et: al (2019)]
 mono-jet + ETmiss search by ATLAS

[arXiv:1711.03301]
perturbative only

+Sommerfeld Effect

+Bound State Formation

Full Impact in this seemingly trivial model

($\left.m_{\mathrm{DM}}, \Delta m\right)<(1 \mathrm{TeV}, 30 \mathrm{GeV})$ to (1.4 TeV, 40 GeV) (Sommerfeld Effect) and (2.4 TeV , 50GeV) (Bound State Formation)

Bound State Formation at the LHC

Production Cross Section

$$
\sigma\left(p p \rightarrow \mathcal{B}\left(X X^{\dagger}\right)\right)=\frac{\pi^{2}}{8 m_{\mathcal{B}}^{3}} \Gamma\left(\mathcal{B}\left(X X^{\dagger}\right) \rightarrow g g\right) \mathcal{P}_{g g}\left(\frac{m_{\mathcal{B}}}{13 \mathrm{TeV}}\right)
$$

\rightarrow try to observe the bound state resonance in $\gamma \gamma$ final state. ATLAs (2017)
Efficient for all g_{DM} small enough such that $\Gamma_{X}<E_{B}$, roughly speaking $g_{\mathrm{DM}} \lesssim g_{s}$.

Sommerfeld Effect + Bound State Formation

Limits at $37 \mathrm{fb}^{-1}$ relatively weak in mass ($\sim 300 \mathrm{GeV}$) But huge potential: Closes the gap between prompt and LLP searches

- Highly testable: Parameter space almost completely probed
- Remember: HSCP not a strict exclusion here (BSF@LHC is!)
- Bound State effects enlarge the area still necessary to test

Figure from [MB,Copello,Harz,Mohan,Sengupta(2022)]

Potential of BSF@LHC

Note: We fix $\Delta m=0.05 m_{\text {DM }}$ here!
Figure from [MB,Copello,Harz,Mohan,Sengupta(2022)]

- Non-perturbative Effects can increase or decrease the annihilation cross section of DM
\rightarrow Cannot be handled by a flat correction factor!
- Non-perturbative Effects are non-neglible in scenarios of colored coannihilation and open up small mass parameter space:
Viable Parameter space shifts from $\left(m_{\mathrm{DM}}, \Delta m\right)<(1 \mathrm{TeV}, 30 \mathrm{GeV})$ to (1.4TeV, 40 GeV) (Sommerfeld Effect) and (2.4TeV, 50 GeV) (Bound State Formation)
\rightarrow Sommerfeld Effect alone not a good approximation!
- Bound State searches at colliders close the gap in "coupling space" between prompt and long-lived-particle searches

Direct Detection 101

matrix element for dark matter participating in SI scattering

$$
\begin{aligned}
f_{N} / m_{N} & =\sum_{q=u, d, s} f_{T q} f_{q}+\sum_{q=u, d, s, c, b} \frac{3}{4}[q(2)+\bar{q}(2)]\left(g_{q}^{(1)}+g_{q}^{(2)}\right) \\
& -\frac{8 \pi}{9 \alpha_{s}} f_{T_{G}} f_{G}+\frac{3}{4} G(2)\left(g_{G}^{(1)}+g_{G}^{(2)}\right),
\end{aligned}
$$

hadronic matrix elements:

$$
\begin{aligned}
\langle N| m_{q} \bar{q} q|N\rangle / m_{N} & \equiv f_{T_{q}}, \\
\langle N|-\frac{9 \alpha_{s}}{8 \pi} G_{\mu \nu}^{A} G^{A \mu \nu}|N\rangle / m_{N} & \equiv f_{T_{G}}, \\
\langle N(p)| \mathcal{O}_{q, \mu \nu}^{(2)}|N(p)\rangle & =\frac{1}{m_{N}}\left(p_{\mu} p_{\nu}-\frac{1}{4} m_{N}^{2} g_{\mu \nu}\right)[q(2)+\bar{q}(2)] \\
\langle N(p)| \mathcal{O}_{g, \mu \nu}^{(2)}|N(p)\rangle & =\frac{1}{m_{N}}\left(p_{\mu} p_{\nu}-\frac{1}{4} m_{N}^{2} g_{\mu \nu}\right) G(2) .
\end{aligned}
$$

matrix elements of the light quarks $(q=u, d, s) \quad$ determined from lattice pion nucleon sigma term $\begin{aligned} \Sigma_{\pi N} & =\frac{m_{u}+m_{d}}{2}\langle N|(\bar{u} u+\bar{d} d)|N\rangle, \\ \Sigma_{-} & =\left(m_{d}-m_{u}\right)\langle N|(\bar{u} u-\bar{d} d)|N\rangle\end{aligned}$
matrix elements of the twist-2 operators
Related to second moments of PDF

$$
\begin{aligned}
{[q(2)+\bar{q}(2)] } & =\int_{0}^{1} d x x[q(x)+\bar{q}(x)], \\
G(2) & =\int_{0}^{1} d x x g(x),
\end{aligned}
$$

$$
\begin{aligned}
& m_{u}=2.2 \mathrm{MeV}, \quad m_{d}=4.7 \mathrm{MeV}, \quad m_{s}=95 \mathrm{MeV}, \\
& m_{c}=1.3 \mathrm{GeV}, \quad m_{b}=4.2 \mathrm{GeV}, \quad m_{t}=172 \mathrm{GeV}, \\
& m_{Z}=91.188 \mathrm{GeV}, \quad \alpha_{s}\left(m_{Z}\right)=0.1184, \\
& m_{n}=0.9396 \mathrm{GeV} \quad m_{p}=0.9383 \mathrm{GeV} . \\
& {\left[f_{T_{u}}\right]_{p}=0.018, \quad\left[f_{T_{d}}\right]_{p}=0.030, \quad\left[f_{T_{s}}\right]_{p}=0.043,} \\
& {\left[f_{T_{u}}\right]_{n}=0.015, \quad\left[f_{T_{d}}\right]_{n}=0.034, \quad\left[f_{T_{s}}\right]_{n}=0.043,} \\
& \left.f_{T_{G}}\right|_{\text {NNNLO }}=0.80 . \\
& {[u(2)+\bar{u}(2)]_{p}=0.3481, \quad[d(2)+\bar{d}(2)]_{p}=0.1902,} \\
& {[s(2)+\bar{s}(2)]_{p}=0.0352, \quad[c(2)+\bar{c}(2)]_{p}=0.0107,} \\
& {[G(2)]_{p}=[G(2)]_{n}=0.4159 .} \\
& \Delta u_{T_{G}}=-\frac{9 \alpha_{S}(\mu)}{4 \pi \beta(\mu)}\left[1-\left(1+\gamma_{m}(\mu)\right) \sum_{u, d_{, s}} f_{T_{q}}\right] \\
& \Delta u u^{(n)}=0.84, \quad \Delta d^{(p)}=-0.43, \quad \Delta s^{(p)}=-0.09, \\
& \Delta d^{(p)}, \quad \Delta d^{(n)}=\Delta u u^{(p)}, \quad \Delta s^{(n)}=\Delta s^{(p)} .
\end{aligned}
$$

Those large logs!

A closer look at the Wilson Coefficients

$$
\frac{g_{G}^{(1)}}{m_{\chi}}=\alpha_{s} \alpha_{D M}\left[f_{1}\left(m_{q}, M_{\tilde{q}_{L}}, m_{\chi}\right) \log \left(\frac{m_{q}}{M_{\tilde{q}_{L}}}\right)+f_{2}\left(m_{q}, M_{\tilde{q}_{L}}, m_{\chi}\right)\right]
$$

- For light quarks, large logs dominate the loop integral.
- Including RGE ensures large logs cancel

$$
\begin{gathered}
\Delta g_{G}^{(1)}=\frac{\alpha_{s} g_{D M}^{2} m_{\chi}}{24 \pi\left(M^{2}-m_{\chi}^{2}\right)^{2}} \log \left(\frac{M}{m}\right) \\
\left.\Delta g_{G}^{(1)}\right|_{\mu_{l}} \simeq \frac{m_{\chi} g_{D M}^{2}}{72 \pi^{2}\left(M_{\tilde{q}}^{2}-m_{\chi}^{2}\right)^{2}}\left[3 \pi \alpha_{s}\left(\mu_{h}\right) \log \left(\frac{\mu_{l}}{\mu_{h}}\right)\right. \\
\left.+\alpha_{s}\left(M_{\tilde{q}}\right) \log \left(\frac{M_{\tilde{q}}}{m_{b}}\right)\left(3 \pi-5 \alpha_{s}\left(\mu_{h}\right) \log \left(\frac{\mu_{l}}{\mu_{h}}\right)\right)\right]
\end{gathered}
$$

$$
\begin{aligned}
& R=\left(\begin{array}{cc|c}
& & \\
\mathbb{I}\left(R_{q q}-R_{q q^{\prime}}\right)+\mathbb{J} R_{q q^{\prime}} & & R_{q g} \\
& \\
& \cdots & R_{g q}
\end{array}\right) \\
& R_{q q}^{(0)}=1, \quad R_{q g}^{(0)}=2\left[\gamma_{m}\left(\mu_{h}\right)-\gamma_{m}\left(\mu_{l}\right)\right] / \tilde{\beta}\left(\mu_{h}\right), \\
& R_{g q}^{(0)}=0, \quad R_{g g}^{(0)}=\tilde{\beta}\left(\mu_{l}\right) / \tilde{\beta}\left(\mu_{h}\right) \\
& \begin{array}{l}
R_{q q}^{(2)}-R_{q q^{\prime}}^{(2)}=r(0)+\mathcal{O}\left(\alpha_{s}\right), \quad R_{q q^{\prime}}^{(2)}=\frac{1}{n_{f}}\left[\frac{16 r\left(n_{f}\right)+3 n_{f}}{16+3 n_{f}}-r(0)\right]+\mathcal{O}\left(\alpha_{s}\right. \\
R_{q g}^{(2)}=\frac{16\left[1-r\left(n_{f}\right)\right]}{16+3 n_{f}}+\mathcal{O}\left(\alpha_{s}\right), \\
R_{g q}^{(2)}=\frac{3\left[1-r\left(n_{f}\right)\right]}{16+3 n_{f}}+\mathcal{O}\left(\alpha_{s}\right), \quad R_{g g}^{(2)}=\frac{16+3 n_{f} r\left(n_{f}\right)}{16+3 n_{f}}+\mathcal{O}\left(\alpha_{s}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
M_{g Q}^{(0)}=-\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{12 \pi}\left\{1+\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{4 \pi}\left[11-\frac{4}{3} \log \frac{\mu_{Q}}{m_{Q}}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)\right\} \\
M_{g g}^{(0)}=1-\frac{\alpha_{s}^{\prime}\left(\mu_{Q}\right)}{3 \pi} \log \frac{\mu_{Q}}{m_{Q}}+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{array}
\end{aligned}
$$

Operators Mix

$$
c_{j}\left(\mu_{0}\right)=R_{j k}\left(\mu_{0}, \mu_{c}\right) M_{k l}\left(\mu_{c}\right) R_{l m}\left(\mu_{c}, \mu_{b}\right) M_{m n}\left(\mu_{b}\right) R_{n i}\left(\mu_{b}, \mu_{t}\right) c_{i}\left(\mu_{t}\right)
$$

$A^{\mu_{1} \mu_{2}}=i 8 f_{G}\left(k_{2}{ }^{\mu_{1}} k_{1}{ }^{\mu_{2}}-g^{\mu_{1} \mu_{2}}\left(k_{1} \cdot k_{2}\right)\right)$

$$
\begin{aligned}
C^{\mu_{1} \mu_{2}} & =i 2 \frac{g_{G}^{(1)}}{m_{\chi}}\left[g^{\mu_{1} \mu_{2}}\left(k_{1} \cdot k_{3}\right) \gamma \cdot k_{2}-g^{\mu_{1} \mu_{2}}\left(k_{1} \cdot k_{4}\right) \gamma \cdot k_{2}+g^{\mu_{1} \mu_{2}}\left(k_{2} \cdot k_{3}\right) \gamma \cdot k_{1}\right. \\
& -g^{\mu_{1} \mu_{2}}\left(k_{2} \cdot k_{4}\right) \gamma \cdot k_{1}+\left(k_{1} \cdot k_{2}\right)\left(g^{\mu_{1} \mu_{2}}\left(\gamma \cdot k_{4}-\gamma \cdot k_{3}\right)+\gamma^{\mu_{2}}\left(k_{3}^{\mu_{1}}-k_{4}^{\mu_{1}}\right)+\gamma^{\mu_{1}}\left(k_{3}^{\mu_{2}}-k_{4}^{\mu_{2}}\right)\right) \\
& -\gamma^{\mu_{2}} k_{2}^{\mu_{1}}\left(k_{1} \cdot k_{3}\right)+\gamma^{\mu_{2}} k_{2}^{\mu_{1}}\left(k_{1} \cdot k_{4}\right)-k_{3}^{\mu_{2}} k_{2}^{\mu_{1}}\left(\gamma \cdot k_{1}\right)+k_{4}^{\mu_{2}} k_{2}^{\mu_{1}} \gamma \cdot k_{1} \\
& \left.+k_{1}^{\mu_{2}}\left(\gamma^{\mu_{1}}\left(k_{2} \cdot k_{4}-k_{2} \cdot k_{3}\right)+k_{2}^{\mu_{1}}\left(\gamma \cdot k_{3}-\gamma \cdot k_{4}\right)+\left(k_{4}^{\mu_{1}}-k_{3}^{\mu_{1}}\right) \gamma \cdot k_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
B^{\mu_{1} \mu_{2}} & =i \frac{g_{G}^{(2)}}{m_{\chi}^{2}}\left[g^{\mu_{1} \mu_{2}}\left(2\left(k_{1} \cdot k_{3}\right)\left(k_{2} \cdot k_{3}\right)+2\left(k_{1} \cdot k_{4}\right)\left(k_{2} \cdot k_{4}\right)-\left(k_{3}^{2}+k_{4}^{2}\right)\left(k_{1} \cdot k_{2}\right)\right)\right. \\
& +k_{1}^{\mu_{2}}\left(\left(k_{3}^{2}+k_{4}^{2}\right) k_{2}^{\mu_{1}}-2\left(k_{3}^{\mu_{1}}\left(k_{2} \cdot k_{3}\right)+k_{4}^{\mu_{1}}\left(k_{2} \cdot k_{4}\right)\right)\right) \\
& +k_{3}^{\mu_{2}}\left(2 k_{3}^{\mu_{1}}\left(k_{1} \cdot k_{2}\right)-2 k_{2}^{\mu_{1}}\left(k_{1} \cdot k_{3}\right)\right) \\
& \left.+2 k_{4}^{\mu_{2}}\left(k_{4}^{\mu_{1}}\left(k_{1} \cdot k_{2}\right)-k_{2}^{\mu_{1}}\left(k_{1} \cdot k_{4}\right)\right)\right],
\end{aligned}
$$

Multiply with loop Integrals and solve for Wilson coefficients after performing an expansion in energy

$$
\begin{aligned}
& A \cdot(A+B+C)=32 f_{G}^{2} S^{2} \\
& B \cdot(A+B+C)=-2 m_{\chi}^{3} S^{2}\left(m_{\chi} \frac{g_{G}^{(2)}}{m_{\chi}^{2}}+2 \frac{g_{G}^{(1)}}{m_{\chi}}\right)+\mathcal{O}\left(S^{3}\right) \\
& C \cdot(A+B+C)=2 m_{\chi}^{2} S^{2}\left(m_{\chi} \frac{g_{G}^{(2)}}{m_{\chi}^{2}}+4 \frac{g_{G}^{(1)}}{m_{\chi}}\right)+\mathcal{O}\left(S^{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& {\left[\mathcal{M}_{\mathbf{k} \rightarrow\{n \ell m\}}^{\nu}\right]_{i i^{\prime}, j j^{\prime}}^{a}=\frac{1}{\sqrt{2 \mu}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{d^{3} p}{(2 \pi)^{3}} \tilde{\psi}_{n \ell m}^{*}(\mathbf{p}) \tilde{\phi}_{\mathbf{k}}(\mathbf{q})\left[\mathcal{M}_{\text {trans }}^{\nu}(\mathbf{q}, \mathbf{p})\right]_{i i^{\prime}, j j^{\prime}}^{a}} \\
& \quad\left[\mathcal{M}_{\text {trans }}^{\nu}(\mathbf{q}, \mathbf{p})\right]_{i i^{\prime}, j j^{\prime}}^{a}=\frac{1}{\mathcal{S}_{0}(\mathbf{q} ; K) \mathcal{S}_{0}(\mathbf{p} ; P)} \int \frac{d q^{0}}{2 \pi} \frac{d p^{0}}{2 \pi}\left[\mathcal{C}^{\nu}(q, p ; K, P)\right]_{i i^{\prime}, j j^{\prime}}^{a} . \tag{2.17}
\end{align*}
$$

Here, $\left[\mathcal{C}^{\nu}(q, p ; K, P)\right]_{i i^{\prime}, j j^{\prime}}^{a}$ is the sum of all connected diagrams contributing to the process

$$
\begin{equation*}
X_{1, i}\left(\eta_{1} K+q\right)+X_{2, j}\left(\eta_{2} K-q\right) \rightarrow X_{1, i^{\prime}}\left(\eta_{1} P+p\right)+X_{2, j^{\prime}}\left(\eta_{2} P-p\right)+g^{a}\left(P_{g}\right) \tag{2.18}
\end{equation*}
$$

$$
\begin{aligned}
S(p ; P) & \equiv S_{1}\left(\eta_{1} P+p\right) S_{2}\left(\eta_{2} P-p\right), \\
\mathcal{S}_{0}(\mathbf{p} ; P) & \equiv \int \frac{d p^{0}}{2 \pi} S(p ; P)
\end{aligned}
$$

To leading order in the non-relativistic regime [57, appendix C],

$$
\mathcal{S}_{0}(\mathbf{p} ; P) \simeq\left[-i 4 M \mu\left(P^{0}-M-\frac{\mathbf{P}^{2}}{2 M}-\frac{\mathbf{p}^{2}}{2 \mu}\right)\right]^{-1}
$$

(a) The amplitude for the radiative capture consists of the (non-perturbative) initial and final state wavefunctions, and the perturbative 5 -point function that includes the radiative vertices.

(b) The leading order diagrams contributing to \mathcal{C}^{ν}. The external-momentum, colour-index and space-time-index assignments are the same in all three diagrams.

Figure 1. Radiative capture into bound states.

Direct Detection 101

We need the Wilson Co-efficients

determined by matching to matrix elements

Tree level quark Wilson coefficients $f_{q}, g_{q}^{(1)}$ and $g_{q}^{(2)}$

$$
\begin{aligned}
f_{q} & =\frac{g_{D M}^{2} m_{\chi}}{16\left(M^{2}-m_{\chi}^{2}\right)^{2}}, & \text { suppressed compared to } \\
g_{q}^{(1)} & =\frac{g_{D M}^{2} m_{\chi}}{8\left(M^{2}-m_{\chi}^{2}\right)^{2}}, & 1 /\left(M^{2}-m_{\chi}^{2}\right) \\
g_{q}^{(2)} & =0 . & \chi
\end{aligned}
$$

Gluon Wilson Coefficients

$$
\begin{aligned}
f_{G} & \simeq \frac{\alpha_{s} g_{D M}^{2} m_{\chi}}{192 \pi} \frac{\left(m_{\chi}^{2}-2 M^{2}\right)}{M^{2}\left(M^{2}-m_{\chi}^{2}\right)^{2}} \\
\frac{g_{G}^{(2)}}{m_{\chi}^{2}} & \simeq \alpha_{s} g_{D M}^{2} \frac{-2 M^{2} m_{\chi}^{2}+2\left(M^{2}-m_{\chi}^{2}\right)^{2} \log \left(\frac{M^{2}}{M^{2}-m_{\chi}^{2}}\right)+3 m_{\chi}^{4}}{48 \pi m_{\chi}^{5}\left(M^{2}-m_{\chi}^{2}\right)^{2}} \\
\frac{g_{G}^{(1)}}{m_{\chi}} & \simeq \frac{\alpha_{s} g_{D M}^{2}}{96 \pi m_{\chi}^{4}\left(M^{2}-m_{\chi}^{2}\right)^{2}}\left[-2 m_{\chi}^{4} \log \left(\frac{m_{q}^{2}}{M^{2}}\right)-m_{\chi}^{2}\left(M^{2}+3 m_{\chi}^{2}\right)\right. \\
& \left.+\left(M^{2}-3 m_{\chi}^{2}\right)\left(M^{2}+m_{\chi}^{2}\right) \log \left(\frac{M^{2}}{M^{2}-m_{\chi}^{2}}\right)\right]
\end{aligned}
$$

Color Decomposition and Bound States Effect

For a scalar-antiscalar pair transforming in the fundamental representation degenerate masses m_{X}

$$
\sigma_{\{100\}}^{[\mathbf{8}] \rightarrow[\mathbf{1}]} v_{\mathrm{rel}}=\frac{2^{7} 17^{2}}{3^{5}} \frac{\pi \alpha_{s,[\mathbf{1}]}^{\mathrm{BSF}} \alpha_{s,[\mathbf{1}]}^{B}}{m_{X}^{2}} S_{\mathrm{BSF}}\left(\zeta_{S}, \zeta_{B}\right)
$$

$\zeta_{S} \equiv \alpha_{g}^{S} / v_{\mathrm{rel}}$
$\zeta_{B} \equiv \alpha_{g}^{B} / v_{\mathrm{rel}}$
S-wave Coulomb Sommerfeld P -wave correction
at large velocities we have $S_{\mathrm{BSF}} \sim \zeta_{B}^{4} \sim\left(\alpha_{g}^{B} / v_{\mathrm{rel}}\right)^{4} \ll 1 \quad$ at low velocities $\quad S_{\mathrm{BSF}} \sim \alpha_{g}^{S} / v_{\text {rel }}$
Work for attractive singlet states $\zeta_{S} \gtrsim 1$ and $\zeta_{B} \gtrsim 1$ BSF cross section in enhanced and compete with Sommerfeld effect
$\left\langle\sigma_{\mathrm{BSF}} v_{\text {rel }}\right\rangle=\left(\frac{\mu}{2 \pi T}\right)^{3 / 2} \int \mathrm{~d}^{3} v_{\text {rel }} \exp \left(-\mu v_{\text {rel }}^{2} / 2 T\right)\left[1+f_{g}(\omega)\right] \sigma_{\mathrm{BSF}} v_{\text {rel }}$ $\omega=\mu / 2\left\lceil\left(\alpha_{q}^{B}\right)^{2}+v_{\mathrm{rel}}^{2}\right\rceil$ is the energy emitted by the radiated gluon
binding energy $\mathcal{E}_{100}=-\mu\left(\alpha_{g}^{B}\right)^{2} / 2 \quad f_{g}(\omega)=(\exp (\omega / T)-1)^{-1}$ is the gluon distribution function

Bose-enhancement factor $1+f_{g}(\omega)$ from the final state gluon

$$
Q^{\mathrm{BSF}} \equiv \omega \simeq \mathcal{E}_{\mathbf{k}}-\mathcal{E}_{n \ell m}=\frac{\mu}{2}\left[v_{\mathrm{rel}}^{2}+\left(\alpha_{g,[\hat{\mathbf{R}}]}^{B}\right)^{2}\right]
$$

ensure the detailed balance between bound-state formation and ionization reactions

Color Decomposition and Bound States Effect : Ionisation

At Large Temperatures : Ionisation processes dominates over decays $->$ Effective Contribution of Bound States in dark sector evolution is negligible.
Relic density is independent of contribution of Bound States

As Universe cools down decays dominate, efficiently depleting the dark sector, ionisation rate is exponentially suppressed
effect of BSF on the Boltzmann equation relevant at temperatures close to the bound state binding energy ($T \gtrsim \mathcal{E}_{\mathcal{B}}$)

$$
\left\langle\sigma_{X X^{\dagger}} v_{\mathrm{rel}}\right\rangle_{\mathrm{eff}}=\sum_{i}\left(\left\langle\sigma_{X_{i} X_{i}^{\dagger}} v_{\mathrm{rel}}\right\rangle+\left\langle\sigma_{\mathrm{BSF}}^{[8] \rightarrow[\mathbf{1}]} v_{\mathrm{rel}}\right\rangle \frac{\Gamma_{\mathrm{dec}[\mathbf{1}]}}{\Gamma_{\mathrm{dec}[\mathbf{1}]}+\Gamma_{\mathrm{ion},[\mathbf{1}]}}\right)
$$

