

Condor Resources

- The submit04.mit.edu is the condor central machine, which connects to different external resources
- Campus FrontEnd: BOSCO
 - Tier2, Tier3, EAPS Clusters
- OSG: open science pool

OSG: Open Science Pool

- The Open Science Pool (OSPool) is a virtual cluster operated by the OSG, with shared computing and data resources using distributed high-throughput computing (dHTC).
- The Open Science Pool includes capacity contributed by dozens of campus, national labs, and non-profit organizations
- Researchers can submit computational work to the OSPool via access points operated locally to their campuses, or via access points operated as part of the <u>OSG Connect</u> service.
 - SubMIT is one of the access points
 - Access is free and open to all subMIT users
 - OSPool opportunistic access
 - i.e., with lower priority than the jobs which use the clusters as dedicated resources.

From SubMIT to OSPool

 SubMIT condor central machine submit04.mit.edu connects to OSPool through condor flocking with IDTOKEN authentication.

OSPool Resources

- The computing resources for the OSPool come from more than 120 institutions
- The OSPool delivered more than 280 million compute hours in 2021, individual users achieving more than 30 million hours without fee or allocation requirement
- On average, there are more than 40,000 total cores available across the pool, with peaks of more than 70,000 cores, and with hundreds of <u>GPUs</u> <u>available</u>.
- Nodes from each contributing cluster may differ in CPU and/or GPU models, number of cores, RAM, etc.
 - Each job requests the computing resources it needs (cores, memory, disk, GPU features, etc.)

Jobs Go to OSPool

- Ideal size of computations for the OSPool
 - individual jobs that complete within 20 hours on one or few cores
 - software that can be distributed across each job in the form of static binaries, selfcontained installations, or containers
 - less than 20GB of input and output, per-job

	Ideal Jobs!	Still very advantageous	Maybe not, but get in touch!
Expected Throughput, per user	1000s concurrent cores	100s concurrent cores	Let's discuss!
СРИ	1	< 8	> 8 (or MPI)
Walltime	< 10 hrs*	< 20 hrs*	> 20 hrs
RAM	< few GB	< 40 GB	> 40 GB
Input	< 500 MB	< 10 GB	> 10 GB**
Output	< 1 GB	< 10 GB	> 10 GB**
Software	pre-compiled binaries, containers	Most other than ->	Licensed Software, non- Linux

Submit Jobs to OSPool

- Submit condor jobs to OSPool:
 - Special requirement in the condor script example:

```
Requirements = (OSGVO_OS_STRING == "RHEL 7"
    && BOSCOCluster =!= "t3serv008.mit.edu"
    && BOSCOCluster =!= "ce03.cmsaf.mit.edu"
    && BOSCOCluster =!= "eofe8.mit.edu") .....
```

- +ProjectName = "MIT_submit"
- The additional requirement can be found in <u>OSG support web</u>
- A few common requirements:
 - CVMFS: CVMFS_oasis_opensciencegrid_org_REVISION >= 3983
 - Singularity: HAS_SINGULARITY
 - GPU jobs: CUDACapability
- Using Software on the OSG
 - Containers, software compilation, ...
 - Details: https://support.opensciencegrid.org/support/solutions/folders/5000260921

EAPS Clusters

- From Earth, Atmospheric and Planetary Sciences
- The <u>Engaging Cluster</u> is a shared high performance compute cluster used by MIT and its affiliates for research and computing purposes
 - EAPS "central machine": eofe8.mit.edu
 - Scheduler: Slurm
- Submit condor jobs to EAPS:
 - Special requirement in the condor script:
 - Requirements = (BOSCOCluster == "eofe8.mit.edu") &&.....

 jobs at EAPS are not having priority, which may be rescheduled when higher priority jobs come in. It might take much longer than expected

EAPS Workflow

EAPS Software

You can run ordinary jobs on EAPS.

Also, you can do:

- Loading software modules
 - There is a wide selection of software installed on the engaging cluster that are available to be used by users. Software installed across the cluster are available as environmental modules.
- These modules enable the cluster to have multiple versions of the same software available to users.
 - The available environmental modules with: module avail
- Example
 - Installing Python Packages Locally with Pip
 - loaded a Python module with the command:
 - module load python/[version]
 - install python packages with the command:
 - pip install [packadge_name] --user

Jobs in Monitoring

Monitoring: http://submit04.mit.edu/condormon/

