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Introduction

CMS-TDR-0122

Huge amount of data to be collected in HL-LHC-era, 20x
increase over today

Interplay between integrated luminosity, physics program,
trigger strategy, but ∼all searches and measurements
across all final states/phase space regions will have
significantly more data and MC to analyze
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Precision W measurements as a prelude to HL-LHC
computing

Personally working on precision W measurements in CMS

Inclusive W production is among the highest cross section
electroweak processes at the LHC → more than
3× 109W → ℓν produced per lepton flavour in LHC run 2 per
experiment

Example analysis for 1/4 of total run 2 integrated
luminosity and one lepton flavour:

800M single lepton-triggered data events with little to no
scope for skimming
1.5B Signal Monte Carlo events with little to no scope for
skimming

For this type of analysis HL-LHC is now
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Electroweak Parameters
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Eur. Phys. J. C78, 675 (2018)

Precise measurements of the Higgs mass enable more precise
consistency tests of the Standard Model using mW and
sin2 θW
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Analysis Needs

What do we need from our software/hardware/workflows to
do effective physics analysis?

Fast turnaround “as the physicist waits” → fast iteration time
is essential for debugging experimental/theoretical/technical
issues and for developing/improving the analysis
Flexible capabilities for
binning/categorization/fitting/systematic uncertainties
“We know how to implement this in a more correct/robust/sensitive

manner but it’s not technically feasible.”
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Analysis Steps (LHC Run 2/3)

Representative workflow for CMS:

1 Central generation/simulation/reconstruction on the grid of
MC/data to MINIAOD output O(30kB/event), Root files with
CMS reconstruction object structure → months

2 Central or private production on the grid of O(1kB)/event
Root files with TTrees of basic types/arrays (“flat” is a
misnomer) e.g. centrally supported/produced NANOAOD
format → days

3 NANOAOD or similar → “final” histograms for
plotting/statistical interpretation (or very condensed dataset
for unbinned fits) hours or less

4 Visualization and statistical interpretation → hours or less

(+ auxiliary workflows for calibrations/corrections)→ hours
or less
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Analysis speed/flexibility for “Final” reduction step

Something in the analysis looks problematic or could possibly
be improved:

1 Implement the change in easy to read/understand/maintain
code representing the high level analysis logic

2 Go for coffee or lunch
3 Look at the results and consider next steps

If you had to go for coffee or lunch during step 1 your code is
too hard to maintain

If the results aren’t ready by the time you come back from
step 2 your code/software/infrastructure is too slow

For O(billions) of events this means event throughput in
the MHz, data throughput in the GBytes/sec
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What is needed to get there?

Modern/easy to learn/use software frameworks and interface
→ consensus building around python for user-facing interface

Smart parallelism
Latency matters just as much as throughput
Avoid IO bottlenecks
Avoid serialized bottlenecks
Avoid processing tails

Probably bad:
Submit 1000 single core jobs to condor batch system reading
from mass storage, writing O(200MB) of histograms to afs
Resubmit the 30 or 40 jobs which failed the first time (and the
5 or 10 which failed the second time)
Merge the 20GB of histogram output
Move to the next step
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What is needed to get there: Parallelization

Probably better:
Multi-thread or multi-process parallelism on a single node
with shared memory/inter-process communication to merge
results

Recent radical increases in CPU density and SSD performance
allow single-node scaling to go quite far
Watch out for lock contention, Amdahl’s law, python GIL

Task-based multi-node scaling with communication over the
network (Spark, Dask, etc)

Can maintain “interactive-like” user-facing behaviour
Much more flexible scaling and provisioning, more efficient
resource utilization, but more challenges for robustness and
avoiding IO bottlenecks
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How do we do this for mW measurement?

NANOAOD → histogram step in RDataFrame (python
interface) with large interactive machine at CERN (single
multithreaded process)

128 cores/256 threads, 1TB memory, 100gbps network,
100Gbytes/sec sequential read bandwidth from disk (16 x gen4
NVME)

SUBMIT provides similarly high performance resources, but
spread over several medium-sized nodes

Challenge/Goal: Get analysis running on SUBMIT in a
distributed manner while maintaining the performance and
latency of the single node case

Will rely on relatively new/in-progress support for Dask in
RDF, but need to also maintain/add support for
new/advanced RDF features
Multithreaded tasks are essential for memory reasons
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In Practice

arXiv:2008.04174, (related example for illustration)

For 2016 postVFP (16 fb−1): 400M data events, 700M W/Z signal,
500M background (2TB total), O(1000) systematic variations
Filling ∼ 70x 5D histograms with RDF (using new HistoND
functionality)
(pT , η, charge, signal/control region idx, systematic idx) x (systematic
groups, processes)
20 minutes to final histograms on high performance interactive machine
(with significant further optimization possible via vectorized/array filling
of systematic histograms, etc)

Already hit the per-thread memory limit with all processes

simultaneously → migrated to intermediate boost histograms with

std::atomic<double> for concurrent filling
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In Practice

Technical optimizations have required bleeding edge versions
of ROOT, gcc, boost, Eigen, numba, jax, tensorflow etc

Containers (podman/singularity) are essential

Heavy reliance on just-in-time-compilation of complex
template instances using PyROOT (relying on
recent/in-progress performance improvements in Cling)
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Muon Calibration: Gradient Aggregation

Aside from high level analysis, a number of auxiliary measurements of
corrections and calibration constants

Muon momentum scale calibrations are based on a high granularity
correction for B-field, material and alignment residuals, approaching
complexity of full tracker alignment

In large debugging version which was being used for R&D, ∼130k
parameters, 7TB of flat trees

Taking the same workflow and running with tight selection of tracks on
top of the large trees → reduced CPU load → workflow becomes largely
IO limited

Calibration turnaround time from trees with refit track paramters

gradients → calibration parameters in O(1 hour)
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Benchmark: Gradient Aggregation: IO Limits

CPU Storage Avg. Rate (GBytes/sec)

2 x Xeon (32C/64T) eos/xrootd (eoscms) (25gbps) 1.64
2 x Xeon (32C/64T) eos/xrootd (test inst.) (25gbps) 2.62
2 x Xeon (32C/64T) CephFS HDD (25gbps) 2.60
2 x Xeon (32C/64T) CephFS SSD (25gbps) 2.64
2 x Xeon (32C/64T) Local SSD (16xSATA) 5.21

thanks to IT-ST group for help setting up some of these tests

Need to set e.g. XRD PARALLELEVTLOOP=16 to get good eos
performance

EOS+xrootd standard production instance not quite scaling up to
network limits (possible xrootd client/ROOT bottlenecks?)

Extremely good performance of EOS test instance, and CephFS (CentOS
8 kernel client), approaching limits of ethernet connection

Reach 5.2GBytes/sec from local SSDs, approaching limits of disk

array - PCIE 3.0 8x SATA controller), to be tested on newer

machine/SUBMIT disk server
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Muon Calibration Validation

Validation of muon momentum scale requires thousands of likelihood fits
( 5000 bins in pt and eta, fit scale and resolution in each one)

Parallelized Optimized Fitting with Jax (vectorize over multiple fits) →
full set of validation fits in minutes
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Maximum Likelihood Fit

arXiv:2008.04174

Maximum likelihood fit for mW is technically complex

1000’s of detector-level bins

O(1000) nuisance parameters

10’s of thousands of histograms entering the fit

gradients in minimization need to be known accurately

good convergence behaviour of fit must be maintained

time/memory of minimization need to be kept under control

uncertainties covariances need to be accurately computed
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Maximum Likelihood Fit

arXiv:2008.04174

Maximum likelihood fit for mW is technically complex

1000’s of detector-level bins

O(1000) nuisance parameters

Optimized maximum likelihood fit using “combinetf” Tensorflow
implementation of CMS higgs combination tool, dedicated minimization
algorithms

Full likelihood fit in minutes, full results and uncertainties in ∼ 30 mins
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Maximum Likelihood Fit

Fit can exploit multiple CPU cores or GPU’s

Up to 100x speedup “as the physicist waits”
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Conclusions

Ongoing mW measurement is extremely challenging from both
a physics and technical standpoint

Innovative and cutting edge technical solutions and
requirements at each step of the analysis workflow

Up to now have focused on large interactive node use at
CERN

Interesting technical challenge/demonstrator to reach similar
performance in a distributed manner on submit with fast
network/disk across several-many nodes
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Backup
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Analysis Flexibility for “Final” reduction step

NANOAOD or similar → “final” histograms for
plotting/statistical interpretation (or very condensed
dataset for unbinned fits)

What kind of information can/should we store in
O(1kB/event)?

What kind of logical operations can be (re-)done “on-the-fly”
at this stage?
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Analysis Flexibility for “Final” reduction step

What kind of information can/should we store in
O(1kB/event)?

Variable length arrays for 4-vectors and summarized properties
of high level objects (electrons/muons/jets/etc)

Muon isolation sum ✓
Detailed info on isolation constituents X
Jet substructure variables τ21, DNN tagger output, etc ✓
Detailed jet constituent information (clusters, PFCandidates)
X
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Analysis Flexibility for “Final” reduction step

What kind of logical operations can be (re-)done “on-the-fly”
at this stage?

Object selection (e.g. lepton identification/isolation) ✓

Composite object combinatorics (Z → µµ, H → γγ,
tt̄ → ℓjjbb/ET ) ✓

Lepton energy/momentum scale/resolution corrections +
systematic variations ✓

Jet energy/resolution corrections + systematic variations ✓

Recomputation of isolation sums X

Reclustering of jets X

Re-calculation of jet substructure variables X

Machine learning inference on low-level detector information X

Machine learning inference on high level object/event
quantities ✓
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Analysis Flexibility for “Final” reduction step

NANOAOD or similar → “final” histograms for
plotting/statistical interpretation (or very condensed
dataset for unbinned fits)

What kind of information can/should we store in
O(1kB/event)?

What kind of logical operations can be (re-)done “on-the-fly”
at this stage?

O(1kB/event) data format can always be reproduced on the
grid in days-weeks (for now)

Need an alternate calculation of some high level variable to
improve sensitivity/mitigate some experimental/theoretical
effect
“Forgot” an important variable
Found a bug

Some intermediate cases (slow calculations) can be handled
with caching results (“friend trees”)
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Recent Advances in Analysis Software for HEP

ROOT
Flexible interface to high performance C++ (jitting + python
bindings from Cling/PyROOT)
Multi-threaded computational graph (RDataFrame)

“Python ecosystem”
e.g. Uproot + Awkward Array to analyze Root trees with
numpy-like syntax → Columnar Analysis
Coffea for high level functionality
Boost histogram python bindings
+++

Both of the above can be used today for high performance
analysis, with different caveats/limitations/optimal
environments
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Recent Advances in Analysis Software for HEP: ROOT
Cling/PyROOT

When I was a grad student using ROOT 5.x, older/wiser
people told me “If you care about robustness or performance,
compile your (C) ROOT macros”

Real llvm/clang-based jitting with Cling in Root 6 has
eliminated robustness/language feature gap for some time

PyROOT provides a much friendlier interface, and
interoperability with python ecosystem tools

(Very) Recent developments (PR#7283) just about close
the performance gap with compiled code (one small but
important PyROOT case remains #9112) )
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Recent Advances in Analysis Software for HEP: ROOT
RDataFrame

RDF + PyROOT provide a quite user-friendly interface for
complex analysis logic with high performance

Multi-thread parallelization on a single node is ∼ fully
transparent to the user and extremely convenient if your
analysis can fit on the hardware you have access to

Recent/ongoing work to enable similarly convenient
Spark/Dask parallelization (Poster)

Significant ongoing work on
functionality/convenience/performance (Poster, PPP talk)
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“Python Ecosystem” and Columnar Analysis

Many industry-standard tools beyond HEP based on python ecosystem
(numpy, scipy, etc)

Variable length arrays e.g. in Root trees are stored as (flattened) contents
+ offsets

E.g. three collision events with respectively 2, 3, 1 muons might store for

Muon pt:

Contents: [23.1, 10.4, 15.6, 10.8, 45.1, 39.9]

Offsets: [0, 2, 5]

This can be naturally (and technically!) mapped onto Awkward array
structures (“jagged” numpy-like arrays where the outer axis indexes
events, and the inner axes index objects/properties within each event)

Numpy-like syntax can be used to perform operations on batches of
events

Uproot: Python re-implementation of (subset of) ROOT I/O

Coffea: High level analysis tools around the above

Multi-process parallelization on a single node, significant focus on
efficient scaling with Spark/Dask type infrastructure

e.g. relevant talks in parallel sessions (talk, talk)
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Event Batches vs Event Loop

Operating on large batches of events can render “call
overhead” irrelevant, much more easily exposes vectorization
(really slow stuff in the python interpreter can be fine if it’s
called once per 100k events)

“Per event” logic is much more in line with how HEP analysis
has been done up to this point

C++ is not immune from call overheads
vtable lookups, clobbering the branch predictors
dynamic memory allocation with std::vector-like objects

With aggressive inlining, the event loop can also expose
vectorization potential

RDF already avoids copying array contents per event (RVec as
a view)
Work ongoing exploring “full inlining” of the graph, using
optimized jitting to “undo” type erasure where necessary, with
some interesting features to be improved/worked around
(pathological example)
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Event Batches vs Event Loop

https://www.boost.org/doc/libs/1_77_0/libs/histogram/doc/html/histogram/benchmarks.html

Boost histograms (in C++) provide an interesting example
where static/inlining optimizations matter for the per-event
case, but largely irrelevant for large batches
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Multi-threading vs Multi-processing

One important distinction which is often overlooked: shared memory

A typical server/batch slot in LHC computing infrastructure provides
2GB/thread of memory

If the aggregated data (e.g. #of histogram bins x 16 bytes) exceeds 2GB,
then you are having a bad problem and you will not go to space today

Simplest way to mitigate this: thread-safe shared memory histograms
with std::atomic internal storage already possible with Boost
histograms in C++ (and this can be used with RDF as well)

Other possibilities: sparse histograms, buffered/locked filling, distributed
histograms

Python tools can multi-thread too with care over the GIL

(python-jitting tools like Numba, Jax can aid in this)

J.Bendavid High performance Analysis for mW Measurement 32

https://xkcd.com/1133/
https://www.boost.org/doc/libs/1_77_0/libs/histogram/doc/html/histogram/guide.html#histogram.guide.expert.parallelisation_options
https://www.boost.org/doc/libs/1_77_0/libs/histogram/doc/html/histogram/guide.html#histogram.guide.expert.parallelisation_options


A practical example

arXiv:2008.04174, (related example for illustration)

Example with 800M data events, 1.4B W/Z signal, 1B background (4TB
total), O(1000) systematic variations
Filling ∼ 70x 5D histograms with RDF (using in-progress HistoND
functionality)
(pT , η, charge, signal/control region idx, systematic idx) x (systematic
groups, processes)
45 minutes to final histograms on 32 core/64 thread machine with SATA
SSD’s (still more potential for single node scale-up)
Already hit the per-thread memory limit with all processes
simultaneously (evaluating shared memory options)
(n.b. auxiliary calibration workflows on the same machine exceed
5Gbytes/sec in real life use cases, limited by SATA controller PCIE link)

See also CERN EP Software Seminar
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Some thoughts on interoperability

Having multiple sets of tools with parallel developments and
innovations is a Good Thing

Interoperability is also a Good Thing

Related and rather frustrating examples (related to use of
cppyy vs pybind11 for C++ python bindings):

Mutually incompatible python representations of TH1 in
uproot and PyROOT
Not straightforward to use boost histogram python bindings
with RDF

More pragmatic approach to dependencies might be beneficial
in some cases (do we really want/need to (always) read from
Root files with zero Root dependencies? tighter integration
could speed the path to real multi-threading in python
ecosystem)
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Conclusions

HL-LHC will pose unprecedented challenges including for physics analysis

Fast and Flexible analysis software/infrastructure/workflows are needed
to get the best physics out of the data

Significant development over the last few years in ROOT and in python
ecosystem tools provide a serious head-start to addressing this and are
already essential for some classes of measurements

Some challenges to address leveraging the best use of thread-level and
multi-node parallelism together, and optimizing storage and IO patterns
(mass storage + client optimization/new mass storage systems/local or
intermediate caching layers/HDDs vs SSDs)

Core functionality/performance/ease of use improvements will no doubt
continue on all fronts

(n.b. visualization, fitting, statistical interpretation also important, much

progress towards leveraging modern python tools/autograd for this:

PyHEP talk, PyHF, ZFit/poster)
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