#### Recent theory developments on jet substructure

#### Daniel Reichelt

Institute for Particle Physics Phenomenology, Durham University

February 15, 2022 at the LHC EW WG General Meeting

#### Overview

"event built from jets"  $\Rightarrow$  "jet built from constituents"

"cluster the event into jets"

→ "cluster jet into subjets"

- tagging
- trimming
- - → recursive
- collinear-drop
- ⊳ ...

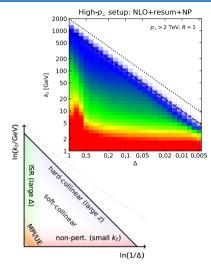
"observables from jets"

ightarrow "observables from constituents"

- jet mass
- angularities
- energy correlation functions
- jet pull
- ▶ Lund plane
- ▷ ..
- \* disclaimer: this is a non-exhaustive and biased list of examples

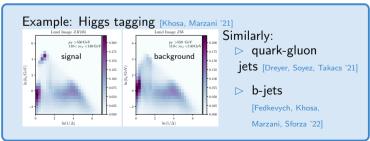
#### Overview

"event built from jets"  $\Rightarrow$  "jet built from constituents"


"cluster the event into jets"

→ "cluster jet into subjets"

- $\rightarrow$  cluster jet into subje
- tagging
- trimming
- - → recursive

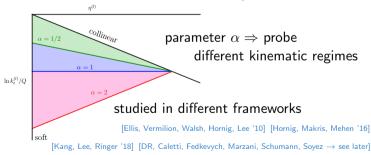

  - includes modified mass-drop
- collinear-drop
- > . . .

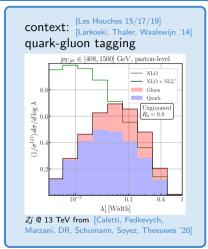
- "observables from jets"
- ightarrow "observables from constituents"
- jet mass
- angularities
- energy correlation functions
- jet pull
- ▶ Lund plane
- ▷ ..
- \* disclaimer: this is a **non-exhaustive** and **biased** list of examples



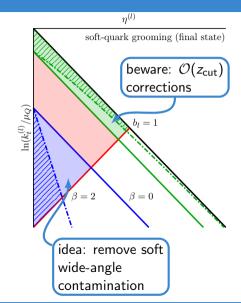
representation of single emission phase space

- ightarrow at LL uniform  $\Rightarrow$  predicted deviations
- uses:
  - 1. forward: resummed calculations / parton shower building
    - backwards: map cluster steps of final jets to Lund plane
       ⇒ physics insights to build optimal observables





## Observables II: Jet Angularities

study family of observables


$$\lambda_{\alpha}^{\kappa} = \sum_{i \in J} \left( \frac{p_{T,i}}{p_{T,J}} \right)^{\kappa} \left( \frac{\Delta R_i}{R} \right)^{\alpha}$$

here: calculations need IRC safety, so  $\kappa=1$ 

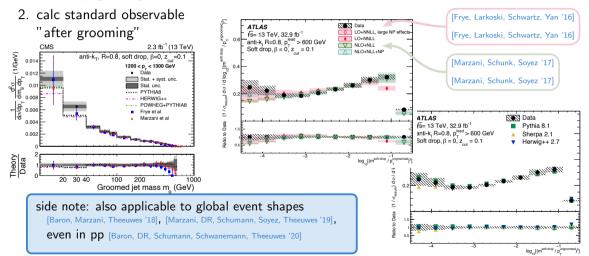




reuse energy-correlations @ NLL [Larkoski, Salam, Thaler '13] [Larkoski, Neill, Thaler '14] [Banfi, Salam, Zanderighi '04]



method: decluster w/ C/A, remove softer branch if


$$rac{\min(
ho_{T,i},
ho_{T,j})}{
ho_{T,i}+
ho_{T,j}} < z_{
m cut} \left(rac{\Delta R}{R}
ight)^{eta}$$

analytical understanding: [Larkoski, Marzani, Thaler '15]  $p_T$  fraction  $z_g$ , separation  $\theta_g = R_g/R$  of splitting ⇒ using concept of Sudakov safety calculations available at NLL, NLL' [Kang, Lee, Liu, Neill, Ringer '19] Pythia (perturbative) -0.8  $\beta = 1$  $^{\mathrm{g}}_{\theta} 0.6$  $^{\mathrm{g}}_{\theta} 0.4$ 0.2 0 -2.1 -1.4 -0.7 -0.7  $log_{10}(\theta_g)$  $log_{10}(\theta_g)$  $log_{10}(\theta_g)$ 

procedure:

example: jet mass after grooming

1. soft-drop groom jet constituents



[Gerwick, Höche, Marzani, Schumann '15] [Baberuxki, Preuss, DR, Schumann '19]

#### Basic soft gluon resummation

- □ use well known CAESAR formalism
   □ [Banfi, Salam, Zanderighi '04]
   □
- master formula for NLL resummation of rIRC safe global observables
   Note: similar work in MadGraph using SCET

[Farhi, Feige, Freytsis, Schwartz '15] [Balsinger, Becher, Shao '18]

## Jet observable specifics

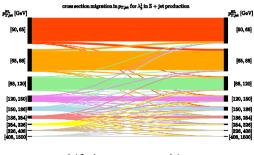
- modified wide angle behaviour [Dasgupta, Khelifa-Kerfa, Marzani, Spannowski '12] [Caletti, Fedkevych, Marzani, DR, Schumann '21]
- > non-global logs [Dasgupta, Salam, '01]

#### Automation in SHERPA

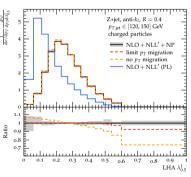
- use available technology (PS integration, PDF evaluation etc.)
- interface to COMIX for colour exact insertions in mulit-jet MEs
- ightharpoonup final state fully differential in kin. and flavour ightarrow useful in matching

[Banfi, Salam, Zanderighi '06] [Banfi, Salam, Zanderighi '10]

#### Soft Drop grooming effects


- ightharpoonup well known in  $v \ll z_{\rm cut} \ll 1$  limit
- CAESAR-style formulas available

[Baron, DR, Schumann, Schwanemann, Theeuwes '20]


Setup for measurements: (i.e. CMS analysis in JHEP 01 (2022) 188)

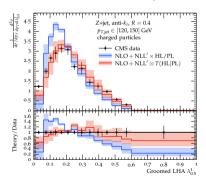
- $\triangleright$  observables (i.e. jet angularities) measured on selected jet (leading  $p_T$ , y range etc.)
- $\triangleright$  In different energy-scale bins (i.e.  $p_T$  bin of selected jet)

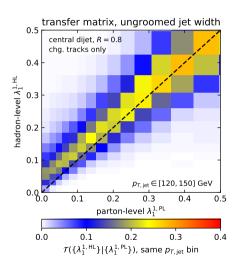
### Physical effects:



shift between  $p_{T}$  bins




shift in observable


#### approach:

define "transfer matrix" according to conditional probabilities

$$\mathcal{T}(v^{\mathsf{HL}}, p_T^{\mathsf{HL}}|v^{\mathsf{PL}}, p_T^{\mathsf{PL}})$$

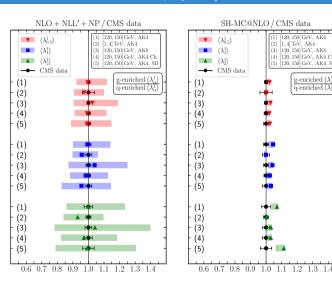
□ easily extracted from MC (here: SHERPA)





(2) [1, 4] TeV, AK4

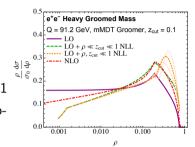
(3) [120 150] GeV. AK8


[120, 150] GeV, AK4 Ch

g-enriched  $\langle \lambda^1 \rangle$ 

g-enriched  $\langle \lambda^{1} \rangle$ 

(5) [120 150] GeV AK4 SD


- $\triangleright$  Z+jet  $\sim$  quark jets
- dijet  $\sim$  gluon jets
- ratio gluon of distribution means
- data well described by MC@NLO and NLO+NLL'+NP ⇒ challenges traditional "quarks are better understood than gluons"



## What next?

#### Better understanding of soft drop grooming

- ightharpoonup resummation around transition point  $ho \sim z_{
  m cut}$  [Benkendorfer, Larkoski, '21]
- - towards full consistent resummation across full observable range



#### Non-global logarithms at NLL

- often neglected piece in NNLL efforts, but last missing piece for automated calculations? (for example in a framework like [Banfi, McAslan, Monni, Zanderight '15])

# Summary

- jet substructure as a rapidly growing field with close interplay between
  - experiment

  - construction of methods
  - ▶ Monte Carlo / parton shower development
- examples:
  - jet angularities w/ different parameters as playground
  - ightharpoonup soft-drop grooming to eliminate UE/NP corrections ightarrow increase resummation regime
- Outlook:
  - □ automated NNLL?

  - > NGLs?

# Backup