Holography for extended theories of gravity

Masoud Ghezelbash

Department of Physics and Engineering Physics

University of Saskatchewan
Canada

KERR/CFT CORRESPONDENCE (Black Hole Holography)

The near-horizon states and physical quantities of an extremal rotating BH (4D or higher) could be identified with and obtained from a certain chiral CFT living on the boundary of BH.
Generalizing the idea to non-extremal rotating black holes also is possible by finding a local conformal invariance (known as hidden conformal symmetry)
in the solution space of the wave equation for the propagating fields in the background of rotating BH .

KERR-SEN BLACK HOLE

$$
\begin{gathered}
d s^{2}=-\left(1-\frac{2 M \tilde{r}}{\rho^{2}}\right) d t^{2}+\rho^{2}\left(\frac{d \tilde{r}^{2}}{\Delta}+d \theta^{2}\right) \\
-\frac{4 M \tilde{r} a}{\rho^{2}} \sin ^{2} \theta d \tilde{t} d \tilde{\phi}+\left\{\tilde{r}(\tilde{r}+\varrho)+a^{2}+\frac{2 M \tilde{r} a^{2} \sin ^{2} \theta}{\rho^{2}}\right\} \sin ^{2} \theta d \tilde{\phi}^{2} \\
\Phi=-\ln \frac{r^{2}+a^{2} \cos ^{2}(\theta)+2 m r \sinh ^{2}(\alpha / 2)}{r^{2}+a^{2} \cos ^{2}(\theta)} \\
A_{t}=\frac{2 m r \sinh (\alpha)}{r^{2}+a^{2} \cos ^{2}(\theta)+2 m r \sinh ^{2}(\alpha / 2)} \\
A_{\phi}=\frac{2 m r a \sinh (\alpha) \sin ^{2}(\theta)}{r^{2}+a^{2} \cos ^{2}(\theta)+2 m r \sinh ^{2}(\alpha / 2)} \\
\\
\text { Angular Velocity of Horizon }
\end{gathered} \quad \begin{gathered}
B_{t \phi}=\frac{2 m r a \sinh ^{2}(\alpha / 2) \sin ^{2}(\theta)}{r^{2}+a^{2} \cos ^{2}(\theta)+2 m r \sinh ^{2}(\alpha / 2)} \\
\text { Mass of BH } \quad \begin{array}{l}
\text { Charge of }
\end{array} \\
\end{gathered}
$$

$$
\begin{aligned}
\Omega_{H} & =\frac{a}{m\left(m+\sqrt{m^{2}-a^{2}}\right)(1+\cosh (\alpha))} \\
T_{H} & =\frac{\sqrt{m^{2}-a^{2}}}{2 \pi m\left(m+\sqrt{m^{2}-a^{2}}\right)(1+\cosh (\alpha))}
\end{aligned}
$$

Hawking Temperature
Ang. Mom. of BH $\longrightarrow J=m a \cosh ^{2}(\alpha / 2)$

Horizon

\[

\]

To avoid any naked singularities $\longrightarrow|J| \leq M^{2}-\frac{1}{2} Q^{2}$

$$
T_{H}=\frac{\sqrt{\left(2 M^{2}-Q^{2}\right)^{2}-4 J^{2}}}{4 \pi M\left(2 M^{2}-Q^{2}+\sqrt{\left(2 M^{2}-Q^{2}\right)^{2}-4 J^{2}}\right)} \quad \Omega_{H}=\frac{J}{M\left(2 M^{2}-Q^{2}+\sqrt{\left(2 M^{2}-Q^{2}\right)^{2}-4 J^{2}}\right)}
$$

Entropy of BH $\rightarrow S=2 \pi M\left(M-\frac{Q^{2}}{2 M}+\sqrt{\left(M-\frac{Q^{2}}{2 M}\right)^{2}-\frac{J^{2}}{M^{2}}}\right)$

$$
\text { Extremal Black Hole } J=M^{2}-\frac{1}{2} Q^{2}
$$

Could we obtain any of these results (especially entropy) from quantum theory of gravity? YES

Kerr, Kerr-Newman, Kerr-Bolt, Kerr-Bolt-(A)dS, Kerr-Sen, five and higher dimensional rotating black holes such as BMPV black hole in 5D $\mathrm{N}=2$ supergravity,

Near Horizon Geometry of Extremal BH with Horizon at $M-\frac{\varrho}{2}$.

$$
\begin{aligned}
\tilde{r} & =\left(M-\frac{\varrho}{2}\right)\left(1+\frac{\lambda}{y}\right) \\
\tilde{t} & =\frac{2 M}{\lambda} t \\
\tilde{\phi} & =\phi+t / \lambda
\end{aligned}
$$

$$
\begin{aligned}
d s^{2} & =\frac{(2 M-\varrho)\left\{\frac{1}{2} \varrho \sin ^{2} \theta+M\left(1+\cos ^{2} \theta\right)\right\}^{2}}{2 M\left(1+\cos ^{2} \theta\right)+\varrho \sin ^{2} \theta}\left(\frac{-d t^{2}+d y^{2}}{y^{2}}\right) \\
& +\left\{M^{2}\left(1+\cos ^{2} \theta\right)+\frac{1}{4}\left(-\varrho^{2} \sin ^{2} \theta-4 \varrho M \cos ^{2} \theta\right)\right\} d \theta^{2} \\
& +\frac{4(2 M-\varrho) M^{2} \sin ^{2} \theta}{2 M\left(1+\cos ^{2} \theta\right)+\varrho \sin ^{2} \theta}\left(d \phi+\frac{d t}{y}\right)^{2}
\end{aligned}
$$

or

AdS

$$
\begin{aligned}
d s^{2} & =\left\{M^{2}\left(1+\cos ^{2} \theta\right)+\frac{1}{4}\left(-\varrho^{2} \sin ^{2} \theta-4 \varrho M \cos ^{2} \theta\right)\right\}\left\{\frac{-d t^{2}+d y^{2}}{y^{2}}+d \theta^{2}+\right. \\
& \left.+\frac{4 M^{2} \sin ^{2} \theta}{\left(\frac{1}{2} \varrho \sin ^{2} \theta+M\left(1+\cos ^{2} \theta\right)\right)^{2}}\left(d \phi+\frac{d t}{y}\right)^{2}\right\}
\end{aligned}
$$

Near-horizon Dilaton (in local coordinates)

$$
\Phi=\ln \frac{\left(2 M^{2}-Q^{2}\right)\left(1+\cos ^{2} \theta\right)}{Q^{2} \sin ^{2} \theta+2 M^{2}\left(1+\cos ^{2} \theta\right)}
$$

Near Horizon Gauge Field

$$
A=-\frac{2 \sqrt{2} Q\left(2 M^{2}-Q^{2}\right) \sin ^{2} \theta}{\left(Q^{2} \sin ^{2} \theta+2 M^{2}\left(1+\cos ^{2} \theta\right)\right)}\left(d \phi+\frac{d t}{y}\right)
$$

Near Horizon 3-Form Field Strength

$$
\begin{aligned}
H & =\left\{\mathcal{H} \frac{d y}{y^{2}}-\frac{1}{y} \mathcal{H}^{\prime} d \theta\right\} \wedge d t \wedge d \phi \\
\mathcal{H} & =\frac{2\left(2 M^{2}-Q^{2}\right)^{2} Q^{2} \sin ^{4} \theta}{\left\{Q^{2} \sin ^{2} \theta+2 M^{2}\left(1+\cos ^{2} \theta\right)\right\}^{2}}
\end{aligned}
$$

$$
H=d \mathcal{B}
$$

$$
\mathcal{B}=-\frac{\mathcal{H}(\theta)}{y} d t \wedge d \phi
$$

Global Coordinates

$$
\begin{aligned}
y & =\frac{1}{\cos \tau \sqrt{1+r^{2}}+r} \\
t & =y \sin \tau \sqrt{1+r^{2}} \\
\phi & =\varphi+\ln \left(\frac{\cos \tau+r \sin \tau}{1+\sin \tau \sqrt{1+r^{2}}}\right)
\end{aligned}
$$

The Global Near Horizon Metric

$$
\begin{aligned}
& d s^{2}=\left\{M^{2}\left(1+\cos ^{2} \theta\right)+\frac{1}{4}\left(-\varrho^{2} \sin ^{2} \theta-4 \varrho M \cos ^{2} \theta\right)\right\}\left\{-\left(1+r^{2}\right) d \tau^{2}+\frac{d r^{2}}{1+r^{2}}+d \theta^{2}+\right. \\
& \left.+\frac{4 M^{2} \sin ^{2} \theta}{\left(\frac{1}{2} \varrho \sin ^{2} \theta+M\left(1+\cos ^{2} \theta\right)\right)^{2}}(d \varphi+r d \tau)^{2}\right\} \\
& \uparrow \\
& \uparrow> \\
& \text { AdS }_{2} \\
& \text { a } \stackrel{1}{S}^{\mathbf{S}} \text { bundle over } \mathrm{AdS}_{2}
\end{aligned}
$$

This geometry has a $\operatorname{SL}(2, R)$ isometry as well as a rotational $U(1)$ isometry generated by the Killing vector ∂_{φ}

The near horizon geometry of rotating extremal black holes consists of a copy of AdS

Example: near horizon geometry of Kerr-Sen black hole

$$
\begin{gathered}
d s^{2}=\left\{M^{2}\left(1+\cos ^{2} \theta\right)+\frac{1}{4}\left(-\varrho^{2} \sin ^{2} \theta-4 \varrho M \cos ^{2} \theta\right)\right\}\left\{\frac{-d t^{2}+d y^{2}}{y^{2}}+d \theta^{2}+\right. \\
\left.+\frac{4 M^{2} \sin ^{2} \theta}{\left(\frac{1}{2} \varrho \sin ^{2} \theta+M\left(1+\cos ^{2} \theta\right)\right)^{2}}\left(d \phi+\frac{d t}{y}\right)^{2}\right\} \\
\quad \text { a } \mathbf{S} \text { bundle over } \mathbf{A d S}_{\mathbf{2}}
\end{gathered}
$$

This geometry has a $S L(2, R)$ isometry as well as a rotational $U(1)$ isometry generated by the Killing vector ∂_{φ}

The $u(1)$ rotational isometry can be enhanced to a Virasoro algebra with a non-trivial central charge!
$\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{J}{\hbar} m\left(m^{2}-1\right) \delta_{m+n, 0} \quad \longrightarrow \quad c=\frac{12 J}{\hbar}$

The Cardy formula gives the entropy of the two dimensional CFT

First Law of

$$
\mathrm{S}=2 \pi \sqrt{\frac{c L}{6}} \longrightarrow \text { Energy }
$$

Thermodynamics
$\mathrm{dL}=\mathrm{TdS} \rightarrow \mathrm{dS}=\pi \sqrt{\frac{\mathrm{c}}{6 \mathrm{~L}}} \mathrm{TdS} \rightarrow \sqrt{L}=\pi \sqrt{\frac{\mathrm{c}}{6}} \mathrm{~T} \quad \square \mathrm{~S}=\frac{\pi^{2}}{3} \mathrm{cT}$

Frolov-Thorne temperature of the near horizon region
\sim Temp. of left moving CFT

$$
\mathrm{T}_{\mathrm{F} . \mathrm{T} .} \equiv T_{L}=\frac{1}{2 \pi}
$$

$$
\mathrm{S}_{\text {microscopic }}=2 \pi J
$$

This is exactly equal to the macroscopic
Bekenstein-Hawking entropy

Beside the perfect match of the macroscopic Bekenstein-Hawking entropy of Black hole with the Cardy entropy for CFT, the other supports for the correspondence is:

Super-radiant scattering off the black hole: The bulk scattering amplitudes are in precise agreement with the CFT results
$\underset{\sim}{T}$ Real-time correlators of various perturbations in even near-extremal black hole could be computed directly from the bulk

Extremal Kerr/CFT Conclusions:

The near-horizon states of an extremal black hole could be identified with a certain chiral CFT.
The corresponding Virasoro algebra is generated with a class of diffeomorphisms that preserves an appropriate boundary condition on the near-horizon geometry.
The black hole near-horizon geometry consists of a certain AdS structure; the central charges of dual CFT can be obtained by analyzing the asymptotic symmetry method

How about generic non-extremal Black Holes?

If Kerr/CFT correspondence is correct, then energy excitations of CFT should correspond to generic non-extremal black hole.

Problem:

Away from the extremality, there is no AdS structure for the near horizon geometry. In fact the near horizon geometry is Rindler space with no known associated CFT.

Solution: Existence of conformal invariance in a near-horizon geometry is not a necessary condition for the interactions to exhibit conformal invariance.

Instead the existence of a local conformal invariance (known as hidden conformal symmetry)
in the solution space of the wave equation for the propagating field is sufficient to ensure a dual CFT description.

This hidden conformal symmetry is a sufficient condition the scattering amplitudes exhibit conformal invariance though the space on which the field propagates doesn't have the conformal symmetry

Gravitational Trinity

$$
\mathcal{S}_{G R} \equiv \frac{\kappa}{2} \int d^{4} x \sqrt{-g} R \quad \mathcal{S}_{T E G R} \equiv \frac{\kappa}{2} \int d^{4} x \sqrt{-g} T \quad \mathcal{S}_{S T E G R} \equiv \frac{\kappa}{2} \int d^{4} x \sqrt{-g} Q
$$

No Trinity

$$
\begin{gathered}
{ }^{f(R)} \\
f(T) \quad \stackrel{f(Q)}{ }
\end{gathered}
$$

$f(R)$
Extension of GR-Dark energy and matter addressed as curvature effects on Astrophysical and cosmological scales - Explain well the acceleration of the universe - Explain galaxy rotation curves without dark matter/energy
$f(T)$
Extension of TEGR (torsion as a result of Weitzenbock connection, instead of Levi-Civita connection)
$f(Q)$
Extension of STEGR (non metricity which implies the covariant derivative of the metric does not vanish)

f(T) Gravity

$\mathcal{S}=\frac{1}{2 \mathfrak{K}} \int d^{4} x|e|\left(f(T)-2 \Lambda-F \wedge^{*} F\right)$
$W^{\alpha}{ }_{\mu \nu}=e_{a}{ }^{\alpha} \partial_{\nu} e^{a}{ }_{\mu}=-e^{a}{ }_{\mu} \partial_{\nu} e_{a}{ }^{\alpha}$
Weitzenbock connection, which is curvature free, but has a non zero torsion $\quad T^{\alpha}{ }_{\mu \nu}=W^{\alpha}{ }_{\nu \mu}-W^{\alpha}{ }_{\mu \nu}=e_{i}{ }^{\alpha}\left(\partial_{\mu} e^{i}{ }_{\nu}-\partial_{\nu} e^{i}{ }_{\mu}\right)$

Scalar torsion

$$
\begin{gathered}
T=T_{\mu \nu}^{\alpha} S_{\alpha}^{\mu \nu} \\
S_{\alpha}^{\mu \nu}=\frac{1}{2}\left(K_{\alpha}^{\mu \nu}+\delta_{\alpha}^{\mu} T_{\beta}^{\beta \nu}-\delta_{\alpha}^{\nu} T^{\beta \mu}{ }_{\beta}\right)
\end{gathered}
$$

Contortion tensor $\quad K_{\alpha \mu \nu}=\frac{1}{2}\left(T_{\nu \alpha \mu}+T_{\alpha \mu \nu}-T_{\mu \alpha \nu}\right)$

Rotating Charged AdS Black Holes in $\quad f(T)=T+\alpha T^{2} \quad$ Gravity

Gravity field equations

$$
\begin{aligned}
& S_{\mu}{ }^{\rho \nu} \partial_{\rho} T f^{\prime \prime}(T)+\left[e^{-1} e^{a}{ }_{\mu} \partial_{\rho}\left(e e_{\alpha}{ }^{\alpha} S_{\alpha}{ }^{\rho \nu}\right)-T^{\alpha}{ }_{\lambda \mu} S_{\alpha}{ }^{\nu \lambda}\right] f^{\prime}(T)-\frac{\delta_{\mu}^{\nu}}{4}\left(f(T)+\frac{6}{l^{2}}\right) \\
& =-\frac{\mathfrak{K}}{2} \mathcal{T}_{\mathrm{em}}{ }^{\nu}{ }_{\mu}
\end{aligned}
$$

Maxwell's field equations

$$
\partial_{\nu}\left(\sqrt{-g} F^{\mu \nu}\right)=0
$$

Black hole solution

$$
d s^{2}=-A(r)(\Xi d t-\Omega d \phi)^{2}+\frac{d r^{2}}{B(r)}+\frac{r^{2}}{l^{4}}\left(\Omega d t-\Xi l^{2} d \phi\right)^{2}+\frac{r^{2}}{l^{2}} d z^{2}
$$

$$
d s^{2}=-A(r)(\Xi d t-\Omega d \phi)^{2}+\frac{d r^{2}}{B(r)}+\frac{r^{2}}{l^{4}}\left(\Omega d t-\Xi l^{2} d \phi\right)^{2}+\frac{r^{2}}{l^{2}} d z^{2}
$$

Charge parameter

$$
\begin{gathered}
A(r)=r^{2} \Lambda_{e f f}-\frac{M}{r}+\frac{3 Q^{2}}{2 r^{2}}+\frac{2 Q^{3} \sqrt{6|\alpha|}}{6 r^{4}} \\
B(r)=A(r) \beta(r) \\
\begin{array}{c}
\text { The black hole may have } 6 \text { horizons! } \\
\beta(r)=\left(1+Q \sqrt{6|\alpha|} / r^{2}\right)^{-2} \\
\text { Mass parameter } \\
\Xi=\sqrt{1+\frac{\Omega^{2}}{l^{2}}}
\end{array} \begin{array}{l}
\text { Rotation parameter }
\end{array}
\end{gathered}
$$

$$
\Lambda_{e f f}=\frac{1}{36|\alpha|}
$$

Cosmological constant parameter

Gauge potential

$$
\tilde{\Phi}(r)=-\Phi(r)(\Omega d \phi-\Xi d t)
$$

$$
\Phi(r)=\frac{Q}{r}+\frac{Q^{2} \sqrt{6|\alpha|}}{3 r^{3}}
$$

Black hole torsion $\quad T(r)=\frac{4 A^{\prime}(r) B(r)}{r A(r)}+\frac{2 B(r)}{r^{2}}$

Entropy of black hole

$$
S=\frac{f^{\prime}(T) \mathscr{A}}{4}
$$

Outer event horizon area $\quad \mathscr{A}=\int_{0}^{2 \pi} d \phi \int_{0}^{L} d z \sqrt{-\left.g\right|_{d t=d r=0}}=\frac{2 \pi r_{+}^{2} \Xi L}{l}$

Holography for the Rotating Charged AdS Black Holes in $f(T)=T+\alpha T^{2}$ Gravity

Consider a massless scalar probe in the background of black hole
$\frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu} \psi\right)=0$

Thanks to three Killing vectors $\quad \psi(t, r, z, \phi)=e^{-i \omega t+i k z+i m \phi} R(r)$

$$
\begin{aligned}
& B(r) \frac{d^{2} R(r)}{d r^{2}}+\left(r B(r) \frac{d A(r)}{d r}+r A(r) \frac{d B(r)}{d r}+4 A(r) B(r)\right) \frac{d R(r)}{d r}+V(r) R(r)=0 \\
& V(r)=\frac{r^{2}\left(\Xi l^{2} \omega-\Omega m\right)^{2}-A(r) l^{2}\left\{k^{2} l^{4} \Xi^{4}+k^{2} \Omega^{4}+l^{2}\left[m^{2} \Xi^{2}-2 m \Xi \Omega \omega+\Omega^{2}\left(\omega^{2}-2 \Xi^{2} k^{2}\right)\right]\right\}}{A(r) r^{2}\left(\Xi^{2} l^{2}-\Omega^{2}\right)^{2}}
\end{aligned}
$$

In near horizon region: $\quad A(r) \simeq K\left(r-r_{+}\right)\left(r-r_{*}\right)$

$$
K=15 r_{+}{ }^{4} \Lambda_{e f f}-3 M r_{+}+\frac{3 Q^{2}}{2} \quad r_{*}=r_{+}-\frac{2 r_{+}\left(2 r_{+}{ }^{4} \Lambda_{e f f}-M r_{+}+Q^{2}\right)}{10 r_{+}{ }^{4} \Lambda_{e f f}-2 M r_{+}+Q^{2}}
$$

Considering low energy scalar probe and closeness of r_{+}to r_{*}

$$
\begin{aligned}
& \frac{d}{d r}\left\{\left(r-r_{+}\right)\left(r-r_{*}\right) \frac{d}{d r} R(r)\right\}+\left[\left(\frac{r_{+}-r_{*}}{r-r_{+}}\right) \mathcal{A}+\left(\frac{r_{+}-r_{*}}{r-r_{*}}\right) \mathcal{B}+\mathcal{C}\right] R(r)=0 \\
& \mathcal{A}=\frac{\mathcal{D} m^{2}+\mathcal{E} m \omega}{K^{2} r_{+}{ }^{2} r_{*}{ }^{3}\left(\Xi^{2} l^{2}-\Omega^{2}\right)^{2}\left(r_{+}-r_{*}\right)^{2} \beta}+\frac{\mathcal{F} \omega^{2}}{K r_{+}{ }^{2}\left(\Xi^{2} l^{2}-\Omega^{2}\right)^{2}\left(r_{+}-r_{*}\right)^{2} \beta}-C_{1} \\
& \mathcal{B}=\frac{\mathcal{J} \omega^{2}}{K^{2} r_{+}{ }^{3} r_{*}\left(\Xi^{2} l^{2}+\Omega^{2}\right)^{2}\left(r_{+}-r_{*}\right)^{2} \beta}+\frac{\mathcal{I} m r_{+}{ }^{2}\left(\Xi^{2} l^{2}-\Omega^{2}\right)^{2}\left(r_{+}-r_{*}\right)^{2} \beta}{}+C_{2} .
\end{aligned}
$$

Generators of CFT

$$
\begin{aligned}
& H_{1}=i \partial_{+} \\
& H_{1}=i \partial_{-} \\
& H_{0}=i\left(\omega^{+} \partial_{+}+\frac{1}{2} y \partial_{y}\right) \quad \bar{H}_{0}=i\left(\omega^{-} \partial_{-}+\frac{1}{2} y \partial_{y}\right) \\
& H_{-1}=i\left(\omega^{+2} \partial_{+}+\omega^{+} y \partial_{y}-y^{2} \partial_{-}\right) \quad \bar{H}_{-1}=i\left(\omega^{-2} \partial_{-}+\omega^{-} y \partial_{y}-y^{2} \partial_{+}\right) \\
& S L(2, R)_{L} \times S L(2, R)_{R} \\
& {\left[H_{0}, H_{ \pm 1}\right]=\mp i H_{ \pm 1} . \quad\left[H_{-1}, H_{1}\right]=-2 i H_{0}} \\
& {\left[\bar{H}_{0}, \bar{H}_{ \pm 1}\right]=\mp i \bar{H}_{ \pm 1} . \quad\left[\bar{H}_{-1}, \bar{H}_{1}\right]=-2 i \bar{H}_{0}}
\end{aligned}
$$

The Casimir operators of the $S L(2, R)_{L} \times S L(2, R)_{R}$

$$
\mathcal{H}^{2}=\overline{\mathcal{H}}^{2}=-H_{0}^{2}+\frac{1}{2}\left(H_{1} H_{-1}+H_{-1} H_{1}\right)=\frac{1}{4}\left(y^{2} \partial_{y}^{2}-y \partial_{y}\right)+y^{2} \partial_{+} \partial_{-}
$$

Choosing the conformal coordinates

$$
\begin{gathered}
\omega^{+}=\sqrt{\frac{r-r_{+}}{r-r_{*}}} e^{2 \pi T_{R} \phi+2 n_{R} t} \\
\omega^{-}=\sqrt{\frac{r-r_{+}}{r-r_{*}}} e^{2 \pi T_{L} \phi+2 n_{L} t} \\
y=\sqrt{\frac{r_{+}-r_{*}}{r-r_{*}}} e^{\pi\left(T_{L}+T_{R}\right) \phi+\left(n_{L}+n_{R}\right) t}
\end{gathered}
$$

We find

$\mathcal{H}^{2}=\left(r-r_{+}\right)\left(r-r_{*}\right) \frac{\partial^{2}}{\partial r^{2}}+\left(2 r-r_{+}-r_{*}\right) \frac{\partial}{\partial r}+\left(\frac{r_{+}-r_{*}}{r-r_{*}}\right)\left[\left(\frac{n_{L}-n_{R}}{4 \pi G} \partial_{\phi}-\frac{T_{L}-T_{R}}{4 G} \partial_{t}\right)^{2}+C_{2}\right]$

$$
-\left(\frac{r_{+}-r_{*}}{r-r_{+}}\right)\left[\left(\frac{n_{L}+n_{R}}{4 \pi G} \partial_{\phi}-\frac{T_{L}+T_{R}}{4 G} \partial_{t}\right)^{2}-C_{1}\right]
$$

Temperatures of CFT

$$
\begin{gathered}
T_{R}=\frac{r_{+} K\left(r_{+}-r_{*}\right)\left(\Xi^{2} l^{2}-\Omega^{2}\right) \sqrt{\beta r_{+} r_{*} \delta}}{4 \pi \delta} \\
T_{L}=\frac{r_{+} K\left(\Xi^{2} l^{2}-\Omega^{2}\right)\left[r_{+}{ }^{4}+2 r_{+}{ }^{3} r_{*}+6 r_{+}{ }^{2} r_{*}{ }^{2}-2 r_{*}{ }^{3} r_{+}\left(K l^{2}-1\right)+r_{*}{ }^{4}\right] \sqrt{\beta r_{+} r_{*} \delta}}{4 \pi\left(r_{+}+r_{*}\right)^{3} \delta}
\end{gathered}
$$

Mode numbers of CFT

$$
\begin{gathered}
n_{R}=0 \\
n_{L}=\frac{r_{*}^{2} r_{+} K\left(\Omega^{2}-\Xi^{2} l^{2}\right) \sqrt{\beta r_{+} r_{*} \delta}}{2 \Omega l^{2} \Xi\left(r_{+}+r_{*}\right)^{3}}
\end{gathered}
$$

Cardy entropy for the CFT

$$
S_{C F T}=\frac{\pi^{2}}{3}\left(c_{L} T_{L}+c_{R} T_{R}\right)
$$

(a)

$-\Omega=1.0 \cdots \cdots, ~ \Omega=1.1--\Omega=1.2-\cdot-\Omega=1.3$
$-\Omega=1.4$

(b)

$$
\begin{aligned}
& -\Omega=1.0 \cdots \cdots \Omega=1.1--\Omega=1.2-\cdot-\Omega=1.3 \\
& --\Omega=1.4 \\
& \hline
\end{aligned}
$$

(c)

Choosing the central charges for the CFT

$$
c \equiv c_{L}=c_{R}=\frac{12 \Xi \delta L \varpi\left(r_{+}+r_{*}\right)^{3}}{l K r_{+}{ }^{2}\left(\Xi^{2} l^{2}-\Omega^{2}\right)\left(r_{+}{ }^{3}+2 r_{+}{ }^{2} r_{*}+3 r_{+} r_{*}{ }^{2}-l^{2} K r_{*}{ }^{3}\right)\left(Q \sqrt{6|\alpha|}+r_{+}{ }^{2}\right)^{2} \sqrt{\beta r_{+} r_{*} \delta}}
$$

We find the Cards entropy is exactly the same as the entropy of black hole

$$
S=\frac{\pi \Xi L\left(7 r_{+}{ }^{6}+9 \sqrt{6|\alpha|} Q r_{+}{ }^{4}+18 M|\alpha|{r_{+}}^{3}-54 Q^{2}|\alpha| r_{+}{ }^{2}-42 \sqrt{6|\alpha|^{3}} Q^{3}\right)}{9 l\left(Q \sqrt{6|\alpha|}+r_{+}{ }^{2}\right)^{2}}
$$

Thank you for your attention!

Questions?

