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KERR/CFT CORRESPONDENCE              
         (Black Hole Holography)

           EXTREMAL 
           BLACK HOLE

CFT 



KERR-SEN BLACK HOLE

Angular Velocity of Horizon

Hawking Temperature
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Mass of BH Charge of 
BH
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Extremal Black Hole

Entropy of BH

To avoid any naked singularities

Could we obtain any of these results (especially entropy) 
from quantum theory of gravity?  YES 

Kerr, Kerr-Newman, Kerr-Bolt, Kerr-Bolt-(A)dS, Kerr-Sen,  
five and higher dimensional rotating black holes such as 
BMPV black hole in 5D N = 2 supergravity, ….

JS π2=



Near Horizon Geometry of Extremal BH with Horizon at 

Scaling parameter  

or
AdS

2



Near-horizon Dilaton (in local coordinates)  

Near Horizon Gauge Field 

Near Horizon 3-Form Field Strength 



The Global Near Horizon Metric

Global  Coordinates

AdS
2

a  S  bundle over AdS2
1

This geometry has a SL(2,R) isometry as well as a rotational U(1) isometry  
generated by the Killing vector 



The near horizon geometry of rotating extremal black holes consists of a copy of AdS

AdS
2

a  S  bundle over AdS2
1

This geometry has a SL(2,R) isometry as well as a rotational U(1) isometry  
generated by the Killing vector 

The u(1) rotational isometry can be enhanced to a Virasoro algebra with 
a non-trivial central charge!

Example: near horizon geometry of Kerr-Sen black hole



First Law of 
Thermodynamics

Frolov-Thorne 
temperature of the 
near horizon  region 
~Temp. of left 
moving CFT

Energy

Central charge

Jπ2S cmicroscopi =

π2
1TF.T. =≡ LT

6
2S cL
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The Cardy formula gives the entropy of the two dimensional CFT

TdSdL = TdS
6L
cdS π= T

6
c

π=L cT
3

S
2π

=

This is exactly equal to 
the macroscopic  
Bekenstein-Hawking entropy

JSBH π2=



Beside the perfect match of the macroscopic Bekenstein-Hawking entropy of Black hole 
with the Cardy entropy for CFT,  the other supports for the correspondence is: 

    Super-radiant scattering off the black hole: The bulk scattering amplitudes are  
                                                                            in precise agreement with the CFT results 

    Real-time correlators of various perturbations in even near-extremal black hole  
    could be computed directly from the bulk 

 

The near-horizon states of an extremal black hole could be identified with a certain  
chiral CFT.   
The corresponding Virasoro algebra is generated with a class of  
diffeomorphisms that preserves an appropriate boundary condition on the  
near-horizon geometry. 
The black hole near-horizon geometry consists of a certain AdS structure;  
the central charges  of dual CFT can be obtained by analyzing the asymptotic  
symmetry method 

Extremal Kerr/CFT Conclusions:



If Kerr/CFT correspondence is correct, then energy excitations of CFT should correspond  
to generic non-extremal black hole.  

Problem:     
Away from the extremality, there is no AdS structure for the near horizon geometry.  
In fact the near horizon geometry is Rindler space with no known associated CFT.  
  
  

How about generic non-extremal Black Holes? 

Solution: Existence of conformal invariance in a near-horizon geometry is not a  
necessary condition for the interactions to exhibit conformal invariance. 

Instead the existence of a local conformal invariance (known as hidden conformal 
symmetry)  
in the solution space of the wave equation for the propagating field is sufficient to  
ensure a dual CFT description.   

This  hidden conformal symmetry is a sufficient condition the scattering amplitudes  
exhibit conformal invariance though the space on which the field propagates doesn’t have  
the conformal symmetry
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GR

TEGR STEGR

3

where �̆⇢
µ⌫ is the Levi–Civita connection,

K
⇢
µ⌫ ⌘

1

2
g
⇢�
�
Tµ�⌫ + T⌫�µ + T�µ⌫

�
= �K

⇢
⌫µ , (3)

and

L
⇢
µ⌫ ⌘

1

2
g
⇢�
�
�Qµ⌫� �Q⌫µ� +Q�µ⌫

�
= L

⇢
⌫µ . (4)
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GR describes the spacetime through the curvature, setting to zero the torsion and the non-metricity; TEGR dynamics is given
by torsion while curvature and non-metricity vanish; in STEGR only non-metricity describes dynamics. In any case, the three
theories are completely equivalent at the level of field equations and the choice depends on what variables are assumed to
describe the gravitational interaction. The assumption of non-metricity to label geometry, implies that a given vector changes its
norm while parallel transported along the spacetime. In the same way, the torsion leads to a shift of the vector after performing
a closed path. By means of the definitions
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differ from each other only by a four-divergence. We do not further investigate TEGR here; for details on possible applications
see, e.g. Refs. [41, 53–56]. In what follows, we focus on STEGR and on a modified action containing a function of the
non-metricity scalar Q. By varying the action in Eq. (12), we get the field equations [46, 57]
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where r↵ denotes the covariant derivative with respect to the connection L
⇢
µ⌫ . The extension of the action to a function of Q,

namely

S = �
1
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Z
p
�g f(Q) d4x , (14)

once varied with respect to the metric tensor, provides the field equations [58, 59]:
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In next Sections, we will use the field equations (15) in order to select the functional form of the gravitational action (14)
admitting bouncing solutions; finally, we will study the corresponding Wave Function of the Universe.
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We consider f(Q) extended symmetric teleparallel cosmologies, where Q is the non-metricity scalar, and
constrain its functional form through the order reduction method. By using this technique, we are able to reduce
and integrate the field equations and thus to select the corresponding models giving rise to bouncing cosmology.
The selected Lagrangian is then used to develop the Hamiltonian formalism and to obtain the Wave Function
of the Universe which suggests that classical observable universes can be recovered according to the Hartle
Criterion.

PACS numbers: 04.50.Kd, 98.80.Qc, 04.20.Jb
Keywords: Modified gravity; quantum cosmology; exact solutions

I. INTRODUCTION

The gravitational interaction, described by Einstein’s General Relativity (GR), is the only fundamental force escaping a for-
mulation according to Quantum Field Theory. After many attempts, the difficulty of quantizing gravity arose for several reasons.
For instance, there are no techniques able to delete the divergences occurring in the two-loop effective action, so that the theory
turns out to be renormalizable just up to one-loop level. In any case, there is also a lack in the quantum side because, in view of
Quantum Gravity, the metric tensor should act both as a fundamental field and as the background. This makes the construction
of a theory of Quantum Gravity very difficult starting from fundamental concepts.

On the other hand, as widely demonstrated during the last decades, quantum corrections play a crucial role at infrared and
ultraviolet scales, providing a fundamental contribution toward the explanation of late and early Universe behavior.

For example, the Big Bang theory suffers the initial singularity problem: spacetime should enucleate from “nothing” with
deep conceptual issues related to this statement. Despite the lack of a final theory of Quantum Gravity, we can still fix some
issues by considering the applications to cosmology. The approach consists in deriving dynamical quantum systems related
to cosmological models and testable, in principle, by means of observations. This is not the full Quantum Gravity, but it is a
workable scheme towards it. For example, from the Loop Quantum Cosmology (LQC), it is possible to get bouncing solutions,
according to which the Universe might cyclically undergo an accelerated expansion followed by a contraction [1–6]. Specifically,
the Big Bounce theory predicts an exponential expansion in the Universe early stage, ending with an accelerated collapse (Big

Crunch).
High-energy issues are not the only shortcomings suffered by GR: the theory is even not capable of explaining dark compo-

nents which constitute the 95 % of the bulk of the Universe at large scales. Solution for this issue might be found in extensions
and modifications of GR action, according to which dark energy and dark matter can be addressed as curvature effects at
astrophysical and cosmological scales [7–12]. One of the most renowned proposal in this sense is represented by f(R) grav-
ity [13–16], where the gravitational action of GR is extended including a generic function of the scalar curvature. Indeed, by
means of such an extension, it is possible to explain the current acceleration of the Universe [17, 18] and to fit the galaxy rotation
curves [19–23] without any dark energy or dark matter. f(R) gravity is just an example of more general classes of theories
leading to higher-order field equations (see e.g. Refs. [18, 24–35] for other modified and extended theories of gravity).

Another assumption of GR is to use the Levi–Civita connection. It is required because the Equivalence Principle is the
foundation of Einstein’s theory by which the geodesic and the metric structures of spacetime coincide. As a consequence,
isometries and universality of free fall are preserved and spacetime is torsionless.

Once the hypotheses of torsionless and metric-compatible connection are relaxed, indeed, two other theories, equivalent to
GR, can be constructed. In particular, assuming the antisymmetric part of the connection �↵

µ⌫ to be different from zero, a
torsion contribution in the spacetime arises and gravity is described by the so called Einstein–Cartan theory [36, 37].

⇤Electronic address: bajardi@na.infn.it
†Electronic address: daniele.vernieri@unina.it
‡Electronic address: capozziello@na.infn.it
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Moreover, by setting the curvature to zero, the spacetime is only described by the torsion and the resulting theory is called
Teleparallel Equivalent to General Relativity (TEGR). In this case, a more general affine structure has to be considered, the so
called Weitzenböck connection [38–40]. It is formulated by tetrad fields on the tangent space and then TEGR can be recast as
a theory for the translation group in the local tangent spacetime. In any case the teleparallel action is equivalent to the GR one
up to a boundary term, so that the field equations are exactly the same. As a consequence of this equivalence, neither TEGR nor
GR are able to solve the above mentioned problems of the large-scale structure; in analogy to modified metric theories of gravity
such as f(R) theories, modified teleparallel actions aims to solve the cosmological and astrophysical issues by introducing
functions of the torsion scalar T or other second-order torsion invariants [41–45]. The advantage of dealing with f(T ) models
instead of f(R) ones, is due to the order of the field equations; while f(R) gravity leads to fourth-order field equations in metric
formalism, in f(T ) gravity the corresponding equations are of second order. This allows to simplify the dynamics and to find
easily exact solutions.

Another class of theories whose Christoffel connection is different from the Levi–Civita connection, are the so-called Non-

Metric Theories, according to which the covariant derivative of the metric tensor does not vanish identically and a new tensor
quantity can be constructed, i.e., Qµ↵� ⌘ rµg↵� 6= 0. These theories do not require the validity of Equivalence Principle at the
fundamental level.

After defining a non-metricity scalar Q, the action S = (/2)
R p

�g Qd
4
x turns out to be the same as that of TEGR and

then the corresponding theory is called Symmetric Teleparallel Equivalent to General Relativity (STEGR). The field equations
are those of the Einstein theory and then, in this sense, GR, TEGR and STEGR are equivalent and give rise to the so-called
Gravity Trinity [46]. In the action above,  = 1/(8⇡GN ) is the gravitational coupling, GN is the Newton’s gravitational
constant and g is the determinant of the metric gµ⌫ . In analogy to f(T ) and f(R) gravity, modified non-metric theories with
action S = �(1/2)

R p
�g f(Q) d4x can be considered; however, even if STEGR, TEGR and GR are interchangeable, their

extensions are different from each other: while f(Q) is equivalent to f(T ), f(R) gravity leads to a different dynamics.
In view of this difference, it is particularly useful to study related cosmologies with the aim to reconstruct cosmic histories

capable of matching large datasets at any epoch and then select a self-consistent theory of gravity. In particular, being Quantum
Cosmology related to the law of initial conditions from which the observed Universe emerged, considering wide classes of
models can be a useful approach to avoid any fine-tuning issue.

In this paper we study bouncing cosmology in f(Q) gravity and we select bouncing solutions by means of the order reduction
method of the field equations [47–49]. Since modified theories of gravity carry out further degrees of freedom, the field equations
are often hardly solvable and, for this reason, the order reduction is a useful approach to solve dynamics. The same approach has
been adopted e.g. in Refs. [50–52], where the authors find the form of the actions in agreement with the Big Bounce theory. In
order to develop Quantum Cosmology in f(Q) gravity, we take into account the Arnowitt–Deser–Misner (ADM) formalism in
modified STEGR action. The Hamiltonian formalism and the related quantization permits to find out the Wave Function of the

Universe, whose behavior gives information on the possibility to realize observable universes. Indeed, according to the Hartle

Criterion, the Wave Function describes correlations among cosmological observables: if it oscillates, cosmological parameters
are correlated and then can give rise to observables universes, whose dynamics is described by classical trajectories. In this
perspective, studying generalized STEGR models is useful since non-metricity can enlarge the set of viable minisuperspaces.

The layout of the paper is the following. Sec. II is devoted to discuss the main features of STEGR and its modifications,
defining all the quantity needed to construct the modified non-metric dynamics. In Sec. III, after recalling the general technique,
we search for f(Q) models leading to bouncing cosmology. In Sec. IV, the ADM formalism is applied to the selected function
of the non-metricity scalar and, hence, a solution of the Wheeler–DeWitt equation is studied. Finally, in Sec. V we conclude this
work summing up the main results and discussing the future perspectives. The Hamiltonian formulation of GR and the ADM
formalism are summarized in Appendix A.

II. MODIFIED NON-METRIC THEORIES OF GRAVITY

As it is well known, in non-flat spacetimes, geodesic structure is assigned by the form of the connection. In GR, the assumption
of torsionless and metric-compatible connection gives the Levi–Civita connection, related to the metric and its first derivatives;
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Moreover, by setting the curvature to zero, the spacetime is only described by the torsion and the resulting theory is called
Teleparallel Equivalent to General Relativity (TEGR). In this case, a more general affine structure has to be considered, the so
called Weitzenböck connection [38–40]. It is formulated by tetrad fields on the tangent space and then TEGR can be recast as
a theory for the translation group in the local tangent spacetime. In any case the teleparallel action is equivalent to the GR one
up to a boundary term, so that the field equations are exactly the same. As a consequence of this equivalence, neither TEGR nor
GR are able to solve the above mentioned problems of the large-scale structure; in analogy to modified metric theories of gravity
such as f(R) theories, modified teleparallel actions aims to solve the cosmological and astrophysical issues by introducing
functions of the torsion scalar T or other second-order torsion invariants [41–45]. The advantage of dealing with f(T ) models
instead of f(R) ones, is due to the order of the field equations; while f(R) gravity leads to fourth-order field equations in metric
formalism, in f(T ) gravity the corresponding equations are of second order. This allows to simplify the dynamics and to find
easily exact solutions.

Another class of theories whose Christoffel connection is different from the Levi–Civita connection, are the so-called Non-

Metric Theories, according to which the covariant derivative of the metric tensor does not vanish identically and a new tensor
quantity can be constructed, i.e., Qµ↵� ⌘ rµg↵� 6= 0. These theories do not require the validity of Equivalence Principle at the
fundamental level.

After defining a non-metricity scalar Q, the action S = (/2)
R p
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x turns out to be the same as that of TEGR and

then the corresponding theory is called Symmetric Teleparallel Equivalent to General Relativity (STEGR). The field equations
are those of the Einstein theory and then, in this sense, GR, TEGR and STEGR are equivalent and give rise to the so-called
Gravity Trinity [46]. In the action above,  = 1/(8⇡GN ) is the gravitational coupling, GN is the Newton’s gravitational
constant and g is the determinant of the metric gµ⌫ . In analogy to f(T ) and f(R) gravity, modified non-metric theories with
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�g f(Q) d4x can be considered; however, even if STEGR, TEGR and GR are interchangeable, their

extensions are different from each other: while f(Q) is equivalent to f(T ), f(R) gravity leads to a different dynamics.
In view of this difference, it is particularly useful to study related cosmologies with the aim to reconstruct cosmic histories

capable of matching large datasets at any epoch and then select a self-consistent theory of gravity. In particular, being Quantum
Cosmology related to the law of initial conditions from which the observed Universe emerged, considering wide classes of
models can be a useful approach to avoid any fine-tuning issue.

In this paper we study bouncing cosmology in f(Q) gravity and we select bouncing solutions by means of the order reduction
method of the field equations [47–49]. Since modified theories of gravity carry out further degrees of freedom, the field equations
are often hardly solvable and, for this reason, the order reduction is a useful approach to solve dynamics. The same approach has
been adopted e.g. in Refs. [50–52], where the authors find the form of the actions in agreement with the Big Bounce theory. In
order to develop Quantum Cosmology in f(Q) gravity, we take into account the Arnowitt–Deser–Misner (ADM) formalism in
modified STEGR action. The Hamiltonian formalism and the related quantization permits to find out the Wave Function of the

Universe, whose behavior gives information on the possibility to realize observable universes. Indeed, according to the Hartle

Criterion, the Wave Function describes correlations among cosmological observables: if it oscillates, cosmological parameters
are correlated and then can give rise to observables universes, whose dynamics is described by classical trajectories. In this
perspective, studying generalized STEGR models is useful since non-metricity can enlarge the set of viable minisuperspaces.

The layout of the paper is the following. Sec. II is devoted to discuss the main features of STEGR and its modifications,
defining all the quantity needed to construct the modified non-metric dynamics. In Sec. III, after recalling the general technique,
we search for f(Q) models leading to bouncing cosmology. In Sec. IV, the ADM formalism is applied to the selected function
of the non-metricity scalar and, hence, a solution of the Wheeler–DeWitt equation is studied. Finally, in Sec. V we conclude this
work summing up the main results and discussing the future perspectives. The Hamiltonian formulation of GR and the ADM
formalism are summarized in Appendix A.
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We consider f(Q) extended symmetric teleparallel cosmologies, where Q is the non-metricity scalar, and
constrain its functional form through the order reduction method. By using this technique, we are able to reduce
and integrate the field equations and thus to select the corresponding models giving rise to bouncing cosmology.
The selected Lagrangian is then used to develop the Hamiltonian formalism and to obtain the Wave Function
of the Universe which suggests that classical observable universes can be recovered according to the Hartle
Criterion.
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I. INTRODUCTION

The gravitational interaction, described by Einstein’s General Relativity (GR), is the only fundamental force escaping a for-
mulation according to Quantum Field Theory. After many attempts, the difficulty of quantizing gravity arose for several reasons.
For instance, there are no techniques able to delete the divergences occurring in the two-loop effective action, so that the theory
turns out to be renormalizable just up to one-loop level. In any case, there is also a lack in the quantum side because, in view of
Quantum Gravity, the metric tensor should act both as a fundamental field and as the background. This makes the construction
of a theory of Quantum Gravity very difficult starting from fundamental concepts.

On the other hand, as widely demonstrated during the last decades, quantum corrections play a crucial role at infrared and
ultraviolet scales, providing a fundamental contribution toward the explanation of late and early Universe behavior.

For example, the Big Bang theory suffers the initial singularity problem: spacetime should enucleate from “nothing” with
deep conceptual issues related to this statement. Despite the lack of a final theory of Quantum Gravity, we can still fix some
issues by considering the applications to cosmology. The approach consists in deriving dynamical quantum systems related
to cosmological models and testable, in principle, by means of observations. This is not the full Quantum Gravity, but it is a
workable scheme towards it. For example, from the Loop Quantum Cosmology (LQC), it is possible to get bouncing solutions,
according to which the Universe might cyclically undergo an accelerated expansion followed by a contraction [1–6]. Specifically,
the Big Bounce theory predicts an exponential expansion in the Universe early stage, ending with an accelerated collapse (Big

Crunch).
High-energy issues are not the only shortcomings suffered by GR: the theory is even not capable of explaining dark compo-

nents which constitute the 95 % of the bulk of the Universe at large scales. Solution for this issue might be found in extensions
and modifications of GR action, according to which dark energy and dark matter can be addressed as curvature effects at
astrophysical and cosmological scales [7–12]. One of the most renowned proposal in this sense is represented by f(R) grav-
ity [13–16], where the gravitational action of GR is extended including a generic function of the scalar curvature. Indeed, by
means of such an extension, it is possible to explain the current acceleration of the Universe [17, 18] and to fit the galaxy rotation
curves [19–23] without any dark energy or dark matter. f(R) gravity is just an example of more general classes of theories
leading to higher-order field equations (see e.g. Refs. [18, 24–35] for other modified and extended theories of gravity).

Another assumption of GR is to use the Levi–Civita connection. It is required because the Equivalence Principle is the
foundation of Einstein’s theory by which the geodesic and the metric structures of spacetime coincide. As a consequence,
isometries and universality of free fall are preserved and spacetime is torsionless.

Once the hypotheses of torsionless and metric-compatible connection are relaxed, indeed, two other theories, equivalent to
GR, can be constructed. In particular, assuming the antisymmetric part of the connection �↵

µ⌫ to be different from zero, a
torsion contribution in the spacetime arises and gravity is described by the so called Einstein–Cartan theory [36, 37].
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Moreover, by setting the curvature to zero, the spacetime is only described by the torsion and the resulting theory is called
Teleparallel Equivalent to General Relativity (TEGR). In this case, a more general affine structure has to be considered, the so
called Weitzenböck connection [38–40]. It is formulated by tetrad fields on the tangent space and then TEGR can be recast as
a theory for the translation group in the local tangent spacetime. In any case the teleparallel action is equivalent to the GR one
up to a boundary term, so that the field equations are exactly the same. As a consequence of this equivalence, neither TEGR nor
GR are able to solve the above mentioned problems of the large-scale structure; in analogy to modified metric theories of gravity
such as f(R) theories, modified teleparallel actions aims to solve the cosmological and astrophysical issues by introducing
functions of the torsion scalar T or other second-order torsion invariants [41–45]. The advantage of dealing with f(T ) models
instead of f(R) ones, is due to the order of the field equations; while f(R) gravity leads to fourth-order field equations in metric
formalism, in f(T ) gravity the corresponding equations are of second order. This allows to simplify the dynamics and to find
easily exact solutions.

Another class of theories whose Christoffel connection is different from the Levi–Civita connection, are the so-called Non-

Metric Theories, according to which the covariant derivative of the metric tensor does not vanish identically and a new tensor
quantity can be constructed, i.e., Qµ↵� ⌘ rµg↵� 6= 0. These theories do not require the validity of Equivalence Principle at the
fundamental level.

After defining a non-metricity scalar Q, the action S = (/2)
R p

�g Qd
4
x turns out to be the same as that of TEGR and

then the corresponding theory is called Symmetric Teleparallel Equivalent to General Relativity (STEGR). The field equations
are those of the Einstein theory and then, in this sense, GR, TEGR and STEGR are equivalent and give rise to the so-called
Gravity Trinity [46]. In the action above,  = 1/(8⇡GN ) is the gravitational coupling, GN is the Newton’s gravitational
constant and g is the determinant of the metric gµ⌫ . In analogy to f(T ) and f(R) gravity, modified non-metric theories with
action S = �(1/2)

R p
�g f(Q) d4x can be considered; however, even if STEGR, TEGR and GR are interchangeable, their

extensions are different from each other: while f(Q) is equivalent to f(T ), f(R) gravity leads to a different dynamics.
In view of this difference, it is particularly useful to study related cosmologies with the aim to reconstruct cosmic histories

capable of matching large datasets at any epoch and then select a self-consistent theory of gravity. In particular, being Quantum
Cosmology related to the law of initial conditions from which the observed Universe emerged, considering wide classes of
models can be a useful approach to avoid any fine-tuning issue.

In this paper we study bouncing cosmology in f(Q) gravity and we select bouncing solutions by means of the order reduction
method of the field equations [47–49]. Since modified theories of gravity carry out further degrees of freedom, the field equations
are often hardly solvable and, for this reason, the order reduction is a useful approach to solve dynamics. The same approach has
been adopted e.g. in Refs. [50–52], where the authors find the form of the actions in agreement with the Big Bounce theory. In
order to develop Quantum Cosmology in f(Q) gravity, we take into account the Arnowitt–Deser–Misner (ADM) formalism in
modified STEGR action. The Hamiltonian formalism and the related quantization permits to find out the Wave Function of the

Universe, whose behavior gives information on the possibility to realize observable universes. Indeed, according to the Hartle

Criterion, the Wave Function describes correlations among cosmological observables: if it oscillates, cosmological parameters
are correlated and then can give rise to observables universes, whose dynamics is described by classical trajectories. In this
perspective, studying generalized STEGR models is useful since non-metricity can enlarge the set of viable minisuperspaces.

The layout of the paper is the following. Sec. II is devoted to discuss the main features of STEGR and its modifications,
defining all the quantity needed to construct the modified non-metric dynamics. In Sec. III, after recalling the general technique,
we search for f(Q) models leading to bouncing cosmology. In Sec. IV, the ADM formalism is applied to the selected function
of the non-metricity scalar and, hence, a solution of the Wheeler–DeWitt equation is studied. Finally, in Sec. V we conclude this
work summing up the main results and discussing the future perspectives. The Hamiltonian formulation of GR and the ADM
formalism are summarized in Appendix A.

II. MODIFIED NON-METRIC THEORIES OF GRAVITY

As it is well known, in non-flat spacetimes, geodesic structure is assigned by the form of the connection. In GR, the assumption
of torsionless and metric-compatible connection gives the Levi–Civita connection, related to the metric and its first derivatives;
once relaxing such an hypothesis, it is possible to define two rank-3 tensors linked to the antisymmetric part of �⇢

µ⌫ and to the
covariant derivative of the metric:

T
↵
µ⌫ = 2�↵

[µ⌫] , Q⇢µ⌫ ⌘ r⇢gµ⌫ 6= 0 . (1)

The former is called torsion tensor, while the latter is called non-metricity tensor. It follows that the most general connection
comprehending all possible contributions read as
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called Weitzenböck connection [38–40]. It is formulated by tetrad fields on the tangent space and then TEGR can be recast as
a theory for the translation group in the local tangent spacetime. In any case the teleparallel action is equivalent to the GR one
up to a boundary term, so that the field equations are exactly the same. As a consequence of this equivalence, neither TEGR nor
GR are able to solve the above mentioned problems of the large-scale structure; in analogy to modified metric theories of gravity
such as f(R) theories, modified teleparallel actions aims to solve the cosmological and astrophysical issues by introducing
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then the corresponding theory is called Symmetric Teleparallel Equivalent to General Relativity (STEGR). The field equations
are those of the Einstein theory and then, in this sense, GR, TEGR and STEGR are equivalent and give rise to the so-called
Gravity Trinity [46]. In the action above,  = 1/(8⇡GN ) is the gravitational coupling, GN is the Newton’s gravitational
constant and g is the determinant of the metric gµ⌫ . In analogy to f(T ) and f(R) gravity, modified non-metric theories with
action S = �(1/2)
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extensions are different from each other: while f(Q) is equivalent to f(T ), f(R) gravity leads to a different dynamics.
In view of this difference, it is particularly useful to study related cosmologies with the aim to reconstruct cosmic histories

capable of matching large datasets at any epoch and then select a self-consistent theory of gravity. In particular, being Quantum
Cosmology related to the law of initial conditions from which the observed Universe emerged, considering wide classes of
models can be a useful approach to avoid any fine-tuning issue.

In this paper we study bouncing cosmology in f(Q) gravity and we select bouncing solutions by means of the order reduction
method of the field equations [47–49]. Since modified theories of gravity carry out further degrees of freedom, the field equations
are often hardly solvable and, for this reason, the order reduction is a useful approach to solve dynamics. The same approach has
been adopted e.g. in Refs. [50–52], where the authors find the form of the actions in agreement with the Big Bounce theory. In
order to develop Quantum Cosmology in f(Q) gravity, we take into account the Arnowitt–Deser–Misner (ADM) formalism in
modified STEGR action. The Hamiltonian formalism and the related quantization permits to find out the Wave Function of the

Universe, whose behavior gives information on the possibility to realize observable universes. Indeed, according to the Hartle

Criterion, the Wave Function describes correlations among cosmological observables: if it oscillates, cosmological parameters
are correlated and then can give rise to observables universes, whose dynamics is described by classical trajectories. In this
perspective, studying generalized STEGR models is useful since non-metricity can enlarge the set of viable minisuperspaces.

The layout of the paper is the following. Sec. II is devoted to discuss the main features of STEGR and its modifications,
defining all the quantity needed to construct the modified non-metric dynamics. In Sec. III, after recalling the general technique,
we search for f(Q) models leading to bouncing cosmology. In Sec. IV, the ADM formalism is applied to the selected function
of the non-metricity scalar and, hence, a solution of the Wheeler–DeWitt equation is studied. Finally, in Sec. V we conclude this
work summing up the main results and discussing the future perspectives. The Hamiltonian formulation of GR and the ADM
formalism are summarized in Appendix A.
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tion. In Sec. V, we find the central charges of the dual
CFT by matching the Cardy entropy for the dual CFT
to the macroscopic Bekenstein-Hawking entropy. There-
fore, we present evidence that the rotating charged AdS
black holes in quadratic f(T ) gravity, can be consid-
ered holographically dual to the CFT. In the final sec-
tion, we summarize our results and address some future
works. In this paper, we use the Planck units, in which
c = G = ~ = kB = 1.

II. f(T )-MAXWELL GRAVITY

A. Teleparallel gravity

The basic variables in TG are tetrad fields eaµ, where
a = (0, 1, 2, 3) is the index of internal space and µ =
(0, 1, 2, 3) is the index of spacetime. The tetrad fields
satisfy
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a
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The tetrad fields are related to the spacetime metric and
its inverse
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a
µe

b
⌫ , g

µ⌫ = ⌘
ab
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µ
eb

⌫
, (2)

respectively, where ⌘ab = diag (�,+,+,+) is the metric
of 4D Minkowski spacetime. Also, it can be shown that
e = det(eaµ) =

p
�g, where g is the determinant of the

metric. In TG, we use the Weitzenbock connection

W
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, (3)

to define the covariant derivative, by
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The Weitzenbock connection is curvaturefree, but it has
a non vanishing torsion
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We define the torsion scalar by
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where the superpotential tensor is
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We note that the contortion tensor K↵µ⌫ is given by
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2
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B. Rotating charged AdS black holes

In this paper, we consider a four-dimensional rotating
charged AdS black hole solution in f(T )-Maxwell theory
with a negative cosmological constant where
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The dimensional negative parameter ↵ is the coe�cient
of the quadratic term of the scalar torsion. The action
of the f(T )-Maxwell theory in 4D, for an asymptotically
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the length scale of AdS spacetime. The constant K in
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tions for gravity
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since the e↵ective cosmological constant ⇤eff , and the
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metric functions A(r) and B(r) become singular. The
gauge potential one-form �̃ is given by

�̃(r) = ��(r) (⌦d�� ⌅dt) . (18)
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scalar T , for the black hole solution (13), is given by
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, (19)

where A(r) and B(r), in Eqs. (14) and (15).
We notice that setting the rotational parameter ⌦ = 0,

we find the static charged black hole configuration, as in
Ref. [26]. Moreover, turning o↵ the mass parameter M

and Q, the metric (13) reduces to, the 4D AdS metric in
an uncommon coordinate system.

The horizons of the black holes are the positive roots
of A(r) = 0, among which, the outer one is denoted by
r+. The nonvanishing components of the contravariant
metric tensor are given by
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We find the area of the outer horizon A , by setting dt =
dr = 0 in the metric (13), and find
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C. The first law of black hole thermodynamics

In this subsection, we review the first law of black hole
thermodynamics in f(T ) gravity. Generally, the first law
of black hole thermodynamics

�Q = ⌧�S, (23)

where �Q and �S are the heat flux and the entropy
change, respectively, is violated in f(T ) gravity. The
Hawking temperature ⌧ = /2⇡ in f(T ) gravity, where
 is the surface gravity, is the same as one in the Ein-
stein gravity, since it is independent of dynamics of grav-
ity. The black hole solutions in f(T ) gravity, violate the
Clausius relation dS = dQ/⌧ , which suggest that black
hols in f(T ) gravity, even in a static spacetime, are in
nonequilibrium state and produce an intrinsic entropy

production [27].
The heat flux �Q along a Killing vector ⇠µ, is given by
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where H is the black hole horizon, � is the a�ne pa-
rameter, kµ = dx

µ
/d� is the tangent vector to H, and

 is the surface gravity of the surface H. The first term
in the right-hand side of Eq. (24) provides the first law
of black hole thermodynamics Ref. [27]. However, the
second term, in general, is not equal to zero. This term
maybe regarded as a contribution to the intrinsic entropy
production �Si, where
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Z
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⌫
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f
0 (T ) (⇠⇢S⇢⌫µ � @⌫⇠µ) dA d� = �⌧�Si. (25)

The Eq. (25) suggests that the f(T ) black holes are in
nonequilibrium thermodynamics, where

�Q = ⌧�S � ⌧�Si. (26)

Miao et al. [27] showed that the first law of thermo-
dynamics for the f(T ) black holes can be recovered ap-
proximatively, if f 00 (T ) ⌧ 1. In this approximation, the
intrinsic entropy production term in Eq. (24) can be ne-
glected, and the entropy of black holes in f(T ) gravity
becomes

S =
f
0 (T )A

4
. (27)

We note that in the case of f 0 (T ) = 1, the entropy pro-
duction �Si vanishes, and the entropy (27) reduces to the
Bekenstein-Hawking entropy in Einstein gravity.

FIG. 1: S as a function ofM andQ. In these plots, we set
in which, ⌦ = 1, l = 1, |↵| = 0.05, L = 1, and r+ = 1.
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We find the area of the outer horizon A , by setting dt =
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C. The first law of black hole thermodynamics

In this subsection, we review the first law of black hole
thermodynamics in f(T ) gravity. Generally, the first law
of black hole thermodynamics

�Q = ⌧�S, (23)

where �Q and �S are the heat flux and the entropy
change, respectively, is violated in f(T ) gravity. The
Hawking temperature ⌧ = /2⇡ in f(T ) gravity, where
 is the surface gravity, is the same as one in the Ein-
stein gravity, since it is independent of dynamics of grav-
ity. The black hole solutions in f(T ) gravity, violate the
Clausius relation dS = dQ/⌧ , which suggest that black
hols in f(T ) gravity, even in a static spacetime, are in
nonequilibrium state and produce an intrinsic entropy

production [27].
The heat flux �Q along a Killing vector ⇠µ, is given by
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where H is the black hole horizon, � is the a�ne pa-
rameter, kµ = dx

µ
/d� is the tangent vector to H, and

 is the surface gravity of the surface H. The first term
in the right-hand side of Eq. (24) provides the first law
of black hole thermodynamics Ref. [27]. However, the
second term, in general, is not equal to zero. This term
maybe regarded as a contribution to the intrinsic entropy
production �Si, where
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f
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The Eq. (25) suggests that the f(T ) black holes are in
nonequilibrium thermodynamics, where

�Q = ⌧�S � ⌧�Si. (26)

Miao et al. [27] showed that the first law of thermo-
dynamics for the f(T ) black holes can be recovered ap-
proximatively, if f 00 (T ) ⌧ 1. In this approximation, the
intrinsic entropy production term in Eq. (24) can be ne-
glected, and the entropy of black holes in f(T ) gravity
becomes

S =
f
0 (T )A

4
. (27)

We note that in the case of f 0 (T ) = 1, the entropy pro-
duction �Si vanishes, and the entropy (27) reduces to the
Bekenstein-Hawking entropy in Einstein gravity.

FIG. 1: S as a function ofM andQ. In these plots, we set
in which, ⌦ = 1, l = 1, |↵| = 0.05, L = 1, and r+ = 1.
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where A(r) and B(r), in Eqs. (14) and (15).
We notice that setting the rotational parameter ⌦ = 0,

we find the static charged black hole configuration, as in
Ref. [26]. Moreover, turning o↵ the mass parameter M

and Q, the metric (13) reduces to, the 4D AdS metric in
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The horizons of the black holes are the positive roots
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We find the area of the outer horizon A , by setting dt =
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C. The first law of black hole thermodynamics

In this subsection, we review the first law of black hole
thermodynamics in f(T ) gravity. Generally, the first law
of black hole thermodynamics

�Q = ⌧�S, (23)

where �Q and �S are the heat flux and the entropy
change, respectively, is violated in f(T ) gravity. The
Hawking temperature ⌧ = /2⇡ in f(T ) gravity, where
 is the surface gravity, is the same as one in the Ein-
stein gravity, since it is independent of dynamics of grav-
ity. The black hole solutions in f(T ) gravity, violate the
Clausius relation dS = dQ/⌧ , which suggest that black
hols in f(T ) gravity, even in a static spacetime, are in
nonequilibrium state and produce an intrinsic entropy

production [27].
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where H is the black hole horizon, � is the a�ne pa-
rameter, kµ = dx

µ
/d� is the tangent vector to H, and

 is the surface gravity of the surface H. The first term
in the right-hand side of Eq. (24) provides the first law
of black hole thermodynamics Ref. [27]. However, the
second term, in general, is not equal to zero. This term
maybe regarded as a contribution to the intrinsic entropy
production �Si, where
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The Eq. (25) suggests that the f(T ) black holes are in
nonequilibrium thermodynamics, where

�Q = ⌧�S � ⌧�Si. (26)

Miao et al. [27] showed that the first law of thermo-
dynamics for the f(T ) black holes can be recovered ap-
proximatively, if f 00 (T ) ⌧ 1. In this approximation, the
intrinsic entropy production term in Eq. (24) can be ne-
glected, and the entropy of black holes in f(T ) gravity
becomes

S =
f
0 (T )A

4
. (27)

We note that in the case of f 0 (T ) = 1, the entropy pro-
duction �Si vanishes, and the entropy (27) reduces to the
Bekenstein-Hawking entropy in Einstein gravity.
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where A(r) and B(r), in Eqs. (14) and (15).
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Ref. [26]. Moreover, turning o↵ the mass parameter M
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C. The first law of black hole thermodynamics

In this subsection, we review the first law of black hole
thermodynamics in f(T ) gravity. Generally, the first law
of black hole thermodynamics
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where �Q and �S are the heat flux and the entropy
change, respectively, is violated in f(T ) gravity. The
Hawking temperature ⌧ = /2⇡ in f(T ) gravity, where
 is the surface gravity, is the same as one in the Ein-
stein gravity, since it is independent of dynamics of grav-
ity. The black hole solutions in f(T ) gravity, violate the
Clausius relation dS = dQ/⌧ , which suggest that black
hols in f(T ) gravity, even in a static spacetime, are in
nonequilibrium state and produce an intrinsic entropy

production [27].
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where H is the black hole horizon, � is the a�ne pa-
rameter, kµ = dx

µ
/d� is the tangent vector to H, and

 is the surface gravity of the surface H. The first term
in the right-hand side of Eq. (24) provides the first law
of black hole thermodynamics Ref. [27]. However, the
second term, in general, is not equal to zero. This term
maybe regarded as a contribution to the intrinsic entropy
production �Si, where
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The Eq. (25) suggests that the f(T ) black holes are in
nonequilibrium thermodynamics, where

�Q = ⌧�S � ⌧�Si. (26)

Miao et al. [27] showed that the first law of thermo-
dynamics for the f(T ) black holes can be recovered ap-
proximatively, if f 00 (T ) ⌧ 1. In this approximation, the
intrinsic entropy production term in Eq. (24) can be ne-
glected, and the entropy of black holes in f(T ) gravity
becomes

S =
f
0 (T )A

4
. (27)

We note that in the case of f 0 (T ) = 1, the entropy pro-
duction �Si vanishes, and the entropy (27) reduces to the
Bekenstein-Hawking entropy in Einstein gravity.
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where A(r) and B(r), in Eqs. (14) and (15).
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we find the static charged black hole configuration, as in
Ref. [26]. Moreover, turning o↵ the mass parameter M
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C. The first law of black hole thermodynamics

In this subsection, we review the first law of black hole
thermodynamics in f(T ) gravity. Generally, the first law
of black hole thermodynamics

�Q = ⌧�S, (23)

where �Q and �S are the heat flux and the entropy
change, respectively, is violated in f(T ) gravity. The
Hawking temperature ⌧ = /2⇡ in f(T ) gravity, where
 is the surface gravity, is the same as one in the Ein-
stein gravity, since it is independent of dynamics of grav-
ity. The black hole solutions in f(T ) gravity, violate the
Clausius relation dS = dQ/⌧ , which suggest that black
hols in f(T ) gravity, even in a static spacetime, are in
nonequilibrium state and produce an intrinsic entropy

production [27].
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where H is the black hole horizon, � is the a�ne pa-
rameter, kµ = dx

µ
/d� is the tangent vector to H, and

 is the surface gravity of the surface H. The first term
in the right-hand side of Eq. (24) provides the first law
of black hole thermodynamics Ref. [27]. However, the
second term, in general, is not equal to zero. This term
maybe regarded as a contribution to the intrinsic entropy
production �Si, where
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The Eq. (25) suggests that the f(T ) black holes are in
nonequilibrium thermodynamics, where

�Q = ⌧�S � ⌧�Si. (26)

Miao et al. [27] showed that the first law of thermo-
dynamics for the f(T ) black holes can be recovered ap-
proximatively, if f 00 (T ) ⌧ 1. In this approximation, the
intrinsic entropy production term in Eq. (24) can be ne-
glected, and the entropy of black holes in f(T ) gravity
becomes

S =
f
0 (T )A

4
. (27)

We note that in the case of f 0 (T ) = 1, the entropy pro-
duction �Si vanishes, and the entropy (27) reduces to the
Bekenstein-Hawking entropy in Einstein gravity.

FIG. 1: S as a function ofM andQ. In these plots, we set
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Using Eqs. (9) and (22) in (27), we find the entropy of black holes in Eq. (13), as
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Figure 1 shows the behavior of the entropy (28) versus the black hole parameters M and Q. Moreover, Figs. 2a
and 2b show the entropy versus the ⌦ and |↵|, respectively.

(a) (b)

FIG. 2: (a) S as a function of ⌦, with Q = 1, l = 1, ↵ = 0.05, L = 1, r+ = 1, and several numerical values of M . (b)
S as a function of |↵|, with M = 3.5, Q = 1, ⌦ = 1 L = 1, r+ = 1, and several numerical values of l.

III. MASSLESS SCALAR WAVE EQUATION

We consider a massless scalar field  , in the back-
ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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In the near-horizon region, we expand the metric function
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where A(r) and B(r), in Eqs. (14) and (15).
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Ref. [26]. Moreover, turning o↵ the mass parameter M

and Q, the metric (13) reduces to, the 4D AdS metric in
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We find the area of the outer horizon A , by setting dt =
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C. The first law of black hole thermodynamics

In this subsection, we review the first law of black hole
thermodynamics in f(T ) gravity. Generally, the first law
of black hole thermodynamics

�Q = ⌧�S, (23)

where �Q and �S are the heat flux and the entropy
change, respectively, is violated in f(T ) gravity. The
Hawking temperature ⌧ = /2⇡ in f(T ) gravity, where
 is the surface gravity, is the same as one in the Ein-
stein gravity, since it is independent of dynamics of grav-
ity. The black hole solutions in f(T ) gravity, violate the
Clausius relation dS = dQ/⌧ , which suggest that black
hols in f(T ) gravity, even in a static spacetime, are in
nonequilibrium state and produce an intrinsic entropy

production [27].
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where H is the black hole horizon, � is the a�ne pa-
rameter, kµ = dx

µ
/d� is the tangent vector to H, and

 is the surface gravity of the surface H. The first term
in the right-hand side of Eq. (24) provides the first law
of black hole thermodynamics Ref. [27]. However, the
second term, in general, is not equal to zero. This term
maybe regarded as a contribution to the intrinsic entropy
production �Si, where
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The Eq. (25) suggests that the f(T ) black holes are in
nonequilibrium thermodynamics, where

�Q = ⌧�S � ⌧�Si. (26)

Miao et al. [27] showed that the first law of thermo-
dynamics for the f(T ) black holes can be recovered ap-
proximatively, if f 00 (T ) ⌧ 1. In this approximation, the
intrinsic entropy production term in Eq. (24) can be ne-
glected, and the entropy of black holes in f(T ) gravity
becomes

S =
f
0 (T )A

4
. (27)

We note that in the case of f 0 (T ) = 1, the entropy pro-
duction �Si vanishes, and the entropy (27) reduces to the
Bekenstein-Hawking entropy in Einstein gravity.
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Figure 1 shows the behavior of the entropy (28) versus the black hole parameters M and Q. Moreover, Figs. 2a
and 2b show the entropy versus the ⌦ and |↵|, respectively.
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FIG. 2: (a) S as a function of ⌦, with Q = 1, l = 1, ↵ = 0.05, L = 1, r+ = 1, and several numerical values of M . (b)
S as a function of |↵|, with M = 3.5, Q = 1, ⌦ = 1 L = 1, r+ = 1, and several numerical values of l.
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ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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We consider the following ansatz for the scalar field

 (t, r, z,�) = e
�i!t+ikz+im�

R (r) , (30)

where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
stituting Eqs. (20), (21), and (30) into Eq. (29) , we find
the radial equation
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In the near-horizon region, we expand the metric function
A(r) as a quadratic polynomial in (r � r+), such as

A(r) ' K (r � r+) (r � r⇤) , (33)

where
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tion. In Sec. V, we find the central charges of the dual
CFT by matching the Cardy entropy for the dual CFT
to the macroscopic Bekenstein-Hawking entropy. There-
fore, we present evidence that the rotating charged AdS
black holes in quadratic f(T ) gravity, can be consid-
ered holographically dual to the CFT. In the final sec-
tion, we summarize our results and address some future
works. In this paper, we use the Planck units, in which
c = G = ~ = kB = 1.

II. f(T )-MAXWELL GRAVITY

A. Teleparallel gravity

The basic variables in TG are tetrad fields eaµ, where
a = (0, 1, 2, 3) is the index of internal space and µ =
(0, 1, 2, 3) is the index of spacetime. The tetrad fields
satisfy
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µ
e
a
⌫ = �

µ

⌫
, ea

µ
e
b
µ = �

b

a
. (1)

The tetrad fields are related to the spacetime metric and
its inverse

gµ⌫ = ⌘abe
a
µe

b
⌫ , g

µ⌫ = ⌘
ab
ea

µ
eb

⌫
, (2)

respectively, where ⌘ab = diag (�,+,+,+) is the metric
of 4D Minkowski spacetime. Also, it can be shown that
e = det(eaµ) =

p
�g, where g is the determinant of the

metric. In TG, we use the Weitzenbock connection

W
↵
µ⌫ = ea

↵
@⌫e

a
µ = �e

a
µ@⌫ea

↵
, (3)

to define the covariant derivative, by

r⌫ea
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µ +W
µ
⇢⌫ea

⇢ = 0. (4)

The Weitzenbock connection is curvaturefree, but it has
a non vanishing torsion
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↵
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We define the torsion scalar by
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, (6)

where the superpotential tensor is
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We note that the contortion tensor K↵µ⌫ is given by

K↵µ⌫ =
1

2
(T⌫↵µ + T↵µ⌫ � Tµ↵⌫) . (8)

B. Rotating charged AdS black holes

In this paper, we consider a four-dimensional rotating
charged AdS black hole solution in f(T )-Maxwell theory
with a negative cosmological constant where

f (T ) = T + ↵T
2
. (9)

The dimensional negative parameter ↵ is the coe�cient
of the quadratic term of the scalar torsion. The action
of the f(T )-Maxwell theory in 4D, for an asymptotically
AdS spacetimes, is given by

S =
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2K

Z
d
4
x |e| (f (T )� 2⇤� F^

⇤
F ), (10)

where ⇤ = �3/l2 is the 4D cosmological constant, l is
the length scale of AdS spacetime. The constant K in
(10) is related to the 4D Newton’s gravitational constant
G4, by K = 2⌦2G4, where ⌦2 = 2⇡3/2

/� (3/2), is the
volume of 2D unit sphere, and �(3/2) = 1

2

p
⇡. In action

(10), F = d�̃, where �̃ = �̃µdx
µ is the gauge potential

one-form.
Varying action (10) with respect to the tetrad fields

and the Maxwell potential �µ, one finds the field equa-
tions for gravity
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respectively. In Eq. (11), Tem
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1/4�µ
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, is the energy-momentum tensor of the

electromagnetic field. The rotating charged AdS black
hole solution, is given by [25]
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where the range of coordinates are given by �1 < t, z <

1, 0  r < 1 and 0  � < 2⇡. In metric (13), we have

A(r) = r
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where ⇤eff = 1
36|↵| , and M , Q, and ⌦ are the mass

parameter, the charge parameter, and the rotation pa-
rameter, respectively. The parameter ↵ cannot be zero,
since the e↵ective cosmological constant ⇤eff , and the
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Using Eqs. (9) and (22) in (27), we find the entropy of black holes in Eq. (13), as
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� 42
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6 |↵|+ r+

2
⌘2 . (28)

Figure 1 shows the behavior of the entropy (28) versus the black hole parameters M and Q. Moreover, Figs. 2a
and 2b show the entropy versus the ⌦ and |↵|, respectively.
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FIG. 2: (a) S as a function of ⌦, with Q = 1, l = 1, ↵ = 0.05, L = 1, r+ = 1, and several numerical values of M . (b)
S as a function of |↵|, with M = 3.5, Q = 1, ⌦ = 1 L = 1, r+ = 1, and several numerical values of l.

III. MASSLESS SCALAR WAVE EQUATION

We consider a massless scalar field  , in the back-
ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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= 0. (29)

We consider the following ansatz for the scalar field

 (t, r, z,�) = e
�i!t+ikz+im�

R (r) , (30)

where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
stituting Eqs. (20), (21), and (30) into Eq. (29) , we find
the radial equation
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In the near-horizon region, we expand the metric function
A(r) as a quadratic polynomial in (r � r+), such as

A(r) ' K (r � r+) (r � r⇤) , (33)

where

K = 15r+
4⇤eff � 3Mr+ +

3Q2

2
, (34)
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III. MASSLESS SCALAR WAVE EQUATION

We consider a massless scalar field  , in the back-
ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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We consider the following ansatz for the scalar field

 (t, r, z,�) = e
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R (r) , (30)

where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
stituting Eqs. (20), (21), and (30) into Eq. (29) , we find
the radial equation
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In the near-horizon region, we expand the metric function
A(r) as a quadratic polynomial in (r � r+), such as

A(r) ' K (r � r+) (r � r⇤) , (33)

where

K = 15r+
4⇤eff � 3Mr+ +
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III. MASSLESS SCALAR WAVE EQUATION

We consider a massless scalar field  , in the back-
ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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= 0. (29)

We consider the following ansatz for the scalar field

 (t, r, z,�) = e
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R (r) , (30)

where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
stituting Eqs. (20), (21), and (30) into Eq. (29) , we find
the radial equation
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In the near-horizon region, we expand the metric function
A(r) as a quadratic polynomial in (r � r+), such as

A(r) ' K (r � r+) (r � r⇤) , (33)

where

K = 15r+
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III. MASSLESS SCALAR WAVE EQUATION

We consider a massless scalar field  , in the back-
ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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We consider the following ansatz for the scalar field

 (t, r, z,�) = e
�i!t+ikz+im�

R (r) , (30)

where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
stituting Eqs. (20), (21), and (30) into Eq. (29) , we find
the radial equation
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In the near-horizon region, we expand the metric function
A(r) as a quadratic polynomial in (r � r+), such as

A(r) ' K (r � r+) (r � r⇤) , (33)
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where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
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We consider the following ansatz for the scalar field
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where ! is the frequency of the scalar field, m is the az-
imutal harmonic index, and k is the wave number. Sub-
stituting Eqs. (20), (21), and (30) into Eq. (29) , we find
the radial equation

B(r)
d
2
R (r)

dr2
+

✓
rB(r)

dA(r)

dr
+ rA(r)

dB(r)

dr
+ 4A(r)B(r)

◆
dR(r)

dr
+ V (r)R (r) = 0, (31)

where the potential V (r), is given by

V (r) =
r
2
�
⌅l2! � ⌦m

�2
�A(r)l2

�
k
2
l
4⌅4 + k

2⌦4 + l
2
⇥
m

2⌅2
� 2m⌅⌦! + ⌦2

�
!
2
� 2⌅2

k
2
�⇤ 

A(r)r2(⌅2l2 � ⌦2)2
. (32)

In the near-horizon region, we expand the metric function
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where
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2r+

�
2r+4⇤eff �Mr+ +Q
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10r+4⇤eff � 2Mr+ +Q2
. (35)

We note that r⇤ is not necessarily any of the black hole
horizons. In the near-horizon region, we consider the
low-energy limit for the scalar fields, where r+ ⌧

1
!
.

Moreover, we consider a limit where the outer horizon r+

is very close to r⇤, in which, |r+ � r⇤| ⌧ r+. Using these
two approximations, we find that the radial equation (31)
simplifies to
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IV. HIDDEN CONFORMAL SYMMETRY

To find the existence of the possible hidden symmetry,
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)

[H̄0, H̄±1] = ⌥iH̄±1, [H̄�1, H̄1] = �2iH̄0. (56)
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We note that r⇤ is not necessarily any of the black hole
horizons. In the near-horizon region, we consider the
low-energy limit for the scalar fields, where r+ ⌧
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Moreover, we consider a limit where the outer horizon r+
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IV. HIDDEN CONFORMAL SYMMETRY

To find the existence of the possible hidden symmetry,
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)

[H̄0, H̄±1] = ⌥iH̄±1, [H̄�1, H̄1] = �2iH̄0. (56)

The quadratic Casimir operators of SL(2, R)L ⇥
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We note that r⇤ is not necessarily any of the black hole
horizons. In the near-horizon region, we consider the
low-energy limit for the scalar fields, where r+ ⌧
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Moreover, we consider a limit where the outer horizon r+

is very close to r⇤, in which, |r+ � r⇤| ⌧ r+. Using these
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IV. HIDDEN CONFORMAL SYMMETRY

To find the existence of the possible hidden symmetry,
we introduce the following conformal coordinates !+, !�
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the sets of local vector fields
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)

[H̄0, H̄±1] = ⌥iH̄±1, [H̄�1, H̄1] = �2iH̄0. (56)

The quadratic Casimir operators of SL(2, R)L ⇥

SL(2, R)R algebra, are given by
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We note that r⇤ is not necessarily any of the black hole
horizons. In the near-horizon region, we consider the
low-energy limit for the scalar fields, where r+ ⌧
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Moreover, we consider a limit where the outer horizon r+

is very close to r⇤, in which, |r+ � r⇤| ⌧ r+. Using these
two approximations, we find that the radial equation (31)
simplifies to
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IV. HIDDEN CONFORMAL SYMMETRY

To find the existence of the possible hidden symmetry,
we introduce the following conformal coordinates !+, !�
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where TL, TR, nL and nR are constants. We also define
the sets of local vector fields
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)

[H̄0, H̄±1] = ⌥iH̄±1, [H̄�1, H̄1] = �2iH̄0. (56)

The quadratic Casimir operators of SL(2, R)L ⇥

SL(2, R)R algebra, are given by
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We note that r⇤ is not necessarily any of the black hole
horizons. In the near-horizon region, we consider the
low-energy limit for the scalar fields, where r+ ⌧
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Moreover, we consider a limit where the outer horizon r+

is very close to r⇤, in which, |r+ � r⇤| ⌧ r+. Using these
two approximations, we find that the radial equation (31)
simplifies to
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IV. HIDDEN CONFORMAL SYMMETRY

To find the existence of the possible hidden symmetry,
we introduce the following conformal coordinates !+, !�

and y, in terms of the black hole coordinates t, r and �
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where TL, TR, nL and nR are constants. We also define
the sets of local vector fields
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)

[H̄0, H̄±1] = ⌥iH̄±1, [H̄�1, H̄1] = �2iH̄0. (56)

The quadratic Casimir operators of SL(2, R)L ⇥

SL(2, R)R algebra, are given by



Generators of CFT

5

r⇤ = r+ �
2r+

�
2r+4⇤eff �Mr+ +Q

2
�

10r+4⇤eff � 2Mr+ +Q2
. (35)

We note that r⇤ is not necessarily any of the black hole
horizons. In the near-horizon region, we consider the
low-energy limit for the scalar fields, where r+ ⌧
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.

Moreover, we consider a limit where the outer horizon r+

is very close to r⇤, in which, |r+ � r⇤| ⌧ r+. Using these
two approximations, we find that the radial equation (31)
simplifies to
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The vector fields (49)–(54) obey the SL(2, R)L ⇥
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To find the existence of the possible hidden symmetry,
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)
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To find the existence of the possible hidden symmetry,
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The vector fields (49)–(54) obey the SL(2, R)L ⇥

SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)
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where G = nLTR � nRTL.
The Casimir operator (58) reproduces the radial equation (36), by choosing the right and left temperatures, as

TR =
r+K (r+ � r⇤)

�
⌅2

l
2
� ⌦2

�p
�r+r⇤�

4⇡�
, (59)

TL =
r+K

�
⌅2

l
2
� ⌦2

� ⇥
r+

4 + 2r+3
r⇤ + 6r+2

r⇤
2
� 2r⇤3r+

�
Kl

2
� 1

�
+ r⇤

4
⇤p

�r+r⇤�

4⇡(r+ + r⇤)
3
�

, (60)

(a) (b) (c)

(d) (e) (f)

FIG. 3: (a) TR as a function of M , with ⌦ = 1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of Q. (b) TR

as a function of ⌦, with Q = 0.1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of M . (c) TR as a function
of |↵|, with Q = 0.1, M = 3.5, ⌦ = 1, r+ = 1, and several numerical values of l. (d), (e), and (f) TR as a function of
Q, with M = 3.5, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of ⌦.
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[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)
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SL(2, R)R algebra, as

[H0, H±1] = ⌥iH±1, [H�1, H1] = �2iH0, (55)

[H̄0, H̄±1] = ⌥iH̄±1, [H̄�1, H̄1] = �2iH̄0. (56)
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We notice that the Casimir operators (57), can be rewritten in terms of (t, r,�) coordinates, as
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where G = nLTR � nRTL.
The Casimir operator (58) reproduces the radial equation (36), by choosing the right and left temperatures, as
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FIG. 3: (a) TR as a function of M , with ⌦ = 1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of Q. (b) TR

as a function of ⌦, with Q = 0.1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of M . (c) TR as a function
of |↵|, with Q = 0.1, M = 3.5, ⌦ = 1, r+ = 1, and several numerical values of l. (d), (e), and (f) TR as a function of
Q, with M = 3.5, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of ⌦.
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where G = nLTR � nRTL.
The Casimir operator (58) reproduces the radial equation (36), by choosing the right and left temperatures, as
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FIG. 3: (a) TR as a function of M , with ⌦ = 1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of Q. (b) TR

as a function of ⌦, with Q = 0.1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of M . (c) TR as a function
of |↵|, with Q = 0.1, M = 3.5, ⌦ = 1, r+ = 1, and several numerical values of l. (d), (e), and (f) TR as a function of
Q, with M = 3.5, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of ⌦.

Temperatures of CFT
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FIG. 5: (a) and (b) nL as a function of M , with ⌦ = 1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of Q.
(c) nL as a function of ⌦, with Q = 0.1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of M . (d), (e), and
(f) nL as a function of Q, with M = 3.5, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of ⌦. (g) nL as a
function of |↵|, with Q = 0.1, ⌦ = 1, M = 3.5, r+ = 1, and several numerical values of l.
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FIG. 7: (a) and (b) c as a function of M , with ⌦ = 1, l = 1, |↵| = 0.05, L = 1, r+ = 1, and several numerical values
of Q. (c) c as a function of ⌦, with Q = 0.1, l = 1, |↵| = 0.05, L = 1, r+ = 1, and several numerical values of M .
(d), (e), and (f) c as a function of Q, with M = 3.5, l = 1, |↵| = 0.05, L = 1, r+ = 1, and several numerical values
of ⌦. (g) c as a function of |↵|, with ⌦ = 1, Q = 0.1,M = 3.5, L = 1, r+ = 1, and several numerical values of l

V. CFT ENTROPY

We recall the Cardy entropy formula for the dual 2D
CFT with temperatures TL and TR

SCFT =
⇡
2

3
(cLTL + cRTR) , (67)

where cL and cR are the corresponding central charges
for the left and right sectors. The central charges can be
derived from the asymptotic symmetry group of the near-
horizon (near-)extremal black hole geometry. There is no
derivation for the central charges of the CFT dual to the

Cardy entropy for the CFT
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where G = nLTR � nRTL.
The Casimir operator (58) reproduces the radial equation (36), by choosing the right and left temperatures, as
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(a) (b) (c)

(d) (e) (f)

FIG. 3: (a) TR as a function of M , with ⌦ = 1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of Q. (b) TR

as a function of ⌦, with Q = 0.1, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of M . (c) TR as a function
of |↵|, with Q = 0.1, M = 3.5, ⌦ = 1, r+ = 1, and several numerical values of l. (d), (e), and (f) TR as a function of
Q, with M = 3.5, l = 1, |↵| = 0.05, r+ = 1, and several numerical values of ⌦.
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nonextremal black holes, that we consider in this article.
Of course, we expect that the conformal symmetry of the
extremal black holes connects smoothly to those of the
nonextremal black holes, for which the central charges
are the same. The near-horizon extremal geometry for
spacetime (13) is still unknown and it is not a straightfor-

ward task to find that due to the triquadratic behavior of
the metric function A(r). As a result, we turn the logic
around and consider the favorite holographic situation,
in which, the Cardy entropy (67) produces exactly the
macroscopic entropy (27). Substituting Eqs. (28), (59),
and (60) to Eq. (67), we find the central charges

c ⌘ cL = cR =
12⌅�L$(r+ + r⇤)

3

lKr+
2 (⌅2l2 � ⌦2) (r+3 + 2r+2r⇤ + 3r+r⇤2 � l2Kr⇤3)

⇣
Q

p
6 |↵|+ r+

2
⌘2p

�r+r⇤�

,

where $ = r+
2
⇣
r+

2
Q

p
6 |↵|/2 + 7r+4

/18 +M |↵| r+ � 3Q2
|↵|

⌘
� 7

q
6|↵|3Q3

/3.

We note that we only consider CFTs, in which the left
and right central charges are equal, c ⌘ cL = cR [29, 30].
In Figs. 7–8 we plot the behavior of the central charges
(68) of the dual CFT, as a function of M , ⌦, Q, and |↵|.

FIG. 8: c as a function of M and Q. In these plots, we set
in which, ⌦ = 1, l = 1, |↵| = 0.05, L = 1, and r+ = 1.

VI. CONCLUSIONS

In this paper, we extend the concept of black hole
holography to the nonextremal 4D rotating charged AdS
black holes in f(T )-Maxwell theory with a negative cos-
mological constant. We explicitly construct the hidden
conformal symmetry for the rotating black holes in f(T )-
Maxwell theory with a negative cosmological constant.
We mainly consider the near-horizon region, as the met-

ric function which determines the event horizon, is a
triple-quadratic equation. In this region, we show that
the radial equation of the scalar wave function could be
written as the SL(2, R)L ⇥ SL(2, R)R squared Casimir
equation, indicating a local hidden conformal symmetry
acting on the solution space. The conformal symmetry
is spontaneously broken under the angular identification
� ⇠ � + 2⇡, which suggests the rotating charged AdS
black holes in quadratic f(T ) gravity, should be dual to
the finite temperatures TL and TR mixed state, in the
2D CFT. Instead of calculating the central charges using
the asymptotic symmetry group, we calculated the cen-
tral charges by assuming the Cardy entropy for the dual
CFT, matches the macroscopic Bekenstein-Hawking en-
tropy. These results suggest that rotating charged AdS
black holes in quadratic f(T ) gravity with particular val-
ues of M , ⌦, Q, and |↵|, are dual to a 2D CFT.
It is an open question to find the near-horizon (near-

)extremal geometry of the rotating charged AdS space-
time in quadratic f(T ) gravity. We may calculate the
central charges using the asymptotic symmetry group to
confirm our results in this article. We can also study
on various kinds of superradiant scattering o↵ the near-
extremal black hole as a further evidence to support
the holographic picture for the nonextremal 4D rotating
charged AdS black holes in f(T )-Maxwell theory with
a negative cosmological constant. We leave addressing
these open questions for future articles.
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Using Eqs. (9) and (22) in (27), we find the entropy of black holes in Eq. (13), as
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Figure 1 shows the behavior of the entropy (28) versus the black hole parameters M and Q. Moreover, Figs. 2a
and 2b show the entropy versus the ⌦ and |↵|, respectively.

(a) (b)

FIG. 2: (a) S as a function of ⌦, with Q = 1, l = 1, ↵ = 0.05, L = 1, r+ = 1, and several numerical values of M . (b)
S as a function of |↵|, with M = 3.5, Q = 1, ⌦ = 1 L = 1, r+ = 1, and several numerical values of l.

III. MASSLESS SCALAR WAVE EQUATION

We consider a massless scalar field  , in the back-
ground of the rotating charged AdS black holes (13), in
quadratic f(T ) gravity. The scalar wave equation is given
by [28]
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the radial equation
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In the near-horizon region, we expand the metric function
A(r) as a quadratic polynomial in (r � r+), such as

A(r) ' K (r � r+) (r � r⇤) , (33)

where
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