EXPERIENCE WITH CIC MAGNETS AT ORNL

J. W. Lue

Oak Ridge National Laboratory

Presented at the Workshop on the Experience with Testing and Application of Cable-in-Conduit Conductors (CICC)

Victoria, B.C. September 24, 1993

R&D Work Done at ORNL toward the Development of Cable-in-Conduit Superconducting Magnets

- ► Small scale experiments:
 - Stability measurements: single triplex CICC of 1 5-m long with resistive heater
 - 1) Multiple stability zone
 - 2) Limiting currents, I_{lim}
 - 3) Stability margin below $I_{lim} \approx$ Available helium enthalpy
 - 4) Parametric measurements
 - Quench simulation experiments: 70-m long Cu-strand CICC
 - 1) Maximum pressure during a quench
 - 2) Thermal expulsion velocity of helium
 - Nb₃Sn CICC short sample stability measurement: inductive heaters
 - Normal zone propagation and thermal hydraulic quenchback experiment: 50-m long single triplex CICC
 - 1) Normal zone propagates in CICC on the order of 1 m/s
 - When THQ occurred, propagation velocity approached velocity of sound (≈ 100 m/s)

R&D Work Done at ORNL toward the Development of Cable-in-Conduit Superconducting Magnets (Continued)

- Theoretical studies:
 - Limiting currents scaling law
 - Peak pressure scaling law
 - Quench pressure, thermal expulsion, and normal zone propagation laws
 - Thermal hydraulic quenchback theory
- Fabrication and testing of CIC magnets:
 - Fabrication and testing of the 10-cm clear bore NbTi CIC magnet
 - Testing of the LCP Westinghouse Nb₃Sn coil
- Development of Light weight superconducting magnets

Engineering Equations for Designing CIC Superconductor

• Limiting current:

$$I_{lim} = A_{cs} F(f_{Cu}, f_{He}) [(T_c - T_b) \rho^{-1}]^{1/2} d^{-1} \cdot k_h$$

Heating induced heat transfer factor:
 $k_h = k (\ell^2 / \tau)^{1/15}$

- Stability margin for $I < I_{lim}$: $\Delta H \ge He enthalpy$
- Maximum quench pressure:

 $P_{max} = G(f_{Cu}, f_{He}) \ (\rho^2 J_{cs}^{-4} \ell^3 d^{-1})^{0.36}$

Fabrication and Testing of a NbTi CIC Magnet

"Design, Construction, and Test of a 113-mm Bore Solenoid with NbTi Cable-in-Conduit Superconducting windings," Miller, Lue, Brown, and Kenney, IEEE Trans. Magn., MAG-17, 2250 (1981).

"Performance of an Internally Cooled Superconducting Solenoid," Lue and Miller, Adv. Cryogenic Engineering, <u>27</u>, 227 (1982).

"Extending an Internally Cooled Superconducting Magnet to Higher Fields," Lue and Miller, IEEE Trans. Magn., MAG-19, 261 (1983).

"Test Results of Superconducting AC Magnets for Magnetic Refrigeration Experiment," Lue, Luton, Schwenterly, and Wilson, Paper presented at MT-13, Victoria, B.C. Sept. 20-24, 1993.

11 (0)

ORNL-DWG 81-3207

(

CABLE-IN-CONDUIT MAGNET PARAMETERS

Item	Parameter
Superconducting strands	0.72 mm bare NbTi wire
Cable pattern	12 x 3 SC subcables around a 7 x 3 Cu-core
Cu/SC ratio	1.8 : 1 in SC strands 3.4 : 1 overall
Conductor conduit	8.56-mm OD 304 stainless steel
Void fraction	43%
Refurbished magnet dimensions	104 mm ID x 445 mm OD x 330 mm Height
Hydraulic paths Minimum length	Series-parallel combination of layers 7.7 m
Maximum length	71 m
Maximum central field	7.5 T
Current at Maximum field	4.8 kA
Conductor current density	8.3 kA/cm ²
Stored magnetic energy	270 kJ

1-230	
ώ Ω	
N	
Ш	

COIL PERFORMANCE CHARACTERISTICS

4815 A/7.68 T

5100 A/8.13 T

267 kJ

MAXIMUM CHARGE RATE (LIMITED BY POWER SUPPLY) CURRENT DENSITY OVER THE CABLE SPACE @ 7.68 T MAXIMUM CURRENT/FIELD ATTAINED @ 4.2 K MAXIMUM CURRENT/FIELD ATTAINED @ 3.9 K MAGNETIC STORED ENERGY @ 7.68 T STABILITY MARGINS @ 1.1 atm 4.2 K

11.3 kA/cm² 45 s TO 7.1 T 56 mJ/cm³ @ 7.0 T 590 mJ/cm³ @ 5.0 T

Higher stability margin was achieved by lowering the helium temperature.

Liquid Helium Cooling of the CIC Superconducting Magnet for a Magnetic Refrigeration Experiment

 \bigcirc

PULSE TEST OF THE CIC MAGNET

- 18 s to a maximum field of 7.1 T: .39 T/s
- 10 s up, 10 s down triangular pulsing to
 5 T for 15 minutes: .5 T/s
- Magnet quenched only when the helium supply was shut off and the liquid dropped to the level of outlet manifold
- 15 s up, 15 s hold, 15 s down, 15 s hold to 5 T duty cycle for 60 cycles in a magnetic refrigeration experiment

(Ramp rate was limited by the power supply voltage)

Testing of the LCP Westinghouse Nb₃Sn Coil

"First Tests of the Westinghouse Coil in the International Fusion Superconducting Magnet Test Facility (IFSMTF)," Dresner, Fehling, Lubell, Lue, Luton, McManamy, Shen, and Wilson, IEEE Trans. Magn., MAG-23, 1701 (1987).

"Stability Test of the Westinghouse Coil in the International Fusion Superconducting Magnet Test Facility," Dresner, Fehling, Lubell, Lue, Luton, McManamy, Shen, and Wilson, IEEE Trans. Magn., MAG-24, 779 (1988).

"Hot-Spot Measurements on the U.S.-LCT Coils in the IFSMTF," Lue, Dresner, Fehling, Lubell, Luton, McManamy, Shen, Wilson, Wintenberg, Proceedings 12th Symp. Fusion Engineering, 369, (1988).

ORNL-DWG 84-3924A FED

-

WH-LCP Coil

- The only LCP coils to use Nb₃Sn superconductor
- Met all design requirements at the rated current and field, including full recovery from an induced normal zone
- No leak was developed in the conductor conduit (4.7 km total length) and the insulation breaks
- The conductor did not meet expectations

WH Coil Conductor

- Contains degraded regions
- Broad resistive transition scattered throughout the coil
 - Measured 14 pairs of voltage taps, each over two plates with 8.0-K inlet helium

All showed voltages at I = 12-17.5 kA $V_{\rm max}/V_{\rm min} = 4.4$

• Onset of resistivity with increasing current is gradual – Power law: $\rho \sim I^n$

$$V \sim (T_{\rm C} - T)^{-{\rm n}}$$

- Short samples: n = 30-50
- Using inductive heater pulses measured helium bubble temperature as it passed the downstream thermometers as well as the voltage in zone 1

$$n = 4$$

• Resistive heat load at 23.1 kA, 8.2 T: 750 W

$$0.58 \text{ mW/cm}^3 @ v = 25 \text{ cm/s}$$

Stability Measurements of WH-LCP Coil

• Used inductive heaters

Calibrated with the resistive heater and the downstream thermometers

- Performed in single coil mode at 100% design current
- Measured stability margin: 1.7-1.9 J/cm³

The instrumented turn 1, conductor A, plate 14 of the WH coil.

Voltages of the heated zone and adjacent zones in the one-heater, 6-s delay test of WH. Plateau at 1.25 V is instrument saturation. Abrupt drops mark initiation of dump.

HOT-SPOT MEASUREMENTS ON WH COIL

- One heater, 2-s delay: $T_{HS} = 114 \text{ K}$
- One heater, 6-s delay: $T_{HS} = 205 \text{ K}$
- 9 heaters, 6-s delay: $T_{HS} = 193$ K

"Development of Light Weight, High Current Density, Superconducting Magnet"

Lue, Lubell, Luton, Frame, Paulaskas, and Blake

Paper presented at MT-13, Victoria, B.C. Sept. 20-24, 1993

APPROACH

- Cable-in-Conduit Superconductor:
 - Produce high field at high current density
 - Al-conduit to reduce weight and ease the winding
- Polymer matrix composite (PMC) structure:
 - Provide the strength of stainless steel at 1/3 the weight

TEST COIL PARAMETERS

	Coil #1	Coil #2
Superconducting strands	0.808 mm SSC wire	0.526 mm Fermi wire
Strand Cu/SC ratio	1.52 : 1	1.5 : 1
Cable pattern	6 x 5 SC subcable around a Cu-core	9 x 6 SC subcable around a Cu-core
Conductor dimension	7.2 mm x 5.8 mm	7.2 mm x 5.8 mm
Conduit thickness	0.64 mm	0.64 mm
Void fraction	28%	26%
Coil dimensions	12.7 cm ID x 21.6 cm OD x 8.1 cm H	12.7 cm ID x 21.3 cm OD x 5.6 cm H
Estimated I _c @ 8 T, 4.2 K	7.0 kA	6.0 kA

LIGHT WEIGHT DEMO MAGNET

Item	Parameter
Superconducting strands	0.809 mm SSC wire
Strand Cu/SC ratio	1.46 : 1
Cable pattern	5 x 3 x 3 SC sub- cable around a triplex Cu-core
Conductor dimension	9.4 mm x 6.7 mm
Conduit thickness	0.9 mm
Void fraction	26%
Magnet design dimensions	60 cm ID x 90 cm OD x 32 cm H
Estimated $I_c @ 8 T$, 4.2 K	11.2 kA
Design current	7.0 kA
Design conductor J _c	11 kA/cm^2
Maximum field on con- ductor	8 T
Stored magnetic energy	4 MJ

1-km Al-Conduit Cable-in-Conduit Superconductor. 1-l continuous length of this conductor has been made.

SUMMARY 1

5 Steps Used to Reduce the Weight of a Superconducting Magnet

- Reduce magnet cross section: Employing cable-in-conduit conductor to achieve high current density
- Reduce conductor weight: Using Alconduit instead of SS-conduit
- Increase packing factor: Forming the conduit into rectangular shape
- Reduce structure weight: Using polymer matrix composite instead of stainless steel
- Eliminate the bobbin: Potting the magnet and removing the mold to achieve a bobbinless coil

SUMMARY 2

Major Technical Problems encountered

- Mismatch in the thermal expansion coefficients of the PMC and the conductor would cause undesirable thermal stress on the conductor and limit the effectiveness of PMC as a structure.
- Continuous extrusion of Al-conduit on a cable needs be perfected to produce a flawless long length conductor