Undergraduate Research Opportunity Program:

SUEP X SubMIT

Christoph Paus, Chad Freer, Luca Lavezzo, Agustin Valdes

About Me

- 1st year undergraduate student from Live Oak, Texas
- Interested in physics, electrical engineering, and computer science
- Involvement in the SUEP
 project started in early
 January where I've been
 working under Chad Freer and
 Luca Lavezzo

Soft Unclustered Energy Patterns (SUEP)

- Soft unclustered energy patterns anomalies existing in the QCD background of an event
 - Large multiplicity of soft (low transverse momentum particles)
 - SUEP candidates are found by reclustering tracks with large radius cone using FastJet
 - Hidden valley model with SUEP particles as connection to dark sector
- Looking at MC and 2018 data from CMS

Fig. 1: Feynman Diagram of SUEP

Workflow Overview

Workflow on SubMIT

- Specialized NanoAOD files (additional track information) are created through Kraken and stored on the Tier 2 Hadoop
 - Files are GB in size
 - Kraken: a processing framework used to breakdown large
 - o files into smaller, often flat, files
 - Hadoop: storage system across computing clusters that can accessed remotely (Tier 2 vs. 3)
- Analysis-ready ntuples are created using HTCondor on the Tier-2, Tier-3, and the CMS Global Pool computing clusters (Fig. 2)
 - Columnar analysis framework is used (Coffea Singularity)
 - Iterative processes replaced with columnar operations
 - Tracks are clustered via FastJet algorithm with novel Awkward Array input (Fig. 3)

Fig. 2: Bates Lab tier 2 computing cluster

Fig. 3: FastJet anti-kt clustering, R=1.5

Workflow on SubMIT

- Histograms are created directly on SubMIT machines and can be plotted through SubMIT-hosted JupyterHub (Fig. 4)
 - By the time data files are accessed by the SubMIT machines, they are MB in size
- Despite decrease in file size, even small fraction of collision data from CMS is computationally-intensive to analyze
 - 20,000 30,000 files for 2018 analysis alone
- SUEP_coffea.py, where most of our analysis happens, is run in Singularity shell

Fig. 4: Viewing produced histogram via JupyterHub

JupyterHub Interface

- A more user-friendly option is the JupyterHub interface which allows for more convenient plot generation and analysis of the data in an internet browser (Fig. 4)
- Can access all SubMIT data home and work directories, Tier 2 Hadoop, etc.

Methodology - Clustering and Trigger Events

- Using FastJet to cluster the tracks into jets, we must sort through which jets are potential SUEP candidates
- Given sheer amount of data from proton-proton collision, triggers must be implemented to determine jets of interest (Fig. 7)
- Selection
 - QCD (background) events with HT > 1200 GeV
 - Number of tracks in jet > 1
 - At least one large radius jet with pT >150 GeV

Methodology - Variables of Interest

- Sphericity (*spher*): a measure of how uniformly distributed particles are from a point of interest (Fig. 5)
- Number of constituents (*nconst*): the total number of particles present in a SUEP candidate
- Transverse momentum (pT): the momentum perpendicular to the beamline (Fig. 6)
 - Conserved along this plane and gives an idea of how energetic a particle is along its track
- HT: the scalar sum of a AK4 jets' transverse momenta

Fig. 9: Jet propelled into transverse plane

ABCD Method

- After running files through Coffea, we have data that is ready to be plotted and analyzed
- If a SUEP event is present, it would occur in where **nconst**. and **sphericity** are relatively greatest (D region of the Fig. 10)
- To avoid biasing the data, we predict what the D region will look like based on A,B, and C (data is blinded)

SUEP-m750-darkPho CMS Simulation 2018 (13 TeV) 175 100 75 25 A B

Fig. 10: SUEP sample subdivided by region for illustrating ABCD Method

0.6

0.8

spher ch

1.0

0.4

0.2

QCD_MC vs. Data Discrepancy

MC QCD background prediction vs. actual SUEP sample

Data discrepancy not visible from this 2D plot alone, must focus-in on one region at a time

QCD_MC vs. Data Discrepancy

pT plot revealed major disagreement for low pT SUEP events

Course of action: recreate plots for SUEP events with only pT>300 GeV

QCD_MC vs. Data After pT<300 Cut

Removing constituents with a pT<300 yields much better fit

A Region (Before and After PT Cut)

This agreement becomes more clear when looking at one region at a time:

• And thanks to JupyterHub, we're able to generate these plots in a matter of seconds

B Region (Before and After PT Cut)

C Region (Before and After PT Cut)

D Region (Before and After PT Cut)

• Changes in other regions cumulate in the D region, with near perfect agreement save for the low bin tail

Future Steps in Workflow Development

Incorporating neural network into analysis

- Train NN to distinguish between QCD background and SUEP particles
- Using SubMIT machines with GPUs to train identification algorithm
- Triton, an open-source platform for GPU-driven neural networks, used to do the inference
 - Already included within Coffea Singularity; scale up analysis of files

Calculating and plotting limits

- How sensitive one selection is compared to another
- Run straight from JupyterHub

Fig. 23

Sources

<u>Images:</u>

- Fig. 1 http://t3serv001.mit.edu/~paus/suep/2020.08.06.kdp.SUEPsforLPCDM.pdfhttp://t3serv001.mit.edu/~paus/suep/2020.08.06.kdp.SUEPsforLPCDM.pdf
- Fig. 2 https://bateslab.mit.edu/high-performance-research-computing-facility
- Fig. 3 https://www.mdpi.com/2218-1997/5/5/114/htm
- Fig. 6 -https://cms.cern/news/new-two-particle-correlations-observed-cms-detector-lhc
- Fig. 7 https://phys.org/news/2020-12-triple-threat-massive-gauge-bosons.html
- Fig. 23 https://victorzhou.com/series/neural-networks-from-scratch/

Sources

Other Resources:

- Soft Unclustered Energy Patterns (SUEP)
 - O https://inspirehep.net/literature/800288
 - O https://arxiv.org/pdf/2011.06599.pdf
 - O https://profmattstrassler.com/articles-and-posts/relativity-space-astronomy-and-cosmology/dark-matter/searching-for-dark-matter-at-the-lhc/
- ABCD Method
 - https://twiki.cern.ch/twiki/pub/Main/ABCDMethod/ABCDGuide_draft18Oct18.pdf
- Methodology Clustering and Trigger Events
 - https://link.springer.com/article/10.1007/s13538-014-0212-z
 - O https://atlas.cern/updates/blog/what-happens-when-energy-goes-missing
- Methodology Variables of Interest
 - O https://arxiv.org/abs/1005.3299
 - O https://cms-opendata-workshop.github.io/workshop-lesson-jetmet/aio/index.html
 - O https://cds.cern.ch/record/1447810/files/epic.72.2124.pdf

Questions?