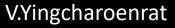
Dark energy, black holes and effective field theory

Shinji Mukohyama Yukawa Institute for Theoretical Physics, Kyoto University

- Ref. arXiv: 2204.00228 w/ V.Yingcharoenrat arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat arXiv: 2301.xxxxx w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat
- Also Arkani-Hamed, Cheng, Luty and Mukohyama 2004 (hep-th/0312099) Mukohyama 2005 (hep-th/0502189)

Collaborators



K.Takahashi

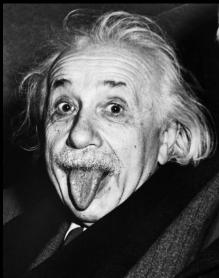
K.Tomikawa

- Ref. arXiv: 2204.00228 w/ V.Yingcharoenrat arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat arXiv: 2301.xxxxx w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat
- Also Arkani-Hamed, Cheng, Luty and Mukohyama 2004 (hep-th/0312099) Mukohyama 2005 (hep-th/0502189)

INTRODUCTION

Why gravity beyond GR? (GR : general relativity)

- Can we address mysteries in the universe?
 Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field and tensions
- Help constructing a theory of quantum gravity?
 Superstring, Horava-Lifshitz, etc.
- Do we understand general relativity? One of the best ways to understand something may be to break (modify) it and then to reconstruct it.



Some examples (my personal experiences)

- I. Effective field theory (EFT) approach IR modification of gravity motivation: dark energy/inflation, universality
- II. Massive gravity
 IR modification of gravity
 motivation: "Can graviton have mass?" & dark energy
- III. Minimally modified gravity
 IR modification of gravity
 motivation: tensions in cosmology, various constraints
- IV. Horava-Lifshitz gravity UV modification of gravity motivation: quantum gravity
- V. Superstring theory UV modification of gravity motivation: quantum gravity, unified theory

Some examples (my personal experiences)

- I. Effective field theory (EFT) approach IR modification of gravity motivation: dark energy/inflation, universality
- II. Massive gravity
 IR modification of gravity
 motivation: "Can graviton have mass?" & dark energy
- III. Minimally modified gravity
 IR modification of gravity
 motivation: tensions in cosmology, various constraints
- IV. Horava-Lifshitz gravity UV modification of gravity motivation: quantum gravity
- V. Superstring theory UV modification of gravity motivation: quantum gravity, unified theory

Many gravity theories

- 3 check points
 "What are the physical d.o.f. ?"
 "How do they interact ?"
 "What is the regime of validity ?"
- If two (or more) theories give the same answers to the 3 questions above then they are the same even if they look different.
 > Effective Field Theory (EFT) as universal description

Proto-type of modified gravity: scalar-tensor theory

- Metric $g_{\mu\nu}$ + scalar field ϕ
- Jordan (1955), Brans & Dicke (1961), Bergmann (1968), Wagoner (1970), ...
- Most general scalar-tensor theory of gravity with 2nd order covariant EOM: Horndeski (1974)
- DHOST theories beyond Horndeski: Langlois & Noui (2016)
- U-DHOST theories beyond DHOST: DeFelice, Langlois, Mukohyama, Noui & Wang (2018)
- All of them (and more) are universally described by an effective field theory (EFT)

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.

Timelike gradient

$\phi = const.$ Dark energy

Black hole

https://www.eso.org/public/images/eso1907a/

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.
- This would require the scalar field profile to be timelike near BH.

Timelike gradient

Dark energy

 $\phi = const.$

Black hole

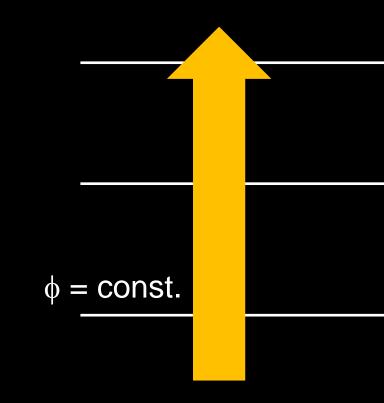
hoiton

https://www.eso.org/public/images/eso1907a/

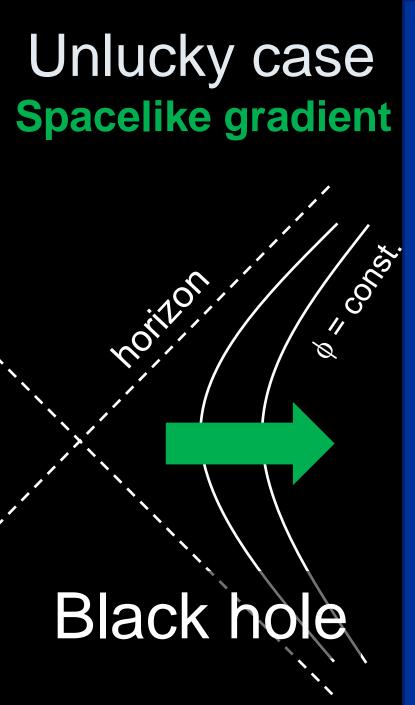
Unlucky case Spacelike gradient

Black hole

Timelike gradient

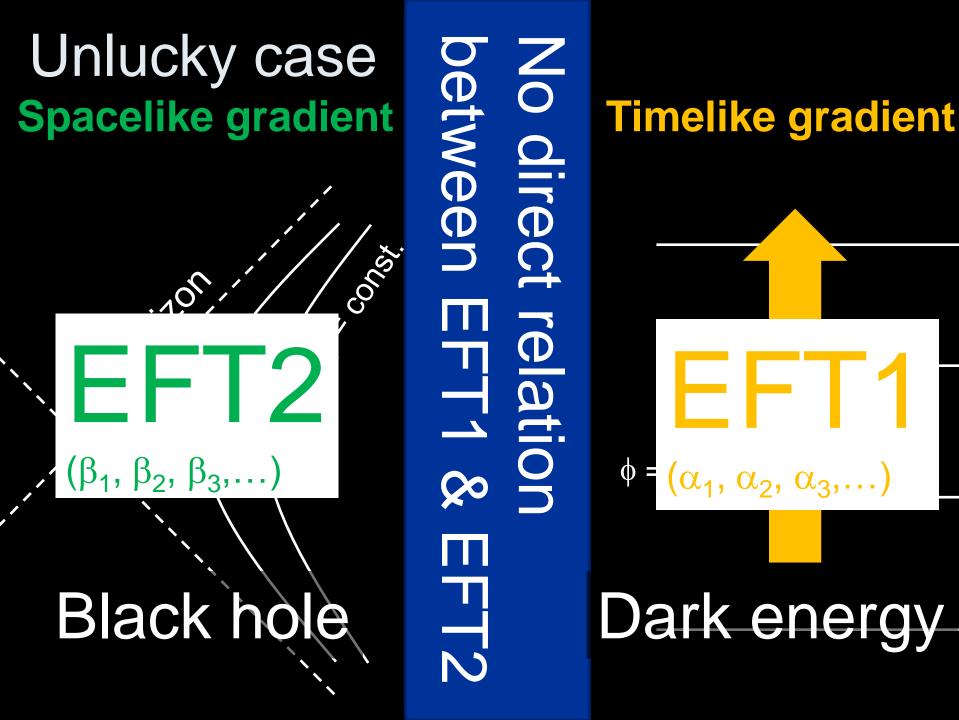


Dark energy



No smooth matching

Timelike gradient $\phi = \text{const.}$ Dark energy



- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.
- This would require the scalar field profile to be timelike near BH. Otherwise, contours of the scalar field would become ill-defined.

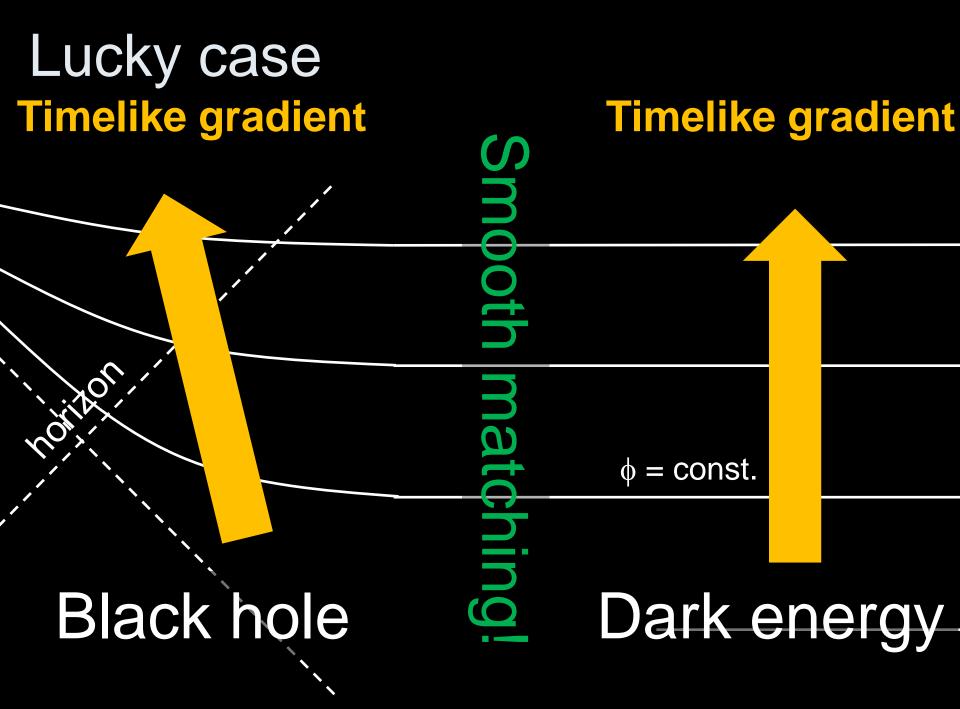
Lucky case Timelike gradient

Timelike gradient

Black hole

φ = const.

Dark energy



Lucky case Timelike gradient

Timelike gradient

Dark energy

Black hole

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.
- This would require the scalar field profile to be timelike near BH. Otherwise, contours of the scalar field would become ill-defined.

EFT of scalar-tensor gravity with timelike scalar profile

EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity on Minkowski background

= ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

EFT of ghost condensation = EFT of scalar-tensor gravity with timelike scalar profile on Minkowski background

Arkani-Hamed, Cheng, Luty and Mukohyama 2004

Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0 \text{ and timelike}$

♦Background metric is Minkowski.

$$\sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$$

EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity on Minkowski background

EFT of scalar-tensor gravity on cosmological background

= ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

= EFT of inflation/dark energy

Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

Application: non-Gaussinity of inflationary perturbation $\zeta = -H\pi$ $-\dot{H}\left(\frac{1}{c_s^2}-1\right)\left(\frac{c_3}{c_s^2}\dot{\pi}^3-\dot{\pi}\frac{(\partial_i\pi)^2}{a^2}\right)+O(\pi^4,\tilde{\epsilon}^2)+L^{(2)}_{\tilde{\delta}K,\tilde{\delta}R}\right\} \longrightarrow \text{non-Gaussianity}$ $\langle \zeta_{\vec{k}_1}(t) \, \zeta_{\vec{k}_2}(t) \, \zeta_{\vec{k}_3}(t) \rangle = (2\pi)^3 \delta^3(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\zeta}$ 2 types of 3-point interactions $c_s^2 \rightarrow \text{size of non-}\overline{\text{Gaussianity}}$ $k^6 B_{\zeta}|_{k_1=k_2=k_3=k} = \frac{18}{5} \Delta^2 (f_{NL}^{\dot{\pi}(\partial_i \pi)^2} + f_{NL}^{\dot{\pi}^3})$ $f_{NL}^{\dot{\pi}(\partial_i \pi)^2} = \frac{85}{324} \left(1 - \frac{1}{c_s^2} \right) \qquad f_{NL}^{\dot{\pi}^3} = \frac{5c_3}{81} \left(1 - \frac{1}{c_s^2} \right) \qquad \propto \frac{1}{c^2} \quad \text{for small } c_s^2$ $c_3 \rightarrow$ shape of non-Gaussianity plots of $B_{\zeta}(k, \kappa_2 k, \kappa_3 k)/B_{\zeta}(k, k, k)$ $c_3 = -4.3$ $c_{3} = 0$ κ₂ $c_3 = -3.6$ 1 κ_2 \mathcal{K}_2 0.5 0.50.5 1.0 Linear combination **Prototype of the** Prototype of the orthogonal shape equilateral shape of the two shapes

Parametrization suitable for DE Gubitosi, Piazza, Vernizzi 2012 \rightarrow EFT of DE

Gleyzes, Langlois, Piazza, Vernizzi 2013

- Matter (in addition to DE) needs to be added \rightarrow Jordan frame description is convenient
- In Jordan frame the coefficient of the 4d Ricci scalar is not constant.

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left[M_*^2 f R - \rho_D + p_D - M_*^2 (5H\dot{f} + \ddot{f}) - \left(\rho_D + p_D + M_*^2 (H\dot{f} - \ddot{f}) \right) g^{00} \right] \\ + M_2^4 (\delta g^{00})^2 - \bar{m}_1^3 \, \delta g^{00} \delta K - \bar{M}_2^2 \, \delta K^2 - \bar{M}_3^2 \, \delta K_\mu^{\ \nu} \delta K_\nu^\mu + m_2^2 h^{\mu\nu} \partial_\mu g^{00} \partial_\nu g^{00} \\ + \lambda_1 \delta R^2 + \lambda_2 \delta R_{\mu\nu} \delta R^{\mu\nu} + \mu_1^2 \delta g^{00} \delta R + \gamma_1 C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma} + \gamma_2 \epsilon^{\mu\nu\rho\sigma} C_{\mu\nu}^{\ \kappa\lambda} C_{\rho\sigma\kappa\lambda} \\ + \frac{M_3^4}{3} (\delta g^{00})^3 - \bar{m}_2^3 (\delta g^{00})^2 \delta K + \dots \right] ,$$

EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity on Minkowski background

EFT of scalar-tensor gravity on cosmological background

EFT of scalar-tensor gravity on arbitrary background

Taylor expansion of the general action

= ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

 $S = \int d^4x \sqrt{-g} F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)$

= EFT of inflation/dark energy Creminelli, Luty, Nicolis, Senatore 2006

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

= EFT of BH perturbations

arXiv: 2204.00228 w/ Vicharit Yingcharoenrat

$$S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \dots \right]$$

<u>Consistency relations</u> — S is invariant under spatial diffeo but the background breaks it.

$$\frac{d}{dx^{i}}\bar{F} = \bar{F}_{g^{\tau\tau}}\frac{\partial\bar{g}^{\tau\tau}}{\partial x^{i}} + \bar{F}_{K}\frac{\partial\bar{K}}{\partial x^{i}} + \dots$$

Lucky case Timelike gradient

Timelike gradient

Dark energy

Black hole

Stealth solutions in k-essence Mukohyama 2005

- Action in Einstein frame
- $I = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + P(X) \right] \qquad X = -g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$ • EOMS $\frac{1}{\sqrt{-g}} \partial_\mu \left(\sqrt{-g} P'(X) g^{\mu\nu} \partial_\nu \phi \right) = 0$
 - $M_{\rm Pl}^2 G_{\mu\nu} = 2P'(X)\partial_\mu\phi\partial_\nu\phi + P(X)g_{\mu\nu}$
- Stealth sol with $X = X_0$, where $P'(X_0)=0$

$$G_{\mu\nu} = \Lambda_{\text{eff}} g_{\mu\nu} \qquad \Lambda_{\text{eff}} = P(X_0)/M_{\text{Pl}}^2$$

- $X = X_0 (\neq 0)$ • $u^{\mu} = g^{\mu\nu} \partial_{\nu} \phi$ defines geodesic congruence $(u^{\nu} \nabla_{\nu} u^{\mu} = -\nabla^{\mu} X/2 = 0)$
 - $\Leftrightarrow \phi/\sqrt{|X_0|}$ defines Gaussian normal coord.

Stealth solutions with $\phi = qt + \psi(r)$

- Schwarzschild in k-essence (Mukohyama 2005)
- Schwarzschild-dS in Horndeski theory (Babichev & Charmousis 2013, Kobayashi & Tanahashi 2014) Schwarzshild-dS in DHOST (Ben Achour & Liu 2019, Motohashi & Minamitsuji 2019)
- Kerr-dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)
- However, perturbations around most of those stealth solutions are infinitely strongly coupled (de Rham & Zhang 2019). This means the solutions cannot be trusted.
- Fortunately, Scordatura (= detuning of degeneracy condition) solves the strong coupling problem (Motohashi & Mukohyama 2019).
- EFT of ghost condensation already includes scordatura (Arkani-Hamed & Cheng & Luty & Mukohyama 2004)
- Approximate Schwarzschild in ghost condensation (Mukohyama 2005). Also in U-DHOST (DeFelice & Mukohyama & Takahashi, to appear)

EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity on Minkowski background

EFT of scalar-tensor gravity on cosmological background

EFT of scalar-tensor gravity on arbitrary background

Taylor expansion of the general action

= ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

 $S = \int d^4x \sqrt{-g} F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)$

= EFT of inflation/dark energy Creminelli, Luty, Nicolis, Senatore 2006

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

= EFT of BH perturbations

arXiv: 2204.00228 w/ Vicharit Yingcharoenrat

$$S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \dots \right]$$

<u>Consistency relations</u> — S is invariant under spatial diffeo but the background breaks it.

$$\frac{d}{dx^{i}}\bar{F} = \bar{F}_{g^{\tau\tau}}\frac{\partial\bar{g}^{\tau\tau}}{\partial x^{i}} + \bar{F}_{K}\frac{\partial\bar{K}}{\partial x^{i}} + \dots$$

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH
 [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH

 Generalized Regge-Wheeler equation
 [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]
 [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]
 Quasi-normal mode
 [work in progress w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]
- Even-parity perturbation around spherical BH [work in progress w/ K.Takahashi & V.Yingcharoenrat]
- Rotating BH
- Dynamical BH

SUMMARY

• Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background.

- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.

- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.
- If we want to learn something about scalar field DE from BH then we need to consider BH solutions with timelike scalar profile.

- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.
- If we want to learn something about scalar field DE from BH then we need to consider BH solutions with timelike scalar profile.
- EFT of scalar-tensor gravity with timelike scalar profile on arbitrary background was developed. Consistency relations among EFT coefficients ensure the spatial diffeo invariance. Applicable to BHs with scalar field DE.

- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.
- If we want to learn something about scalar field DE from BH then we need to consider BH solutions with timelike scalar profile.
- EFT of scalar-tensor gravity with timelike scalar profile on arbitrary background was developed. Consistency relations among EFT coefficients ensure the spatial diffeo invariance. Applicable to BHs with scalar field DE.
- Other applications? Further extensions?

Further extension of the web of EFTs

"The Effective Field Theory of Vector-Tensor Theories"

Katsuki Aoki, Mohammad Ali Gorji, Shinji Mukohyama, Kazufumi Takahashi, , JCAP 01 (2022) 01, 059 [arXiv: 2111.08119].

Residual symmetry in the unitary gauge

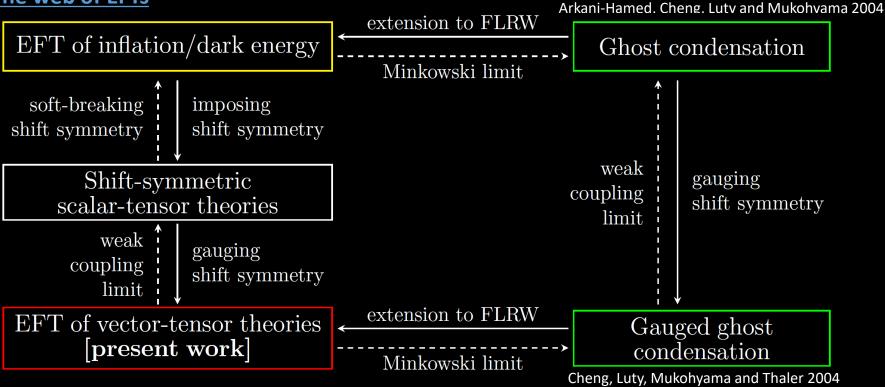
 $\vec{x} \to \vec{x}'(t, \vec{x})$ $t \to t - g_M \chi(x), \quad A_\mu \to A_\mu + \partial_\mu \chi(x)$

leaving ${ ilde{\delta}^0}_\mu = {\delta^0}_\mu + g_M A_\mu$ invariant

The web of EFTs

c.f. Residual symmetry in unitary gauge for scalar-tensor theories

$$\vec{x} \to \vec{x}'(t, \vec{x})$$



Thank you!

K.Aoki

M.A.Gorji

K.Takahashi

V.Yingcharoenrat

K.Tomikawa

arXiv: 2204.00228 w/ V.Yingcharoenrat

Ref. arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat arXiv: 2301.xxxxx w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat arXiv: 2111.08119 w/ K.Aoki, M.A.Gorji & K.Takahashi

Also Arkani-Hamed, Cheng, Luty and Mukohyama 2004 (hep-th/0312099) Mukohyama 2005 (hep-th/0502189)

Backup slides

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow V(\Phi)$	$\left< \partial_{\mu} \phi \right> \uparrow^{P((\partial \phi)^2)}$
	$\longrightarrow \Phi$	
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V''>0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

EFT of ghost condensation = EFT of scalar-tensor gravity with timelike scalar profile on Minkowski background

Arkani-Hamed, Cheng, Luty and Mukohyama 2004

Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0 \text{ and timelike}$

♦Background metric is Minkowski.

$$\sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$$

Gauge choice: $\phi(t, \vec{x}) = t$. $\pi \equiv \delta \phi = 0$ (Unitary gauge) Residual symmetry: $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Write down most general action invariant under this residual symmetry.

(\implies Action for π : undo unitary gauge!)

Start with flat background

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\partial h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$$

Under residual ξ^i

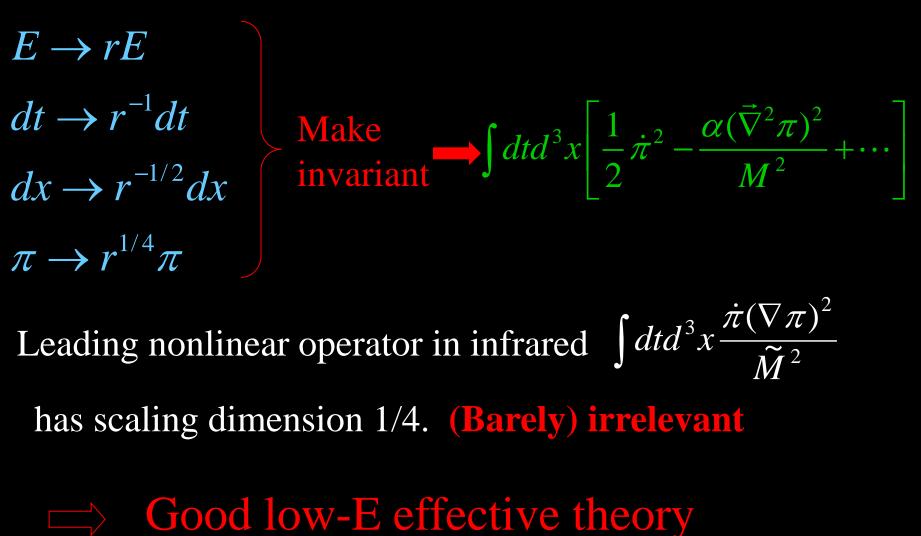
$$\partial h_{00} = 0, \partial h_{0i} = \partial_0 \xi_i, \partial h_{ij} = \partial_i \xi_j + \partial_j \xi_i$$

Action invariant under ξⁱ $(h_{00})^2$

OK

Beginning at quadratic order, since we are assuming flat space is good background.

Action invariant under ξⁱ Beginning at quadratic order, $\begin{cases} \left(h_{00}\right)^2 & \mathbf{OK} \\ \left(b_{0i}\right)^2 & \end{cases}$ since we are assuming flat space is good background. $\begin{bmatrix} \mathbf{K}^{0} \\ \mathbf{K}^{2} \\ \mathbf{K}^{ij} \\ \mathbf{K}_{ij} \end{bmatrix} = \frac{1}{2} \left(\partial_{0} h_{ij} - \partial_{j} h_{0i} - \partial_{i} h_{0j} \right)$ $\square \qquad \qquad L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} \right)^2 - \frac{\alpha_1}{M^2} K^2 - \frac{\alpha_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$ Action for π $\boldsymbol{\xi^{0}} = \boldsymbol{\pi} \left\{ \begin{array}{l} h_{00} \to h_{00} - 2\partial_{0} \boldsymbol{\pi} \\ K_{ii} \to K_{ii} + \partial_{i} \partial_{j} \boldsymbol{\pi} \end{array} \right.$ $\square \sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$



Robust prediction

e.g. Ghost inflation [Arkani-hamed, Creminelli, Mukohyama, Zaldarriaga 2004]

EFT of ghost condensation = EFT of scalar-tensor gravity with timelike scalar profile on Minkowski background

Arkani-Hamed, Cheng, Luty and Mukohyama 2004

Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0 \text{ and timelike}$

♦Background metric is Minkowski.

$$\sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$$

Extension to FLRW background = EFT of inflation/dark energy

Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

- Action invariant under $x^i \rightarrow x^i(t,x)$
- Ingredients $g_{\mu\nu}, g^{\mu\nu}, R_{\mu\nu\rho\sigma}, \nabla_{\mu},$

t & its derivatives

• 1st derivative of t

$$\partial_{\mu}t = \delta^{0}_{\mu} \qquad n_{\mu} = \frac{\partial_{\mu}t}{\sqrt{-g^{\mu\nu}\partial_{\mu}t\partial_{\nu}t}} = \frac{\delta^{0}_{\mu}}{\sqrt{-g^{00}}}$$
$$g^{00} \qquad h_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$$

• 2nd derivative of t

$$K_{\mu\nu} \equiv h^{\rho}_{\mu} \nabla_{\rho} n_{\nu}$$

Unitary gauge action

 $\tilde{\delta}\mathsf{R}_{\mu\nu\rho\sigma} \equiv \mathsf{R}_{\mu\nu\rho\sigma} - 2(H^2 + \Re/a^2)\gamma_{\mu[\rho}\gamma_{\sigma]\nu} + (\dot{H} + H^2)(\gamma_{\mu\rho}\delta^0_{\nu}\delta^0_{\sigma} + (3\text{perm.}))$

 $\mu \nu$

NG boson

• Undo unitary gauge $t \rightarrow \tilde{t} = t - \pi(\tilde{t}, \vec{x})$ $H(t) \rightarrow H(t+\pi), \quad \dot{H}(t) \rightarrow \dot{H}(t+\pi),$

 $\lambda_i(t) \rightarrow \lambda_i(t+\pi), \quad a(t) \rightarrow a(t+\pi),$

 $\delta^0_\mu \quad \to \quad (1+\dot{\pi})\delta^0_\mu + \delta^i_\mu \partial_i \pi,$

NG boson in decoupling (subhorizon) limit

$$I_{\pi} = M_{Pl}^{2} \int dt d^{3} \vec{x} \, a^{3} \left\{ -\frac{\dot{H}}{c_{s}^{2}} \left(\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i} \pi)^{2}}{a^{2}} \right) -\dot{H} \left(\frac{1}{c_{s}^{2}} - 1 \right) \left(\frac{c_{3}}{c_{s}^{2}} \dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i} \pi)^{2}}{a^{2}} \right) + O(\pi^{4}, \tilde{\epsilon}^{2}) + L_{\tilde{\delta}K, \tilde{\delta}R}^{(2)} \right\}$$
$$\frac{1}{c_{s}^{2}} = 1 - \frac{4\lambda_{1}}{\dot{H}}, \quad c_{3} = c_{s}^{2} - \frac{8c_{s}^{2}\lambda_{2}}{-\dot{H}} \left(\frac{1}{c_{s}^{2}} - 1 \right)^{-1}$$

Sound speed

 c_s : speed of propagation for modes with $\omega \gg H$ $\omega^2 \simeq c_s^2 \frac{k^2}{a^2}$ for $\pi \sim A(t) \exp(-i\int \omega dt + i\vec{k}\cdot\vec{x})$