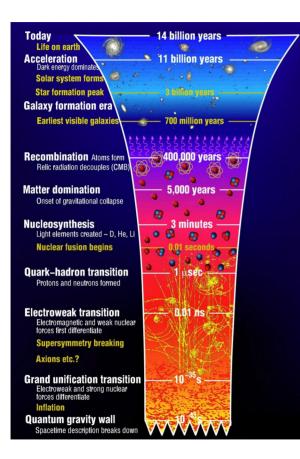
Charting the Landscape of Leptogenesis


Julia Harz

December 7th 2022 Dark Side of the Universe Workshop, UNSW Sydney

From the Big Bang to Today

Our Universe consists mainly out of baryonic matter, quantified by the baryon-to-photon ratio:

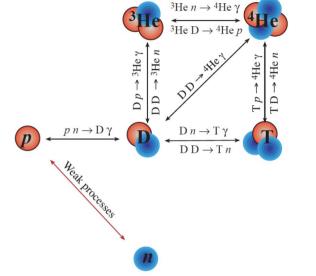
$$\eta_B = \frac{n_B}{n_\gamma} = \frac{n_b - n_{\bar{b}}}{n_\gamma}$$

Credits: University of Cambridge / The Stephen Hawking Centre for Theoretical Cosmology

Big Bang Nucleosynthesis

3 min after Big Bang

Credits: hep-ph/0608347

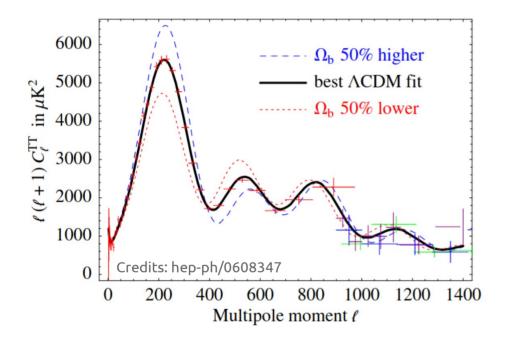

Deuterium Bottleneck

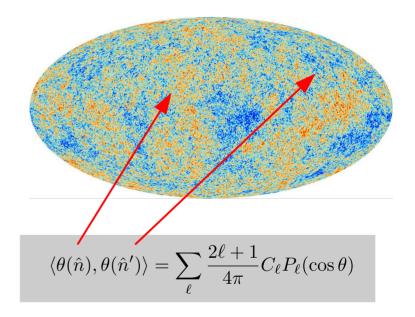
Nucleosynthesis starts with formation of Deuterium (D)

 $p + n \rightarrow D + \gamma$

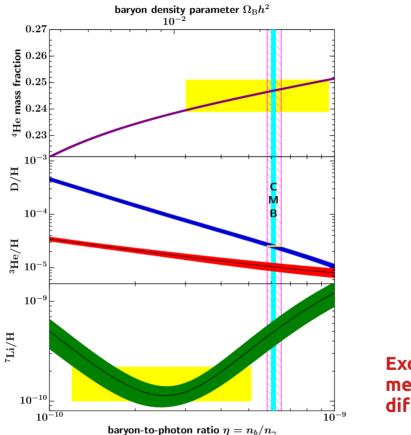
Only if photo-dissociation ceases to be effective, chain of light elements can be formed

$$T_{\rm nuc}^D \approx \frac{B_D}{\log \eta_B^{-1}}$$

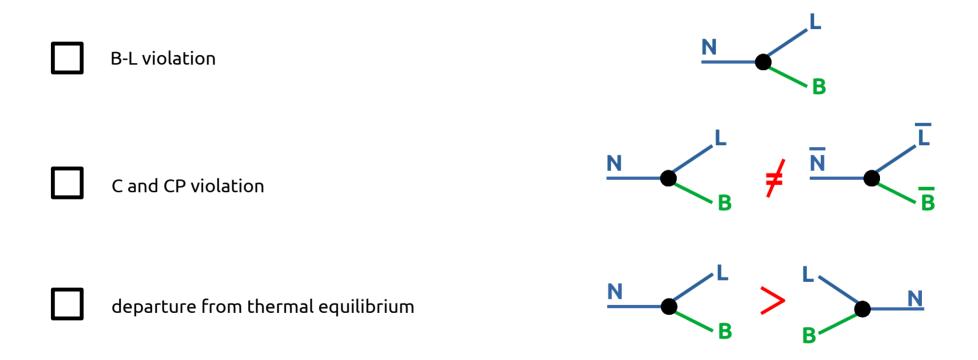



$$\eta_B^{\rm obs} = (6.14 \pm 0.19) \times 10^{-10}$$

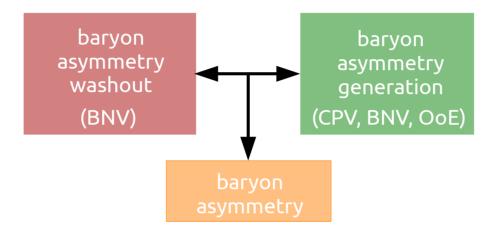
Cosmic Microwave Background (CMB)


400.000 years after Big Bang

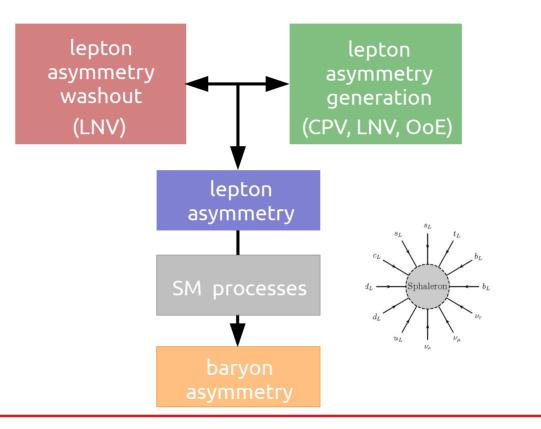
Combination of BBN & CMB



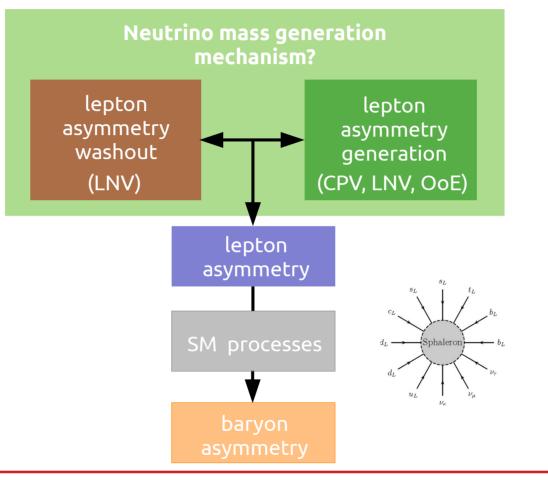
Excellent agreement even though measurements originate from two different epochs!


Why do we need new physics?

Theoretically, we know the conditions on interactions that have to be fulfilled (Sakharov conditions).

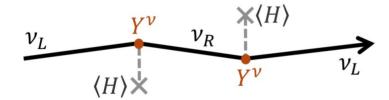


Basic principle of baryogenesis



Basic principle of leptogenesis

Basic principle of leptogenesis



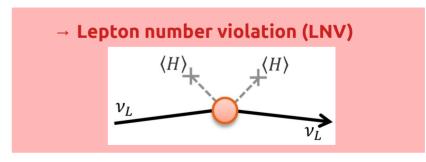
Neutrino mass mechanism - Dirac or Majorana?

Dirac mass

 $y_{\nu}L\epsilon H\overline{\nu}_R \supset m_D\nu_L\overline{\nu}_R$

→ lepton number no accidental symmetry anymore

Majorana mass


 $m_M \overline{\nu}_R \nu_R^c$

LLHH

not at tree-level within the SM possible

dim-5 Weinbergoperator

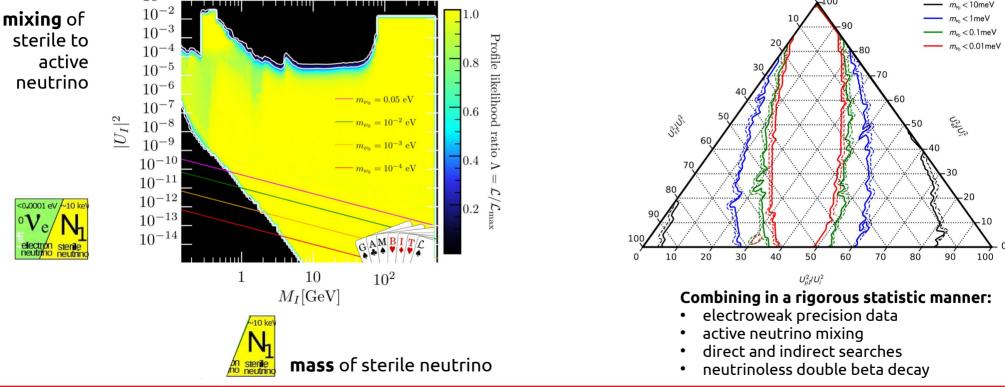
See-saw I neutrino mass mechanism

$$\mathcal{L} \supset \underbrace{y_{\nu} L \epsilon H \overline{\nu}_R}_{m_D \nu_L \overline{\nu}_R} + \frac{1}{2} m_M \overline{\nu}_R \nu_R^c + h.c.$$

$$m_{\nu} \approx -\frac{v^2}{2} y_{\nu} m_M^{-1} y_{\nu}^T$$

$$M_{\nu} \simeq 0.3 \left(\frac{\text{GeV}}{M_N}\right) \left(\frac{\lambda^2}{10^{-14}}\right) \text{eV}$$

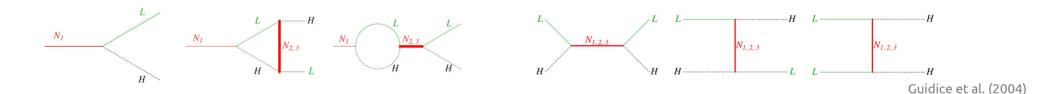
Low-scale leptogenesis


$$M_{\nu} \simeq 0.3 \left(\frac{10^8 \text{GeV}}{M_N}\right) \left(\frac{\lambda^2}{10^{-6}}\right) \text{eV}$$

High-scale leptogenesis

Constraints on right-handed neutrinos

Most comprehensive analysis of see-saw I with *three* right-handed neutrinos using GAMBIT Chrzaszcz, Drewes, Gonzalo, JH, Krishnamurthy, Weniger (2020)



High-scale leptogenesis

- Generation of lepton asymmetry via heavy neutrino decays with sources of CP violation
- **Competition** with lepton number violating (LNV) **washout** processes
- Conversion to a baryon asymmetry via sphaleron processes

Davidson-Ibarra bound: M_N > 10⁹ GeV (except resonant leptogenesis) Davidson, Ibarra (2002)

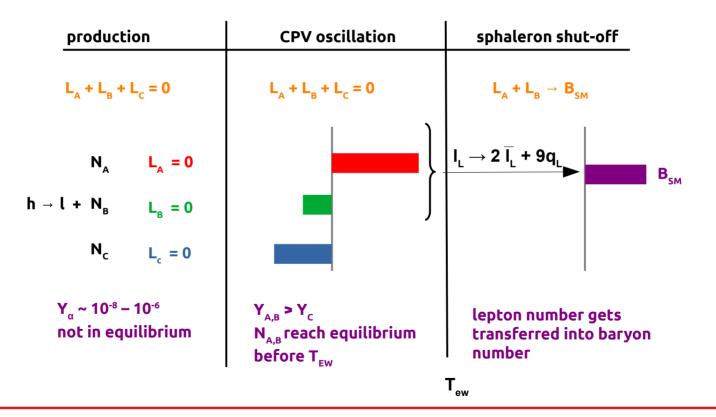
Fukugita, Yanagida (1986) and many more afterwards...

Charting the Landscape of Leptogenesis

Julia Harz

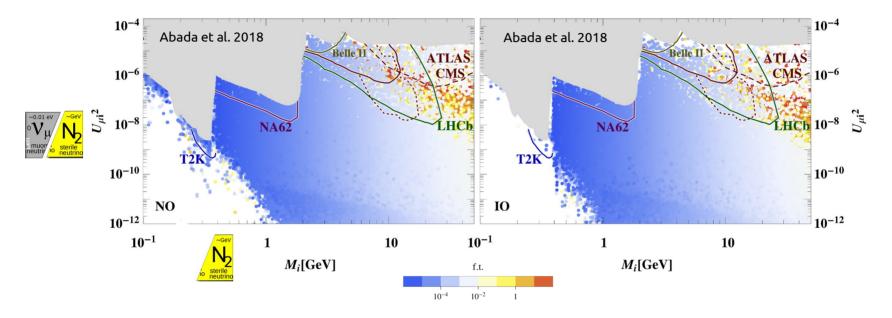
13

High-scale leptogenesis


- Extension of **seesaw type-I** by **new scalars**
 - → e.g. long-lived scalars, R-hadrons, heavy sterile neutrinos e.g. Fong et al. (2013)
- Z' models → same-sign di-lepton final states e.g. Chun (2005)
- Left-right symmetric models \rightarrow falsification by low mass W_{R} e.g. Dev. et al. (2015)
- Soft leptogenesis → type-I: charged LFV e.g. Adhikari et al. (2015)
 - → type-II: same-sign di-lepton resonance, same-sign tetra-leptons e.g. Chun et al. (2006)

... and many more ...

Leptogenesis via oscillations


Akhmedov-Rubakov-Smirnov (ARS) mechanism Akhmedov, Rubakov, Smirnov (1998)

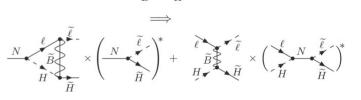
Probing leptogenesis via oscillations

Seesaw type I with *three* right-handed neutrinos: the parameter space allows for successful leptogenesis:

For N=2 see also: Hernandez et al. 2015, Abada et al. 2015, Drewes et al. 2016

Leptogenesis via oscillations opens up a window to many experimental tests!

Charting the Landscape of Leptogenesis


16

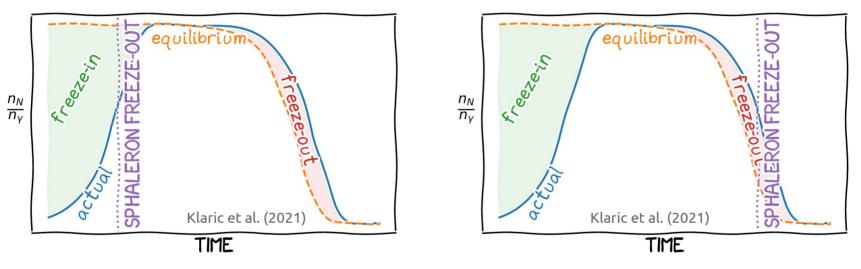
Methodological advancements

High-scale Leptogenesis:

- Covi, Roulet (1997), Pilaftis (1997), Covi, "normal" BEQ treatment breaks down in the limit of degenerate neutrinos Rius, Roulet, Vissani (1998)
- Numerous investigations in closed-time-path (CTP) and density matrix formalism
 - → solving directly Schwinger-Dyson equations Garny, Kartavtsev, Hohenegger (2013), Iso, Shimada, Yamanaka (2014)
 - → performing Wigner transform Garbrecht, Herranen (2012), Garbrecht, Gautier, Klaric (2014)
 - → two-momentum picture Millington, Pilaftsis (2013), Bödeker, Schröder (2020)
- Investigations of IR convergence behaviour Beneke, Garbrecht, Herranen, Schwaller (2010), Garbrecht, Ramsey-Musolf (2014)
- Investigations spectator effects Garbrecht, Schwaller (2014), Garbrecht, Klose, Tamarit (2020)

Low-scale Leptogenesis:

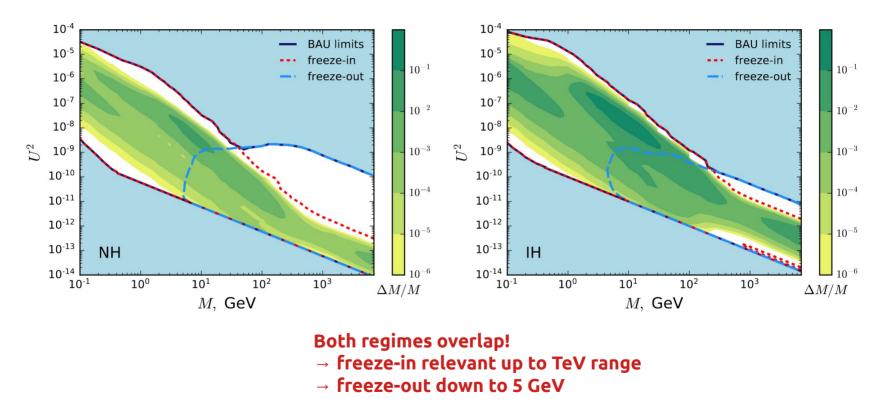
• Generalization of Sigl+Raffelt treatment of relativistic mixed neutrinos with additional heavy states


Sigl, Raffelt (1993), Akhmedov, Rubakov, Smirnov (1998), Asaka, Shaposnikov (2005), Shaposnikov (2007, 2008), Shuve, Yavin (2014), Drewes, Garbrecht, Gueter, Klaric (2016), Ghiglieri, Laine (2016, 2019, 2020)

How to bridge both regimes? How accurate is the regime in between with respect to experimental constraints?

Mind the gap?

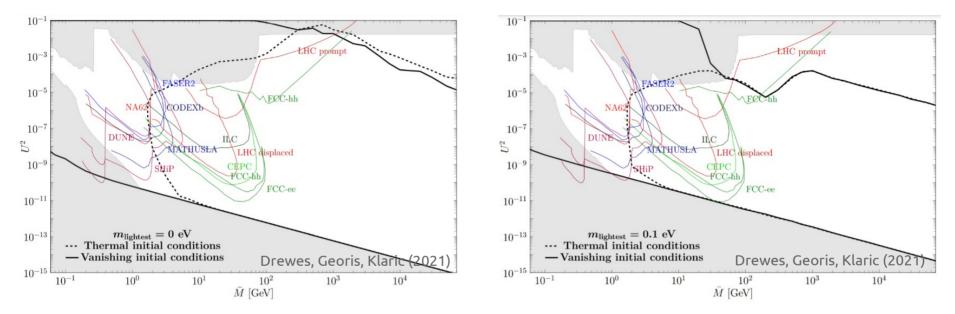
- Importance of non-relativistic corrections Hambye, Teresi (2016), Eijima, Shaposhnikov (2017), Ghiglieri, Laine (2017)
- Generalization of quantum kinetic equations to include non-relativistic case, Shaposnikov, Timiryasov (2020, 2021)


- Thermal initial conditions → only freeze-out contributes
- Vanishing initial conditions → both freeze-in and freeze-out possible

Links to previous works by Hernandez, Kekic, Lopez-Pavon, Racker, Salvado (2016), Antusch, Cazzato, Drewes, Fischer, Garbrecht, Gueter, Klaric (2018), Hambye, Teresi (2016, 2017), Granelli, Moffat, Petcov (2020)

Mind the gap?

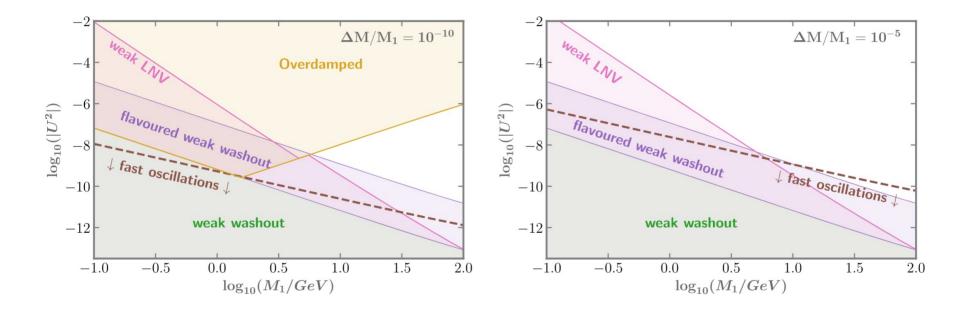
Seesaw type-I with two heavy neutrinos between 100 MeV and 10 TeV



Mapping the viable parameter space of testable LG

Study of whole parameter space of seesaw type-I with three heavy neutrinos between 50 MeV and 70 TeV

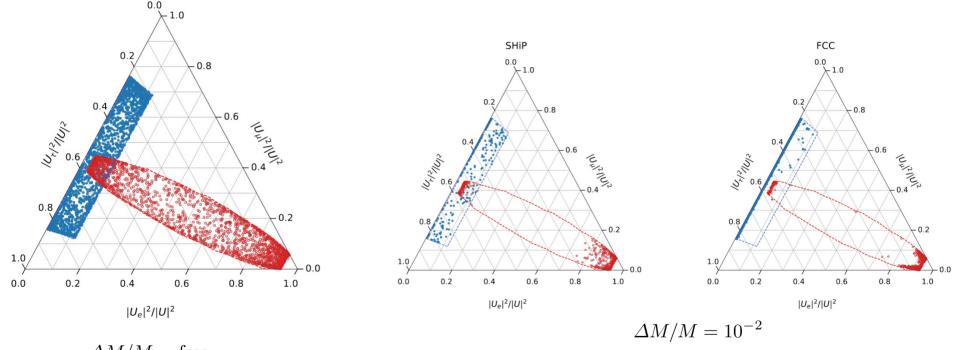
Drewes, Georis, Klaric (2021)


→ with *three* RHNs range of couplings much larger than with *two* RHNs

Analytic understanding via CP flavour invariants

Seesaw type-I with two right handed neutrinos with large HNL mixings

Hernandez, Pavon, Rius, Sandner (2022)



Analytic understanding via CP flavour invariants

Seesaw type-I with two right handed neutrinos with large HNL mixings

Hernandez, Pavon, Rius, Sandner (2022)

 $\Delta M/M = \text{free}$

→ for large mass splittings successful BAU requires weak flavour washout

Charting the Landscape of Leptogenesis

Flavoured leptogenesis

- Flavoured soft leptogenesis Fong, Gonzalez-Garcia (2010), Fong Gonzalez-Garcia, Nardi, Racker 2010)
- Three-flavoured non-resonant leptogenesis at intermediate scales Moffat, Pascoli, Petcov, Schulz, Turner (2018)
- Flavoured resonant leptogenesis at sub-TeV scales Granelli, Moffat, Petcov (2020)
- Wash-in leptogenesis Domcke, Kamada, Mukaida, Schmitz, Yamada (2020) / Leptoflavorgenesis Mukaida, Schmitz, Yamada (2022)

Non-trivial chemical background with conserved charges that can take arbitrary values at LG:

$$\mu_{\ell_{\alpha}} + \mu_{\phi} = \mu_{\alpha}^{0} - \sum_{\beta} C_{\alpha\beta} \mu_{\Delta_{\beta}}$$

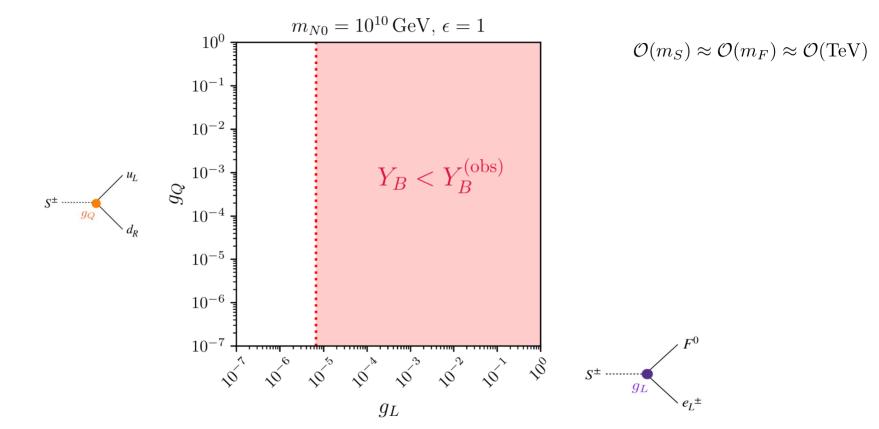
Falsifying leptogenesis with TeV-scale LNV

Right-handed neutrino interactions ("standard thermal LG"):

 $\mathcal{L} \supset y_{\nu} \bar{L} H N - \frac{m_N}{2} \bar{N}^c N + \text{h.c.}$

high-scale source of lepton asymmetry

TeV-scale LNV "washout" interactions

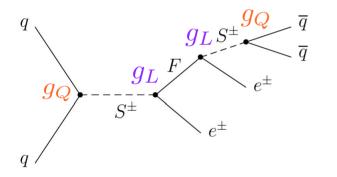

Can TeV-scale LNV destroy the generated asymmetry from standard thermal LG?

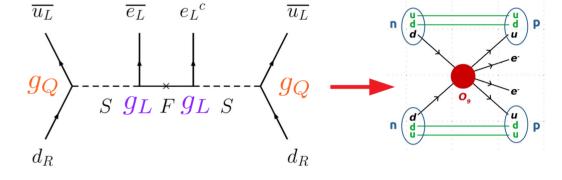
JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

Charting the Landscape of Leptogenesis

Falsifying leptogenesis with TeV-scale LNV

TeV-scale LNV washes-out lepton asymmetry previously generated by standard LG scenario.


JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)



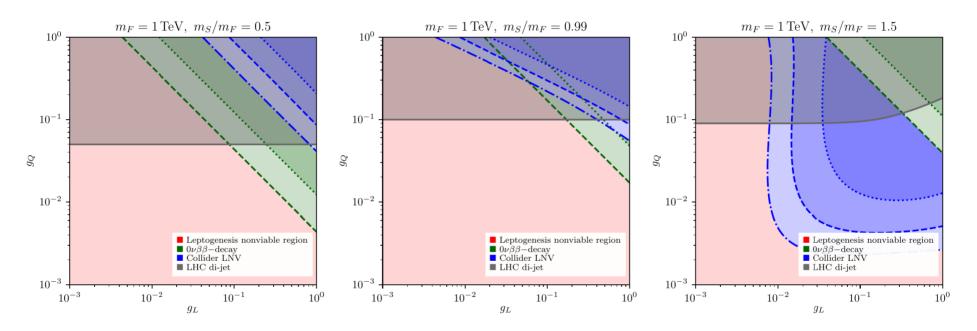
Charting the Landscape of Leptogenesis

Falsifying leptogenesis with LHC and 0vββ decay

$$\tilde{\mathcal{L}} \supset \underline{g_Q}\overline{Q}Sd_R + \underline{g_L}\overline{L}(i\tau^2)S^*F - m_S^2S^{\dagger}S - \frac{m_F}{2}\overline{F^c}F + \lambda_{HS}(S^{\dagger}H)^2 + \text{h.c.}$$

Observation of any LNV washout process at the LHC would falsify high-scale leptogenesis.

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021) Deppisch, JH, Hirsch (2014)


Observation of 0vbb decay via non-standard mechanism would falsify high-scale leptogenesis.

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021) Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

Charting the Landscape of Leptogenesis

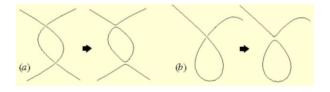
Falsifying leptogenesis with LHC and 0vββ decay

 \rightarrow interplay of collider searches and 0v $\beta\beta$ decay can give insights into underlying UV physics

→ TeV-scale LNV can falsify high-scale leptogenesis

JH, Ramsey-Musolf, Shen, Urrutia-Quiroga (2021)

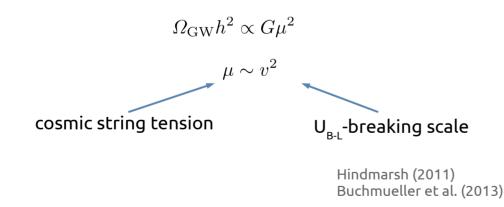
Charting the Landscape of Leptogenesis

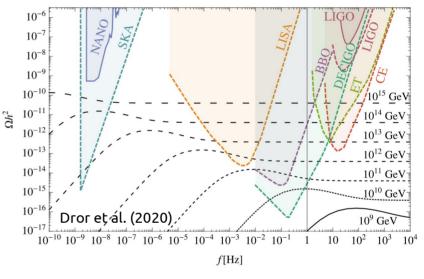

Probing leptogenesis with GWs from cosmic strings

NanoGrav – pulsar timing array:

 \rightarrow evidence for a stochastic common-spectrum process in the 12.5 y data

Hints for a cosmic string network in the early Universe emitting a stochastic gravitational wave background?



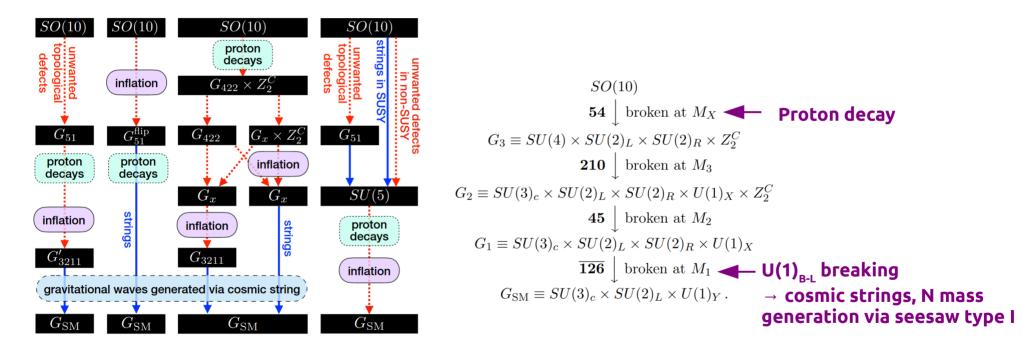

Probing leptogenesis with GWs from cosmic strings

Right-handed neutrinos require a mass – breaking of a higher symmetry?

$$\Delta \mathcal{L} = -\left[y_{i\alpha}^{\mathrm{D}} \,\overline{N_{i}^{\mathrm{R}}} \,\tilde{H}^{\dagger} L_{\alpha} + \frac{1}{2} \, y_{i}^{\mathrm{M}} \,\Phi \,\overline{N_{i}^{\mathrm{R}}} \left(N_{i}^{\mathrm{R}}\right)^{\mathrm{C}} + \mathrm{H.c.}\right] \\ -\left[\lambda_{\phi} \left(|\Phi|^{2} - \frac{1}{2} \, v_{B-L}^{2}\right)^{2} + \lambda_{\phi h} \,|\Phi|^{2} \,|H|^{2}\right]$$

Stochastic gravitational wave spectrum depends on

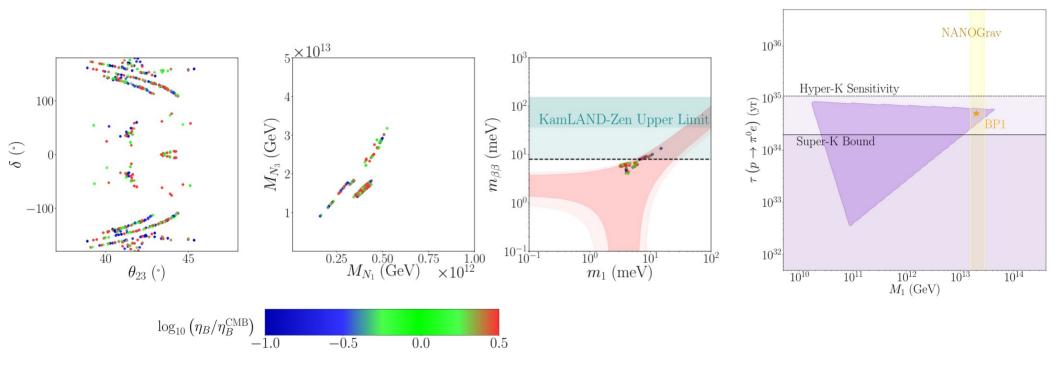
Vibrant field, many recent exciting works:


Gouttenoire et al. (2019+) Dror et al. (2020) Ellis et al. (2020) Blasi et al. (2020+) Buchmüller et al. (2021+)

Confronting SO(10) GUTs with proton decay and GWs

Exploring GUT models with potential of successful leptogenesis

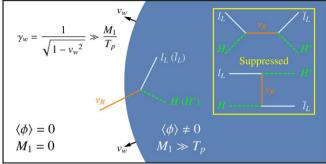
King, Pascoli, Turner, Zhou (2021+), Fu, King, Marsili, Pascoli, Turner, Zhou (2022)

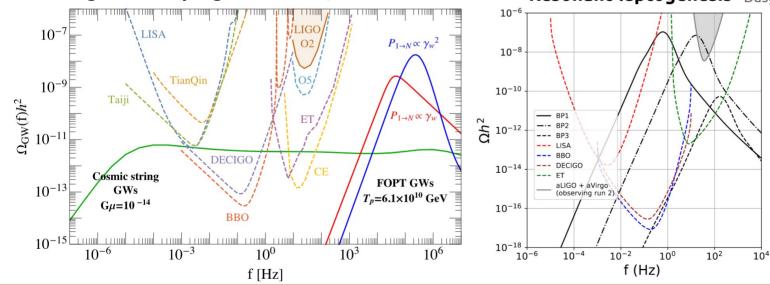


Confronting SO(10) GUTs with proton decay and GWs

Exploring GUT models with potential of successful leptogenesis

King, Pascoli, Turner, Zhou (2021+), Fu, King, Marsili, Pascoli, Turner, Zhou (2022)



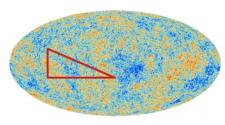

Probing leptogenesis with GWs from FOPT

Leptogenesis based on mass gain mechanism with first order phase transition

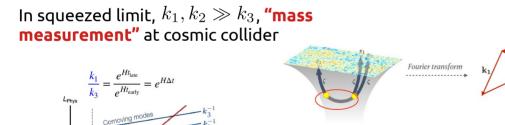
Azatov, Vanvlasselaer (2020) Azatov, Vanvlasselaer, Yin (2020), Baldes, Blasi, Mariotti, Sevrin, Trubang (2021) Dasgupta, Dev, Ghoshal, Mazumdar (2022), Huang, Xie (2022)

High-scale leptogenesis Huang, Xie (2022)

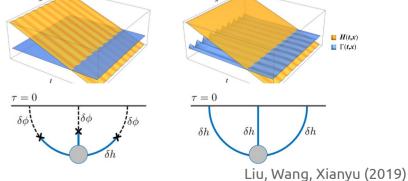

Resonant leptogenesis Dasgupta, Dev, Ghoshal, Mazumdar (2022)



Cosmological (higgs) collider as novel probe for LG

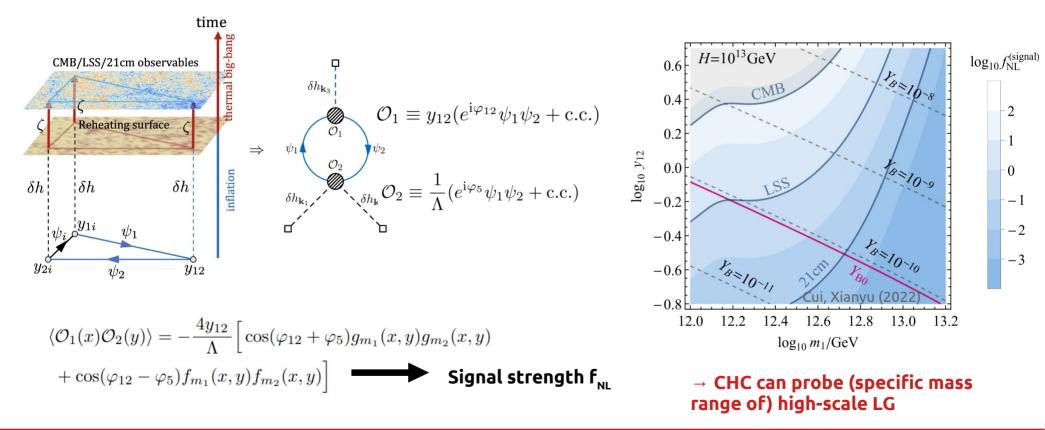

Idea: Use the Universe as gigantic "cosmic collider"

Chen, Wang (2009), Baumann, Green (2011), Arkani-Hamed, Maldacena (2015)



- 3-point function = higher order correlations → non-Gaussianities
- → info about particle interaction with inflaton

Inflation | Thermal big bang


Charting the Landscape of Leptogenesis

 $\sim e^{-\pi m/H} (k_1/k_3)^{im/H}$

 $S(k_1, k_3) \propto e^{-\pi m/H} e^{im\Delta t}$

Cosmological (higgs) collider as novel probe for LG

Heavy RHN (~ H) that couple to Higgs as heavy particle to probe at a CHC Cui, Xianyu (2022)

... not the end ...

Leptogenesis via Affleck-Dine mechanism

Type II Seesaw Leptogenesis

Neil D. Barrie

NDB, C. Han, H. Murayama, Phys. Rev. Lett. 128 (2022) 14, 141801; arxiv:2106.03381 NDB, C. Han, H. Murayama, JHEP 05 (2022) 160; arxiv:2204.08202 NDB, S. T. Petcov, arxiv:2210.02110

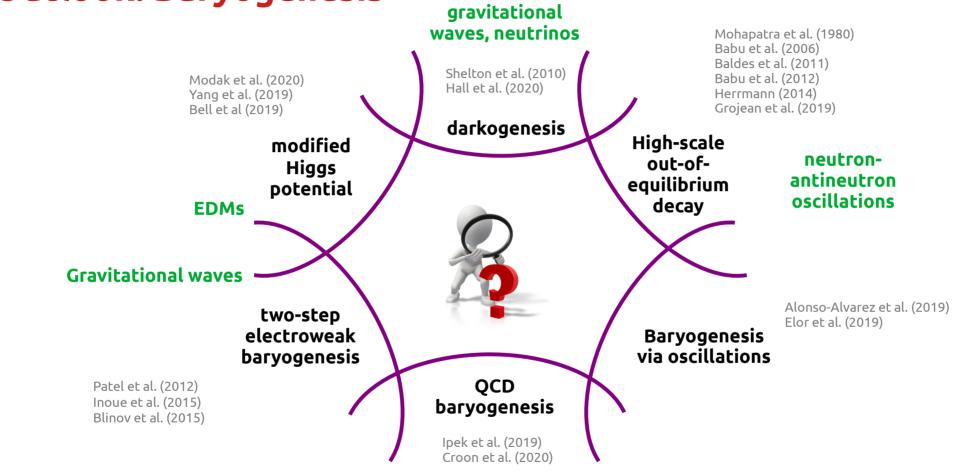
Universe with a large lepton asymmetry

Masahiro Kawasaki (ICRR, University of Tokyo)

Refs. MK, Murai arXiv:2203.09713 Kasuya, MK, Murai in preparation

Non-thermal Leptogenesis and g-2

Leptogenesis in gauged $U(1)_{L_u-L_r}$ model


Shintaro Eijima (ICRR, U. Tokyo)

In collaboration with Masahiro Ibe and Kai Murai (ICRR, U. Tokyo) [Work in progress; arXiv:2212.****]

Outlook: Baryogenesis

Contents

1	Exe	cutive Summary	2	
2	New Ideas in Baryogenesis Models			
	2.1	Axiogenesis	4	
	2.2	W _R -Axion Baryogenesis and Darkgenesis	7	
	2.3	QCD Baryogenesis	9	
	2.4	Wash-in Leptogenesis and Leptoflavorgenesis	10	
	2.5	Hylogenesis	11	
	2.6	Darkogenesis	13	
	2.7	WIMP-Triggered Baryogenesis	14	
	2.8	Gaugino Portal Baryogenesis	17	
	2.9	Freeze-In Baryogenesis via Dark Matter Oscillations	18	
	2.10	Baryogenesis Through Particle-Antiparticle Oscillations	20	
	2.11	Mesino Oscillations and Baryogenesis	21	
	2.12	Mesogenesis	23	
	2.13	Particle Asymmetries from Quantum Statistics	28	
3	Nev	v Ideas for Testing Traditional Mechanisms	29	
	3.1	Prospects for Detection of Affleck-Dine Baryogenesis	29	
	3.2	Probing High-Scale Baryogenesis with Neutron-Antineutron Oscillations	30	
	3.3	Probing High-Scale Leptogenesis with TeV-scale Lepton-Number Violation	32	
	3.4	Cosmological Collider Signals of Leptogenesis	33	
	3.5	Cosmic Strings and Tests of Thermal Leptogenesis	34	
	3.6	Vacuum Instability Tests of the Minimal Leptogenesis Scenario	34	
	3.7	First Order Phase Transitions	34	

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

New Ideas in Baryogenesis: A Snowmass White Paper

Editors: Gilly Elor,¹ Julia Harz,² Seyda Ipek,³ Bibhushan Shakya.⁴

Authors: Nikita Blinov,⁵ Raymond T. Co,⁶ Yanou Cui,⁷ Arnab Dasgupta,⁸ Hooman Davoudiasl,⁹ Fatemeh Elahi,¹ Gilly Elor,¹ Kåre Fridell,² Akshay Ghalsasi,⁸ Keisuke Harigaya,¹⁰ Julia Harz,² Chandan Hati,² Peisi Huang,¹¹ Seyda Ipek,³ Azadeh Maleknejad,¹⁰ Robert McGehee,¹² David E. Morrissey,¹³ Kai Schmitz,¹⁰ Bibhushan Shakya,⁴ Michael Shamma,¹³ Brian Shuve,¹⁴ David Tucker-Smith,¹⁵ Jorinde van de Vis,⁴ Graham White.¹⁶

arxiv:hep-ph/2203.05010

Theories and Experiments for Testable Baryogenesis Mechanisms

A Snowmass White Paper

J. L. Barrow^{*1}, Leah Broussard², James M. Cline³, P. S. Bhupal Dev⁴, Marco Drewes⁵, Gilly Elor⁶, Susan Gardner⁷, Jacopo Ghiglieri⁸, Julia Harz⁹, Yuri Kamyshkov¹⁰, Juraj Klaric⁵, Lisa W. Koerner¹ Benoit Laurent³, Robert McGehee¹², Marieke Postma¹³, Bibhushan Shakya¹⁴, Robert Shrock¹⁵, Jorinde van de Vis¹⁴, and Graham White^{†16}

arxiv:hep-ph/2203.07059

	Post-spl	haleron	Baryogenesis	4					
	1.1	Predic	tion of an Upper Limit on $\tau_{n \to \bar{n}}$ and Recent Theoretical Progress $\ldots \ldots \ldots \ldots \ldots$	4					
	1.2	Other	Unique Signals of PSB	5					
	1.3		bk: Implications of $n \to \bar{n}$ searches for other baryogenesis scenarios	5					
	1.4	Neutro	on-Antineutron Transformations as Probes of PSB	6					
		1.4.1	A Future for Free Neutron Conversion Experiments	7					
		1.4.2	NNBAR at the ESS Large Beam Port	7					
		1.4.3	HighNESS in Support of NNBAR	7					
		1.4.4	Technological Developments in Support of Neutron Conversion Searches	7					
		1.4.5	NNBAR Experimental Description	8					
	Electro	lectroweak Baryogenesis							
	2.1	Introdu	uction	9					
		2.1.1	New states at the electroweak scale	9					
		2.1.2	Models	9					
		2.1.3	Electroweak baryogenesis searches at colliders	9					
		2.1.4	Experimental searches for permanent electric dipole moments	10					
		2.1.5	Theoretical issues with CP violating sources	10					
,		2.1.6	Bubble wall velocity	10					
٠,		2.1.7	Other theoretical challenges	11					
		2.1.8	Potential signals in Gravitational waves	11					
	Mesoge	nesis		12					
	3.1	Introdu	uction	12					
		3.1.1	Dark Baryons	12					
		3.1.2	Dark Leptons	14					
		3.1.3	Testability	14					
	Leptoge	enesis		16					
	4.1	Low so	cale seesaw and leptogenesis	16					
		4.1.1	Low scale leptogenesis mechanisms	16					
		4.1.2	Testability and complementarity	17					
	4.2	Probin	g leptogenesis with TeV-scale lepton-number violation	18					

JOHANNES GUTENBERG JGU **UNIVERSITÄT** MAINZ

Contents

Pro	bbing Leptogenesis	1			
1.	Introduction	4			
2.	Testability of GeV-scale leptogenesis				
	2.1. Testing the minimal seesaw model at the GeV-scale	1			
	2.2. Testing the symmetry protected scenario	13			
	2.3. Constraints on sterile neutrinos	22			
	2.4. Probing CP violation in meson decays	3(
3.	General mechanisms for low scale leptogenesis from out-of-equilibrium decays	32			
4.	Testability of leptogenesis in extended seesaw models				
	4.1. Extensions to the type I seesaw model	38			
	4.2. Extensions to type II and III seesaw models	4			
5.	Testability of leptogenesis with extended gauge sectors				
	5.1. TeV leptogenesis in Z' models	51			
	5.2. Leptogenesis in left-right symmetric models	55			
6.	Testability of supersymmetric leptogenesis				
	6.1. Type I soft leptogenesis	62			
	6.2. Type II soft leptogenesis	69			
7.	Model independent falsification of high-scale leptogenesis	74			
8.	Summary and conclusions				
Ref	ferences	82			

Probing Leptogenesis

E. J. Chun^{*}, G. Cvetič[†], P. S. B. Dev[‡], M. Drewes^{§,||}, C. S. Fong[¶], B. Garbrecht^{||} T. Hambye^{**}, J. Harz^{††}, P. Hernández^{‡‡}, C. S. Kim^{§§}, E. Molinaro^{¶¶}, E. Nardi^{||||}, J. Racker^{***}, N. Rius^{†††}, J. Zamora-Saa^{‡‡‡}

arxiv:hep-ph/1711.02865

Conclusions

• Discovery potential and complementarity of new physics connected to Sakharov's conditions

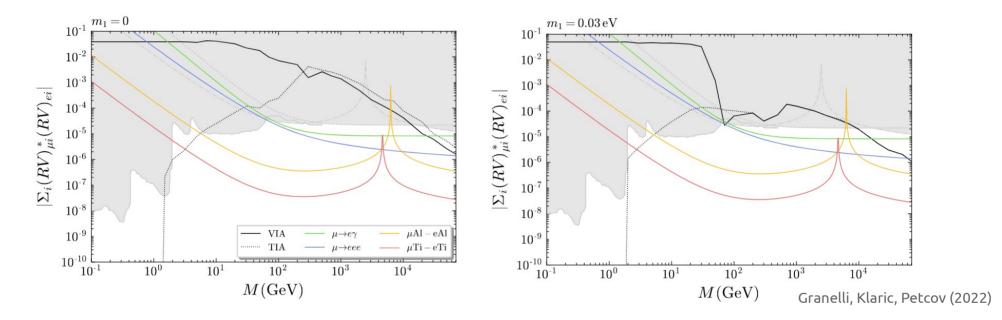
• Rich probes by combining energy, intensity, long-life time and gravitational wave frontiers

• Tantalizing possible connection to neutrino physics and dark matter

Great future ahead to (hopefully) nail down the mechanism behind BAU!

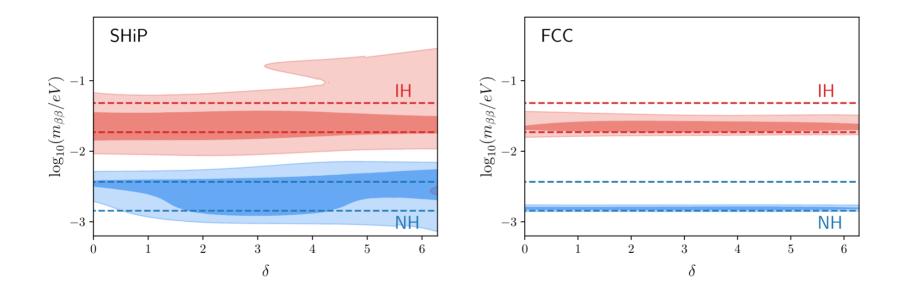
COSMOLOGY MARCHES ON

Thank you for your attention!

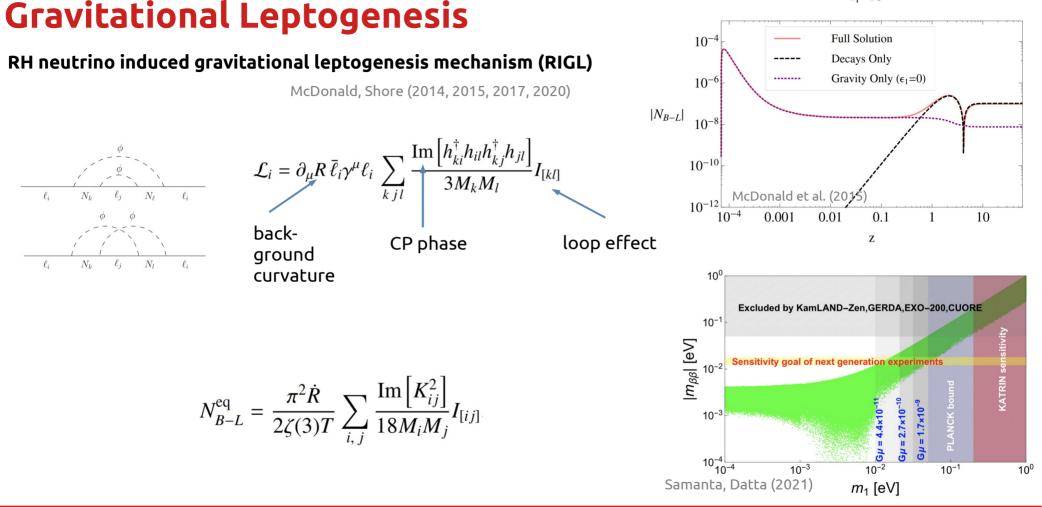


Test of low-scale leptogenesis in charged LFV experiments

Study of parameter space of seesaw type-I with three almost degenerate heavy neutrinos


 $\rightarrow\,$ future charged lepton flavour probes can reach further into the parameter space

Analytic understanding via CP flavour invariants


Seesaw type-I with two right handed neutrinos with large HNL mixings

Hernandez, Pavon, Rius, Sandner (2022)

 $\epsilon_1 = 10^{-6}$

