

Recent Results from the MINOS Experiment

Alfons Weber
(Oxford/RAL)

IoP Meeting on Neutrinos, QMUL 18-Apr-2011

Overview

- The NuMI Project: MINOS
 - Beam & Detectors
 - Muon Neutrino Disappearance
 - Neutral Current Events
 - Electron Neutrino Appearance

Outlook

Neutrino Mixing The PMNS Matrix

Pontecorvo-Maki-Nakagawa-Sakata

3

- Assume that neutrinos do have mass:
 - mass eigenstates ≠ weak interaction eigenstates
 - Analogue to CKM-Matrix in quark sector!

with $c_{ij} = \cos(\theta_{ij})$, $s_{ij} = \sin(\theta_{ij})$, $\theta_{ij} = \text{mixing angle and } \Delta m_{ij}^2 = \text{mass}^2$ difference

The MINOS Collaboration

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas Fermilab • Harvard • IIT • Indiana • Minnesota-Duluth • Minnesota-Twin Cities Oxford • Pittsburgh • Rutherford • Sao Paulo • South Carolina • Stanford Sussex • Texas A&M • Texas-Austin • Tufts • UCL • Warsaw • William & Mary

Experimental Setup

MINOS (Main Injector Neutrino Oscillation Search)

- A long-baseline neutrino oscillation experiment
- Near Detector at Fermilab to measure the beam composition
- Far Detector deep underground in the Soudan Underground Lab, Minnesota, to search for evidence of oscillations

Making Neutrinos

Making Neutrinos (II)

- Neutrinos from the Main Injector (NuMI)
- 10 µs spill of 120 GeV protons every 2.2 s
- 300 kW typical beam power
- 3×10^{13} protons per pulse
- Neutrino spectrum changes with target position

Beam Data Analyzed

Soudan Underground Lab

- former iron mine, now a state park, home of
 - Soudan-1 & 2 , CDMS-II , and MINOS experiments

MINOS Construction Challenge

Detector Construction (I)

Detector Technology

Near and Far Detectors are functionally identical:

- 2.54cm thick magnetised steel plates
- co-extruded scintillator strips
- orthogonal orientation on alternate planes – U,V
- optical fibre readout to multi-anode PMTs

The MINOS Cavern

MINOS Far Detector

shower profile

Event Topologies

activity at vertex

$$E_{\nu} = E_{\text{shower}} + p_{\mu}$$

Energy resolution

•π[±]: 55%/√E(GeV)

•µ±: 6% range, 10% curvature

Identifying CC Events

Particle ID

- Quantify "blobby-ness"
 - k-nearest neighbor (kNN) PID
 - Matches real events with similar-looking MC data

Eff: 88.7% Pur: 98.3%

Hadron Production Tuning

- Hadron production of proton target has big uncertainties
 - neutrino flux unknown
- Use Fluka2005 hadron production
 - modify: re-weight as $f(x_F, p_T)$
- include in fit
 - Horn focusing, beam misalignments, neutrino energy scale, cross section, NC background

Predicting the FD Spectrum

Flux
$$\propto \frac{1}{L^2} \left(\frac{1}{1 + \gamma^2 \theta^2} \right)^2$$
 $E_v = \frac{0.43 E_{\pi}}{1 + \gamma^2 \theta^2}$

Near to Far Extrapolation

Spectrum

Expect 2451 without oscillations includes ~1 CR μ , 8.1 rock μ , 41 NC, ~3 ν_{τ} BG See only 1986 in the FD.

Reconstructed Neutrino Energy (GeV)

Split up sample into five bins by energy resolution, to let the best resolved events carry more weight (plus a sixth bin of wrong-sign events)

Fit everything simultaneously...

Allowed Region

- Fit includes systematic penalty terms
- Best physical fit: $|\Delta m|^2 = 2.35 \times 10^{-3} \text{ eV}^2$ $\sin^2(2\theta)=1.00$
- Unconstrained: $|\Delta m|^2 = 2.34 \times 10^{-3} \text{ eV}^2$ $\sin^2(2\theta)=1.007$

Earlier results are in: Phys.Rev. Lett. 101:131802, 2010

Anti-neutrino Mode

$\overline{\nu}_{\mu}$ Results

- 97 events seen, 155 expected (no osc)
- No- oscillations scenario disfavored at 6.3σ
- Same sort of oscillation fit yields:
- dominated by statistics
 - Includes additional 30% uncertainty on the ν_{μ} background

$$\left| \overline{\Delta m^2} \right| = 3.36_{-0.40}^{+0.45} (stat) \pm 0.06 (syst) \times 10^{-3} \text{ eV}^2$$

$$\sin^2(2\theta) = 0.86 \pm 0.11 (stat) \pm 0.01 (syst)$$

 Plan to double anti-nu statistics after initial Minerva run

$\overline{\nu}_{\mu}$ Results

• Interestingly, oscillation parameters differ from the ν_μ results at a not terribly significant level, ~2 σ

Global fit from Gonzalez-Garcia & Maltoni, *Phys. Rept.* 460 (2008), SK data dominates

MC Sensitivity studies show doubling the data should better resolve any differences:

So what <u>are</u> the v_{μ} disappearing to?

- For ν oscillations in this "atmospheric" sector, we like to blame ν_μ oscillating to ν_τ
 - Most ν below τ production threshold
 - Few τ that aren't produce very messy decays which get rejected by our analysis
- Some very well might be going to v_e as well, depending on the currently unknown θ_{13} (known to be less than 0.21 from Chooz)
- A fourth, sterile neutrino could also be the culprit
 - By definition, v_s interact with nothing save gravity

Selecting Neutral Current Events

- ND data quality cuts exclude poorly reconstructed events due to high v interaction rate
- Cuts applied to both ND & FD: (distributions similar, lower stats @FD)
 - < 47 planes;</p>
 - no track extends beyond 6 planes from the shower
- MC oscillated using MINOS best v_{μ} fit

NC Analysis Results

- FD NC energy spectrum for Data and oscillated MC predictions
 - Form ratio R, data are consistent with no ν_{μ} disappearing to ν s
- Simultaneous fit to CC and NC energy spectra yields the fraction of ν_{μ} that could be oscillating to ν_{s} :

$$f_s = \frac{P(v_{\mu} \to v_s)}{1 - P(v_{\mu} \to v_{\mu})}$$

 $f_s < 0.22 \quad (0.40 v_e)@(90\% \text{ C.L.})$

Earlier results are in:

Phys.Rev.D81:052004, 2010

v_e Appearance

- Are some of the disappearing v_{μ} re-appearing as v_{e} ?
 - $P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(1.27\Delta m_{31}^{2}L/E)$
 - ullet Plus CP-violating δ and matter effects, included in fits
- Need to select events with compact shower
 - MINOS optimized for muon tracking, limited EM shower resolution
 - Steel thickness 2.5 cm = 1.4 X_0
 - Strip width 4.1cm ~ Molière radius (3.7cm)
 - At CHOOZ limit, expect a ~2% effect
 - Do blind analysis establish all cuts, backgrounds, errors first
 - Crosscheck in three sidebands
 - Only then look at the data to see what pops out

v_e Selection

- 11 variables chosen describing length, width and shower shape
- A Neural Net ("ANN") algorithm achieves:
 - S/N 1:2, signal efficiency 42%
 - NC rejection 94.6%
 - v_uCC rejection 99.6%
- Crosschecks using a second "Library Event Method" agree

Some variables:

MC Expectations

- Background is mostly NC interactions
 - Usually with a π^0
 - Also high-y CC (π again), beam $v_{\rm e}$, oscillated v_{τ} showers
- Purple (on right) shows v_e appearance signal at the Chooz limit ($\sin^2 2\theta_{13} = 0.15$)

MC meets RL

Turns out that the MC is off by ~15% (for E<6 GeV) when compared to the Real Life ND data

- Harsh cuts leave only the ill-modeled tails

Within systematic errors for things such as hadronic shower modeling

- Need to correct using ND data-driven approaches
 - All v_e -like events at ND are background, so use this pure "noise" dataset to predict FD background
 - Compare horn on vs. horn off spectra
 - Also look at "muon removed" CC events
- Use background measured in ND to characterize FD backgrounds

Extrapolation and Errors

Systematic Errors

- Evaluate systematic uncertainties in the Far Detector predictions
 - Still dominated by statistics

v_e Appearance Results

- FD background prediction:
 - $-49.1\pm7(stat)\pm2.7(sys)$
- Observed:
 - **54** (0.7 σ excess)

v_e Appearance Results

- No significant excess seen, find allowed upper limits using F-C approach
 - For both Normal and Inverted mass hierarchies
 - Normal hierarchy (δCP=0):
 - $\sin^2(2\theta_{13}) < 0.12 (90\% \text{ C.L.})$
 - Inverted hierarchy (δCP=0):
 - $\sin^2(2\theta_{13}) < 0.29 (90\% \text{ C.L.})$

 More sensitive analysis ready for summer

A paper about this: arXiv:1006.0996 [hep-ex]

MINOS+

- Precision Neutrino Physics???
 - Not yet.
 - Compare Z-lineshape to oscillation spectrum

Summary

- MINOS had a very successful running over the past years
- Precision measurement of neutrino-oscillation parameters
 - Neutrinos
 - Anti-neutrinos
- Limits on oscillation into
 - Electron neutrinos
 - Sterile neutrinos
- Further anti-neutrino running
 - Almost doubled statistics
 - Hope for more before summer
- And ...

The MINOS Mural

Near Detector

- 282 planes, 980 tons total
 - Same 1" steel,1 cm plastic scintillator planar construction, B-field
 - 3.8x4.5 m, some planes partially instrumented, some fully, some steel only
 - 16.6 m long total
- Light extracted from scint. strips by wavelength shifting optical fiber
 - One strip ended read out with Hamamatsu M64 PMTs, fast QIE electronics
 - No multiplexing upstream, 4x multiplexed in spectrometer region

Most planes are Partial, with 1 in 5 Full

Full planes only, 1 in 5 instrumented, bare steel between

Veto

Target planes 0:20 planes 21:60 Hadron Shower planes 61:120

Muon Spectrometer planes 121:281

MINOS Oscillation Measurement

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{E}\right)$$

Use charge current events to measure neutrino energy spectrum

Systematic Errors

Systematic shifts in the fitted parameters are computed using MC "fake data" samples

Preliminary Uncertainty	Shift in ∆m² (10 ⁻³ eV²)	Shift in sin²2θ
Absolute shower energy scale ±10%	0.049	0.001
Relative shower energy scale ±1.9%(ND) 1.1%(FD)	0.008	0.004
Near/Far normalization ±1.6%	0.030	0.001
NC contamination ±20%	0.008	0.008
μ momentum (range 2% curvature 3%)	0.038	0.001
$\sigma_{\rm v}$ (E _v < 10 GeV) ±12%	0.007	0.004
Beam flux	0.009	0.000
Anti-nu wrong sign ±30%	0.003	0.002
Total systematic (summed in quadrature)	0.071	0.010
Statistical spread (data)	+0.13 -0.12	0.06

Systematic Errors

Alternative v_{μ} Disappearance Models

Decay:

Reconstructed neutrino energy (GeV)

$$P_{\mu\mu} = \left(\sin^2\theta + \cos^2\theta \exp(-\alpha L/E)\right)^2$$

V. Barger *et al.*, PRL82:2640(1999) $\chi^2/\text{ndof} = 2165.81/2298$ $\Delta\chi^2 = 46.3$ disfavored at 6.8σ

Decoherence:

$$P_{\mu\mu} = 1 - \frac{\sin^2 2\theta}{2} \left[1 - \exp\left(\frac{-\mu^2 L}{2E_v}\right) \right]$$

G.L. Fogli et al., PRD67:093006 (2003)

$$\chi^2$$
/ndof = 2197.59/2298

$$\Delta \chi^2 = 78.1$$

disfavored at 8.8_o

\overline{v}_{μ} Analysis

- Same analysis done as ν_{μ} disappearance
 - At low energies where oscillations occur (<6 GeV), curvature is obvious: antinu sample is 93.5% efficient and 98% pure (BG is 51% NC, 49% $\nu_{\rm u}$)
 - Lower anti-hadron production and anti-nu interaction cross sections make for much lower statistics, about 2.5x less events per-pot
- Same great MC, data agreement (albeit with lower statistics)

Compared to ν_{μ}

NC Spectrum

- NC events can be used to search for sterile neutrino component in FD
 - via disappearance of NC events at FD
 - If oscillation is confined to active neutrinos instead, NC spectrum will be unchanged

NC Analysis Results 4-flavor fit

- Assume one sterile neutrino and additional Δm². Consider two mass scales:
 - $m_4 >> m_3$ and $m_4 = m_1$
- Active \leftrightarrow sterile mixing determined by θ_{34} and θ_{24} (if $m_4 >> m_3$)
- Simultaneous fit to CC and NC energy spectra:
 - Best fit value of 0° found for both θ_{34} and θ_{24}

Did any NC go missing?

- Compare the NC energy spectrum with the expectation of standard 3-flavor oscillation physics
- Pick the oscillation parameter values
 - $-\sin^2 2\Theta_{23} = 1$, $\Delta m^2_{32} = 2.35 \times 10^{-3} \text{ eV}^2$
 - $-\Delta m_{21}^2 = 7.59x10^{-5} \text{ eV}^2$, $\Theta_{12} = 0.61 \text{ from KamLAND+SNO}$
 - $-\Theta_{13}$ = 0 or 0.21 (normal MH, δ=3π/2) from Chooz Limit
 - (n.b. CC $v_{\rm e}$ are classified as NC by this analysis, so more Θ_{13} causes more background)
- Make comparisons in terms of the R statistic:
 - R \rightarrow 1 if no v_s
- For different energy ranges
 - 0-3 GeV
 - 3-120 GeV
 - All events (0-120 GeV)

 $R \equiv \frac{N_{Data} - B_{CC}}{S_{NC}}$

R is fraction of all NC events which go missing

Predicted NC interaction signal

NC Analysis Results 4-flavor fit

oscillation parameters

MINOS Preliminary

Model	θ_{13}	$\chi^2/{ m D.O.F.}$	θ_{23}	$ heta_{24}$	θ_{34}
$m_4=m_1$	0°	130.7/123	45.0°+7.2 -7.2	1	0.0°+16.8
	11.5°	128.8/123	$45.6^{\circ}_{-6.9}^{+6.6}$	1	0.0°+25.2
$m_4\gg m_3$	0°	130.7/122	45.0°+7.2 -7.2	0.0°+4.8	0.0°+16.8
	11.5°	128.8/122	$45.6^{\circ}_{-6.9}^{+6.6}$	0.0°+5.4	0.0°+25.2

v_e Appearance Backgrounds

- Use Near Detector data-driven methods to estimate v_e appearance backgrounds
 - At Near Detector, all $\nu_{\rm e}$ events are background not $\nu_{\rm e}$ appearance
 - Apply NN-based $\nu_{\rm e}$ selection to the ND data, get an all-background sample
 - Find what fraction of those background events are NC showers, mis-ID'd CC events, or real v_e from the beam
- Use these background estimates to correct Far Detector MC backgrounds for unknowns in hadronic shower modeling etc.
- Two independent methods agree