Recent theory developments on jet substructure

Daniel Reichelt

Institute for Particle Physics Phenomenology, Durham University

February 15, 2022
at the
LHC EW WG General Meeting
"event built from jets" \Rightarrow "jet built from constituents"

"cluster the event into jets"
\Rightarrow "cluster jet into subjets"

- tagging
- trimming
- soft-drop
 - + recursive
 - + dynamical
 - includes modified mass-drop
- collinear-drop
- ...

"observables from jets"
\Rightarrow "observables from constituents"

- jet mass
- angularities
- energy correlation functions
- jet pull
- Lund plane
- ...

* disclaimer: this is a non-exhaustive and biased list of examples
Overview

"event built from jets" → "jet built from constituents"

"cluster the event into jets"
→ "cluster jet into subjets"

▷ tagging
▷ trimming
▷ soft-drop
 ▷ + recursive
 ▷ + dynamical
 ▷ includes modified mass-drop
▷ collinear-drop
▷ ...

"observables from jets"
→ "observables from constituents"

▷ jet mass
▷ angularities
▷ energy correlation functions
▷ jet pull
▷ Lund plane
▷ ...

* disclaimer: this is a non-exhaustive and biased list of examples
representation of single emission phase space
→ at LL uniform ⇒ predicted deviations
uses:

1. forward: resummed calculations / parton shower building
e.g. [Gustafson ’92] [Hamilton, Medves, Salam, Scyboz, Soyez ’20]

2. backwards: map cluster steps of final jets to Lund plane
⇒ physics insights to build optimal observables

Example: Higgs tagging [Khosa, Marzani ’21]

Similarly:
- quark-gluon jets [Dreyer, Soyez, Takacs ’21]
- b-jets [Fedkevych, Khosa, Marzani, Sforza ’22]
Observables II: Jet Angularities

study family of observables

\[\lambda_{\alpha}^{\kappa} = \sum_{i \in J} \left(\frac{p_{T,i}}{p_{T,J}} \right)^\kappa \left(\frac{\Delta R_i}{R} \right)^\alpha \]

here: calculations need IRC safety, so \(\kappa = 1 \)

parameter \(\alpha \) ⇒ probe different kinematic regimes

stayed in different frameworks

[Ellis, Vermilion, Walsh, Hornig, Lee ’10] [Hornig, Makris, Mehen ’16]

[Kang, Lee, Ringer ’18] [DR, Caletti, Fedkevych, Marzani, Schumann, Soyez → see later]

reuse energy-correlations @ NLL [Larkoski, Salam, Thaler ’13] [Larkoski, Neill, Thaler ’14] [Banfi, Salam, Zanderighi ’04]

context:

[Les Houches 15/17/19]

[Larkoski, Thaler, Waalewijn ’14]

quark-gluon tagging

\[Z_\ell @ 13 \text{ TeV from Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes ’20} \]
Soft-Drop: Intro

[Larkoski, Marzani, Soyez, Thaler ’14]

idea: remove soft wide-angle contamination

method: decluster w/ C/A, remove softer branch if

$$\min(\rho_{T,i},\rho_{T,j}) < Z_{\text{cut}} (\frac{\Delta R}{R})^\beta$$

analytical understanding: [Larkoski, Marzani, Thaler ’15]

ρ_T fraction z_g, separation $\theta_g = R_g/R$ of splitting

\[\Rightarrow \] using concept of Sudakov safety

calculations available at NLL, NLL’ [Kang, Lee, Liu, Neill, Ringer ’19]

[Cal, Lee, Ringer, Waalewijn ’21]
Soft Drop: Application

[CMS '18] [ATLAS '17]

procedure:
1. soft-drop groom jet constituents
2. calc standard observable "after grooming"

example: jet mass after grooming

side note: also applicable to global event shapes
[Baron, Marzani, Theeuwes '18], [Marzani, DR, Schumann, Soyez, Theeuwes '19],
even in pp [Baron, DR, Schumann, Schwanemann, Theeuwes '20]
Automated calculations
(in the SHERPA framework)

Basic soft gluon resummation

▷ use well known CAESAR formalism
 [Banfi, Salam, Zanderighi '04]
▷ master formula for NLL resummation of rIRC safe global observables
 Note: similar work in MadGraph using SCET
 [Farhi, Feige, Freytis, Schwartz '15] [Balsinger, Becher, Shao '18]

Jet observable specifics

▷ modified wide angle behaviour
 [Dasgupta, Khelifa-Kerfa, Marzani, Spannowski '12]
 [Caletti, Fedkevych, Marzani, DR, Schumann '21]
▷ non-global logs [Dasgupta, Salam, '01]

Automation in SHERPA

▷ use available technology (PS integration, PDF evaluation etc.)
▷ interface to COMIX for colour exact insertions in multi-jet MEs
▷ final state fully differential in kin. and flavour → useful in matching
 [Banfi, Salam, Zanderighi '06] [Banfi, Salam, Zanderighi '10]

Soft Drop grooming effects

▷ well known in $v \ll z_{cut} \ll 1$ limit
▷ CAESAR-style formulas available
 [Baron, DR, Schumann, Schwanemann, Theeuwes '20]
Non-perturbative corrections

Setup for measurements: (i.e. CMS analysis in JHEP 01 (2022) 188)

- observables (i.e. jet angularities) measured on selected jet (leading p_T, y range etc.)
- In different energy-scale bins (i.e. p_T bin of selected jet)

Physical effects:

![Diagram showing cross section migration in p_T for λ_1 in $Z +$ jet production]

- Shift between p_T bins
- Shift in observable

Z+jet, anti-k_t, $R = 0.4$

$p_{T,jet} \in [120, 150]$ GeV

charged particles

NLO + NLL$'$ + NP

limit p_T migration

no p_T migration

NLO + NLL$'$ (PL)
Non-perturbative corrections

- define "transfer matrix" according to conditional probabilities
 \[T(v_{HL}, p_T^{HL}|v_{PL}, p_T^{PL}) \]
- easily extracted from MC (here: SHERPA)
Z+jet \sim quark jets

dijet \sim gluon jets

ratio $\frac{\text{gluon}}{\text{quark}}$ of distribution means
data well described by MC@NLO and NLO+NLL$'$+NP
\Rightarrow challenges traditional "quarks are better understood than gluons"
Better understanding of soft drop grooming

- resummation around transition point $\rho \sim z_{\text{cut}}$

 [Benkendorfer, Larkoski, '21]

- relax strict $v \ll z_{\text{cut}} \ll 1$ assumption $\Rightarrow v, z_{\text{cut}} \ll 1$

- towards full consistent resummation across full observable range

Non-global logarithms at NLL

- first calculations in [Banfi, Dreyer, Monni '21], [Banfi, Dreyer, Monni '21]

- often neglected piece in NNLL efforts, but last missing piece for automated calculations? (for example in a framework like [Banfi, McAslan, Monni, Zanderight '15])
Summary

- jet substructure as a rapidly growing field with close interplay between
 - experiment
 - theory
 - construction of methods
 - Monte Carlo / parton shower development

- examples:
 - jet angularities w/ different parameters as playground
 - soft-drop grooming to eliminate UE/NP corrections \rightarrow increase resummation regime

- Outlook:
 - automated NNLL?
 - range of groomed calculations?
 - NGLs?
Backup