
Lemon + SLS

WLCG Grid Monitoring WG, 25/1/07
Presented by G. Cancio – CERN/IT

German Cancio – CERN/IT - n° 2

Outline

Lemon Screenshots

SLS Screenshots

Sensor information to be provided by M/W developers

Real life example (using Lemon)

German Cancio – CERN/IT - n° 3

Lemon Screenshots

German Cancio – CERN/IT - n° 4

Lemon-status

Using a web-based status display:

CC Overview

German Cancio – CERN/IT - n° 5

Lemon-status

Using a web-based status display:

CC Overview

Clusters and nodes

German Cancio – CERN/IT - n° 6

Lemon-status

Using a web-based status display:

CC Overview

Clusters and nodes

VO’s

German Cancio – CERN/IT - n° 7

Lemon-status

Using a web-based status display:

CC Overview

Clusters and nodes

VO’s

Power

German Cancio – CERN/IT - n° 8

Lemon-status

Using a web-based status display:

CC Overview

Clusters and nodes

VO’s

Power

Error trending

German Cancio – CERN/IT - n° 9

Lemon-status

Using a web-based status display:

CC Overview

Clusters and nodes

VO’s

Power

Error trending

Batch system

German Cancio – CERN/IT - n° 10

SLS Screenshots

German Cancio – CERN/IT - n° 11

Using a web-based status display:

(Meta-)Services Overview

SLS

German Cancio – CERN/IT - n° 12

Using a web-based status display:

(Meta-)Services Overview

Drilling down to one meta-service

SLS

German Cancio – CERN/IT - n° 13

Using a web-based status display:

(Meta-)Services Overview

Drilling down to one meta-service

More details: Tier-1 sites

SLS

German Cancio – CERN/IT - n° 14

Using a web-based status display:

(Meta-)Services Overview

Drilling down to one meta-service

More details: Tier-1 sites

A specific Tier-1 site: Availability history

SLS

German Cancio – CERN/IT - n° 15

Using a web-based status display:

(Meta-)Services Overview

Drilling down to one meta-service

More details: Tier-1 sites

A specific Tier-1 site: Availability history

Service-specific information

SLS

German Cancio – CERN/IT - n° 16

Using a web-based status display:

(Meta-)Services Overview

Drilling down to one meta-service

More details: Tier-1 sites

A specific Tier-1 site: Availability history

Service-specific information

Other entry views: What services users are interested in

SLS

German Cancio – CERN/IT - n° 17

Using a web-based status display:

(Meta-)Services Overview

Drilling down to one meta-service

More details: Tier-1 sites

A specific Tier-1 site: Availability history

Service-specific information

Other entry views: What services users are interested in

Can be used for any kind of service

SLS

German Cancio – CERN/IT - n° 18

Service availability and status

Service fully (100%) available

Service available in 95%, still marked as fully available
above the highest threshold

Service available in 87%, marked as affected
below the highest threshold

Service available in 50%, marked as degraded
below the medium threshold

Service available in 13%, marked as not available
below the lowest threshold

Service info expired, update not available

Different status thresholds mean different status for services with the
same availability

(more at http://cern.ch/SLS/help.php)

German Cancio – CERN/IT - n° 19

Information to be provided by
MW developers

German Cancio – CERN/IT - n° 20

Monitoring MW services

For monitoring a Grid Service comprehensively, it is important to look at the
service both ‘externally’ (observing the service and its environment) and
‘internally’ (talking to the service).

Externally:
Related to the service itself: log files, processes
Related to the node(s) hosting the service: server load, free/used space on
partitions/directories
Changes in processes, log file formats, etc. should be avoided as this implies changing the
monitoring setup as well simultaneously with the new software rollout!

Internally:
Typically requires writing a service-specific sensor.
M/W developers should be encouraged to provide test applications (a la voms-ping), if
possible emulating typical user behaviour. The output of that test application should be
machine-parsable.
Ideally, availability numbers (SLS-like: 0 to 100) should be produced as well by that test
application.

It is convenient to identify the nature of a metric:
performance metrics (e.g. transactions per second)

exception metrics (e.g. transactions/s < minimum, service process dead)

Exceptions: what needs to be done, who needs to be informed

Recovery: Under which circumstances can a recovery action be started, and
how?

German Cancio – CERN/IT - n° 21

Monitoring MW services: metric details

General:
How often does a metric need to be sampled?

Log files:
Name(s) e.g. /var/log/myservice.log, /var/log/myservice.log.*.(gz|Z)

Format. Use a per-line format, starting with a timestamp. The timestamp should follow a standard
format (e.g. syslog-like, %M %D %H:%M:%S)

Regular expression indicating an event (performance/exception): e.g. “(failed|Timed out)”

How far back one needs to look in the log file? 5m, 2h, 1d, since last boot? (May depend on
sampling rate).

Processes:
Name of process(es) to be checked

uid (root? Service uid?)

PPid (e.g. init=1)

of processes: a single one, >=1, >=1 && <= 500?

File system:
Space free/used on a file system (e.g. /var, /castor/data/*)

Space used below a directory

MD5 checksum of (read-only) files

File presence, size, timestamp/age

German Cancio – CERN/IT - n° 22

Monitoring MW services: metric details

“Internal” monitoring

What command to run (not: API to code against!) for the service test
application?

Structure of output:
Availability metrics (overall availability: 0 to 100)
Performance metrics (list of key-value pairs)
Detailed information (text)

Exceptions and Recovery actions

Based on the collected metrics, what (combination of) metrics indicate an
exception?

What should be done with the exception? Who should be informed?

Is there a recovery procedure? Can the recovery procedure be executed
automatically before any humans intervene?

What executable to run
Timeout
Max # of runs / time window in case problem persists

German Cancio – CERN/IT - n° 23

Example: LFC

Real example: GridLFC (thanks to James ;-).

Checking the service from ‘outside’ using standard sensors:

Processes
[Exception] lfc daemon running processes: Should be exactly 1 (name: "lfcdaemon";
uid: 17700, ppid: 1 (init)

Raise exception if the above is not true

[Exception] Same for lfc-dli process

Log files
[Exception] /var/log/lfc/log: Check for Oracle errors.

Date format: %m/%d %T

Regexp to search for: ORA-(?!(02396|03113|12547|12514|03114))

Raise exception if true more than 0 times in the last 30 minutes

[Performance] /var/log/lfc/log: How many LFC (read/write/delete/total)
operations in the last 5 minutes

Regexp to search for:
total: NS098 –
write: NS098 - (creat|mkdir|setfsizeg|symlink|addreplica)

(similar for read and delete)

German Cancio – CERN/IT - n° 24

Example: LFC

Specific service checks, talking directly to the service using a
new sensor:

[Exception] lfc.readEntry: check we can do a stat on a LFC file
(status: integer)

Read /grid/ops. Raise exception if failure

[Exception] lfc.writeEntry: check we can write a new directory
into a given LFC directory (status: integer)

Create /grid/ops. Raise exception if failure

[Exept+Perform] lfc.timeReaddir: return how long it takes to do a
readdir on a given LFC (time: integer)

Read /grid/ops. Raise exception if takes > 10s

[Performance] lfc.activeConnections: count the number of TCP
connections to the LFC port in ESTABLISHED state (count:
integer)

German Cancio – CERN/IT - n° 25

Example: LFC

Recovery action: Try to restart the service if the following is
true:

LFC daemon not running OR cannot read /grid/ops OR cannot
write /grid/ops

Recovery action: Run
/usr/bin/killall -9 lfcdaemon; sleep 1; /sbin/service lfcdaemon start

Try this a maximum of 3 times, if the error condition above is still true
after 3 attempts, give up, inform human operators

