
Standard Model Fit

Jens Erler

LHC EWWG General Meeting, February 15-17, 2022

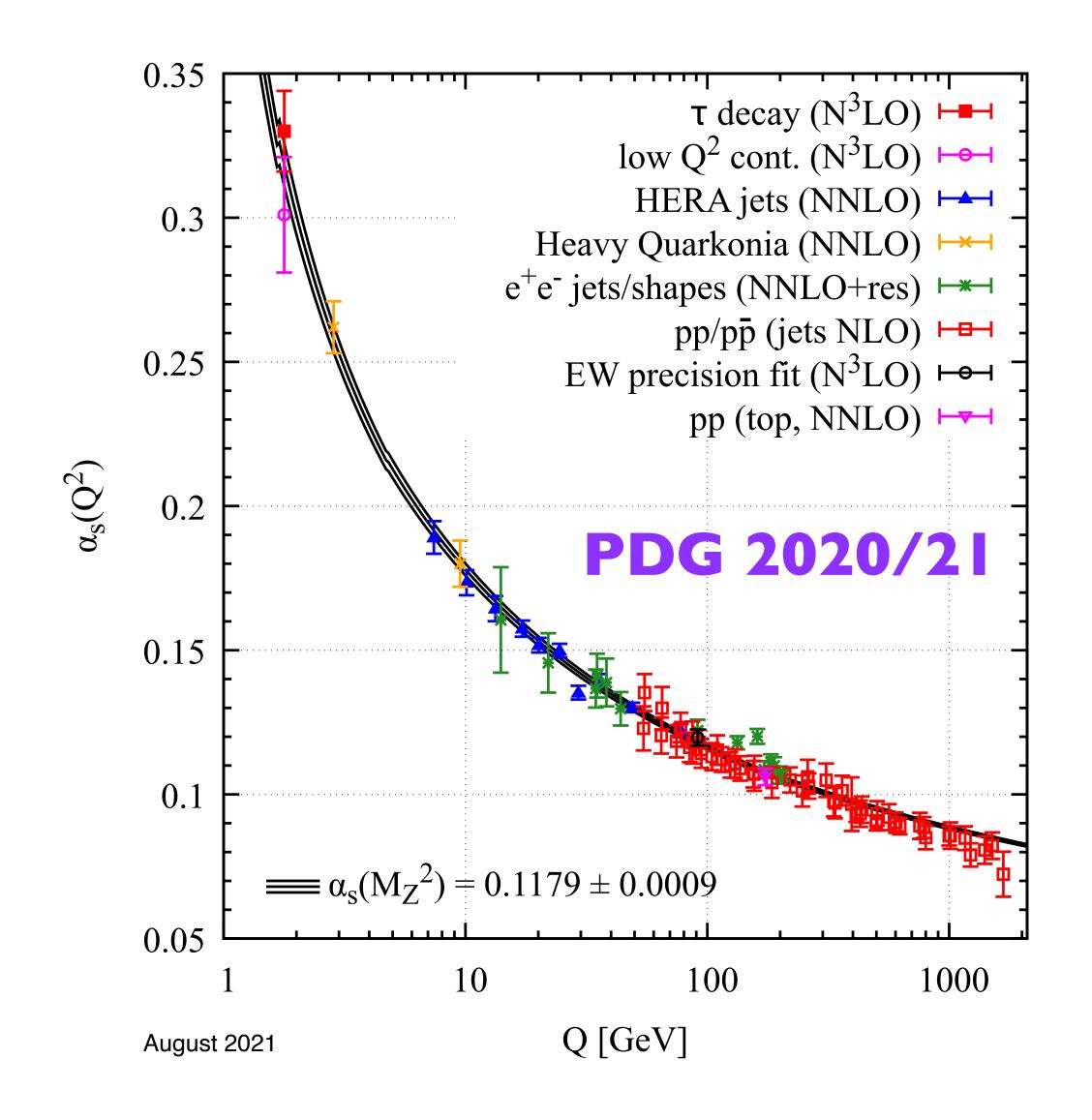
M_H – m_t today

$$\chi^2$$
/d.o.f. = 40.8/42
(before g_μ –2 update)

including correlated theory errors

Freitas & JE, PDG (2020)

Contents

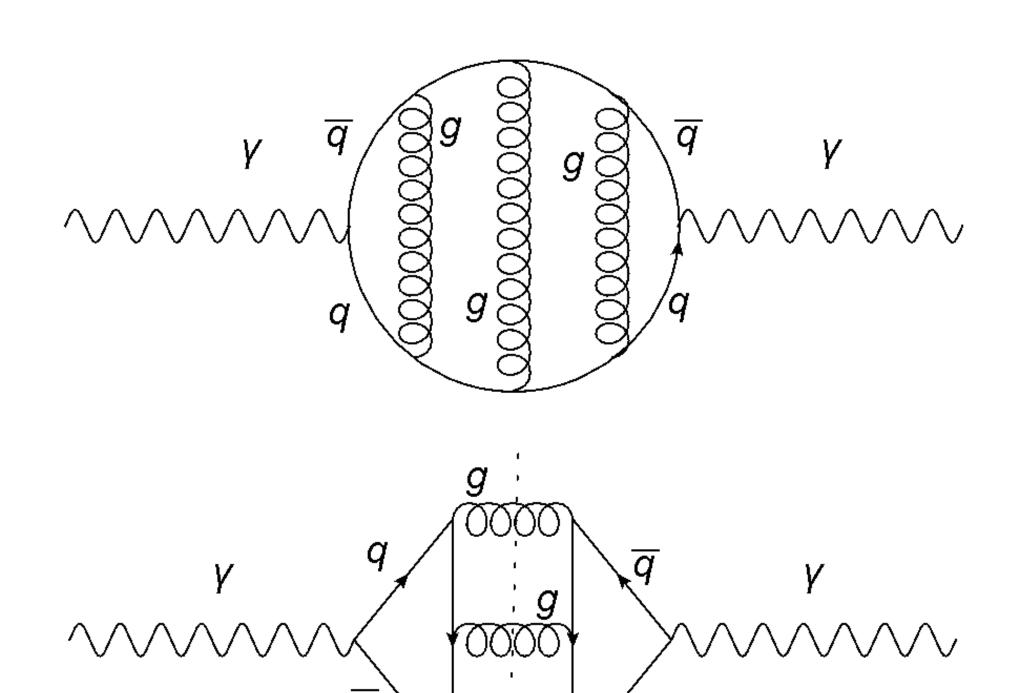

- * $\alpha_s(M_Z)$
- * Mw and Mz
- * $\sin^2\theta^{\ell}_{\text{eff}}$
- * m_t

 $\alpha_s(M_Z)$

α_s world average

- * only 3 determinations at N³LO
- * only Z pole value not dominated by QCD uncertainties

 → very clean
- * sensitive to many types of new physics especially if family non-universal (vertex corrections)
- * α_s from W decays also clean (N³LO) and less sensitive to new physics (except CKM non-unitarity)


α_s from the Z pole

$$R_V^q = R_A^q = 1 + \frac{\alpha_s(M_Z)}{\pi} + 1.409 \frac{\alpha_s^2}{\pi^2} - 12.77 \frac{\alpha_s^3}{\pi^3} - 80.0 \frac{\alpha_s^4}{\pi^4} + Q_q^2 \left[\frac{3}{4} - \frac{\alpha_s}{4\pi} - \left(1.106 + \frac{3}{32} Q_q^2 \right) \frac{\alpha}{\pi} \right] \frac{\alpha(M_Z)}{\pi}$$

for massless quarks (non-singlet)

$$\Gamma_Z^{\text{had}} \propto \rho \left(1 + \frac{\alpha_s(M_Z)}{\pi} + 0.79 \frac{\alpha_s^2}{\pi^2} - 15.52 \frac{\alpha_s^3}{\pi^3} - 69.3 \frac{\alpha_s^4}{\pi^4} \right)$$

after large (top quark driven) singlet corrections (Z boson only) starting at order $\alpha_{\rm s}^2$

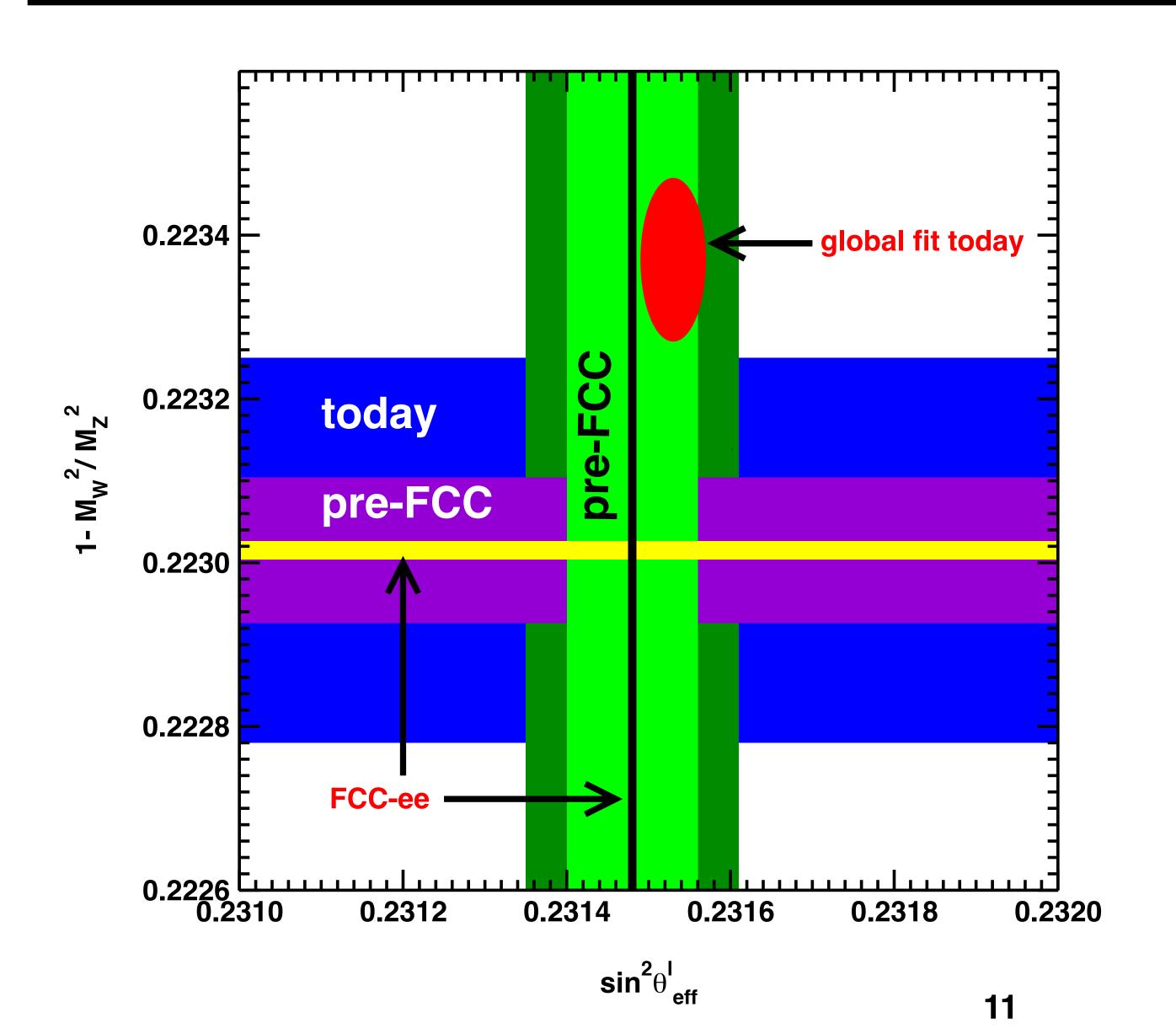
α_s from the Z pole

observable	$\alpha_{s}(Mz)$	comment
$\Gamma_Z = 2495.5 \pm 2.3 \text{ MeV}$	0.1215 ± 0.0048	recent ($\Gamma_Z = +0.3 \text{ MeV}$)
$\sigma_{had} = 41.481 \pm 0.033 \text{ nb}$	0.1201 ± 0.0065	recent ($\Delta \sigma_{had} = -60 \text{ pb}$)
$R_e = \Gamma_{had}/\Gamma_e = 20.804 \pm 0.050$	0.1295 ± 0.0082	
$R_{\mu} = \Gamma_{had}/\Gamma_{\mu} = 20.784 \pm 0.034$	0.1264 ± 0.0054	
$R_{\tau} = \Gamma_{had} / \Gamma_{\tau} = 20.764 \pm 0.045$	0.1157 ± 0.0072	
$B_W(had) = 0.6736 \pm 0.0018$	0.098 ± 0.025	new (LEP 2 + CMS)
combination	0.1223 ± 0.0028	
global fit	0.1185 ± 0.0016	includes $ au$ decays

electromagnetic beam-beam effects improved Bhabha X section (luminosity)

Voutsinas et al., arXiv:1908.01704 Janot & Jadach, arXiv:1912.02067

α_s improvement @ the LHC?


- * today: $\Gamma_W = 2085 \pm 42 \text{ MeV (LEP + Tevatron)} \rightarrow \text{no useful } \alpha_s \text{ constraint}$
- * α_s rule of thumb: $\Delta\Gamma_W \sim \Gamma_W(had)/\Gamma_Z(had)$ $\Delta\Gamma_Z \sim (1441/1745) \times 2.3$ MeV ~ 1.9 MeV
- * assuming: $\Gamma_W = 2090 \pm 2 \text{ MeV} \Rightarrow \alpha_s(M_Z) = 0.1203 \pm 0.0054$ (assuming CKM unitarity) possible at FCC-ee but unlikely at LHC \Rightarrow B_W(had)
- * LEP 2: $B_W(had) = 0.6741 \pm 0.0027$ CMS: $B_W(had) = 0.6732 \pm 0.0023$ combined: $B_W(had) = 0.6736 \pm 0.0018 \rightarrow \alpha_s(M_Z) = 0.098 \pm 0.025$
- * Some greedy reference values:
- * Run 3: $B_W(had) = 0.6752 \pm 0.0010 (1.5\%) \rightarrow \alpha_s(M_Z) = 0.1196 \pm 0.014$ HL-LHC: $B_W(had) = 0.6752 \pm 0.0004 (0.6\%) \rightarrow \alpha_s(M_Z) = 0.1196 \pm 0.0056$
- * $\Delta R_{\mu} = \pm 0.6\%$ $\rightarrow \alpha_{s}(M_{Z}) = 0.1196 \pm 0.0020$

Mw & Mz

Mw

group	Mw [GeV]	comment
ATLAS	80.370 ± 0.019	13.7 million W decays @ 7 TeV
LHCb	80.354 ± 0.032	new (2.4 million W decays @ 13 TeV)
LHC	80.366 ± 0.017	assumes 9 MeV (= LHCb PDF) common error
Tevatron	80.387 ± 0.016	CDF & DØ
hadron colliders	80.377 ± 0.013	assumes 7 MeV common PDF error
LEP 2	80.376 ± 0.033	includes low statistics threshold scan
direct	80.377 ± 0.012	world average
indirect	80.357 ± 0.006	1.5 σ
all data	80.361 ± 0.006	global fit

on-shell vs. effective weak mixing angle

 ΔM_W (LHC) $\approx 3.8_{stat} + 3.8_{syst} + 3.8_{PDF}$ MeV $\approx (5/3)^{1/2} \times 3.8$ MeV ≈ 5 MeV (for 3 detectors) based on

Azzi et al. arXiv:1902.04070

 $\Delta \sin^2\theta_W (LHC) \approx 10^{-4}$

Mw improvement @ the LHC?

- * today: $M_W = 80.377 \pm 0.012 \text{ GeV}$
 - 11 M_H (indirect) = 92⁺¹⁹₋₁₇ GeV

M_H (direct) = 125.14 ± 0.15 GeV (1.5σ tension)

- * assuming $M_W = 80.377 \pm 0.005$ GeV from LHC
 - $^{"}$ M_H (indirect) = 88 ± 12 GeV (2.8 σ tension)
- * assuming instead M_W = 80.389 ± 0.005 GeV from LHC
 - $^{"}$ M_H (indirect) = 75 ± 11 GeV (3.9 σ tension)
- * assuming in addition negligible theory errors
 - \longrightarrow M_H (indirect) = 74 ± 9 GeV (4.6 σ tension)

Mz improvement @ the LHC?

- today (LEP I): M_Z = 91.1876 ± 0.0021 GeV (resonant depolarization)
 M_H (indirect) = 92⁺¹⁹₋₁₇ GeV
 M_H (direct) = 125.14 ± 0.15 GeV (1.5 σ tension)
 assuming: M_Z = 91.1897 ± 0.001 GeV from LHC (Iσ higher)
 - $\rightarrow \Delta M_H \text{ (indirect)} = 3.3 \text{ GeV}$
 - m→ non-negligible impact
 - important cross-check for LEP energy calibration (corrections for sun, moon, water level in lake Geneva, trains...) what if something was missed?

sin²0w

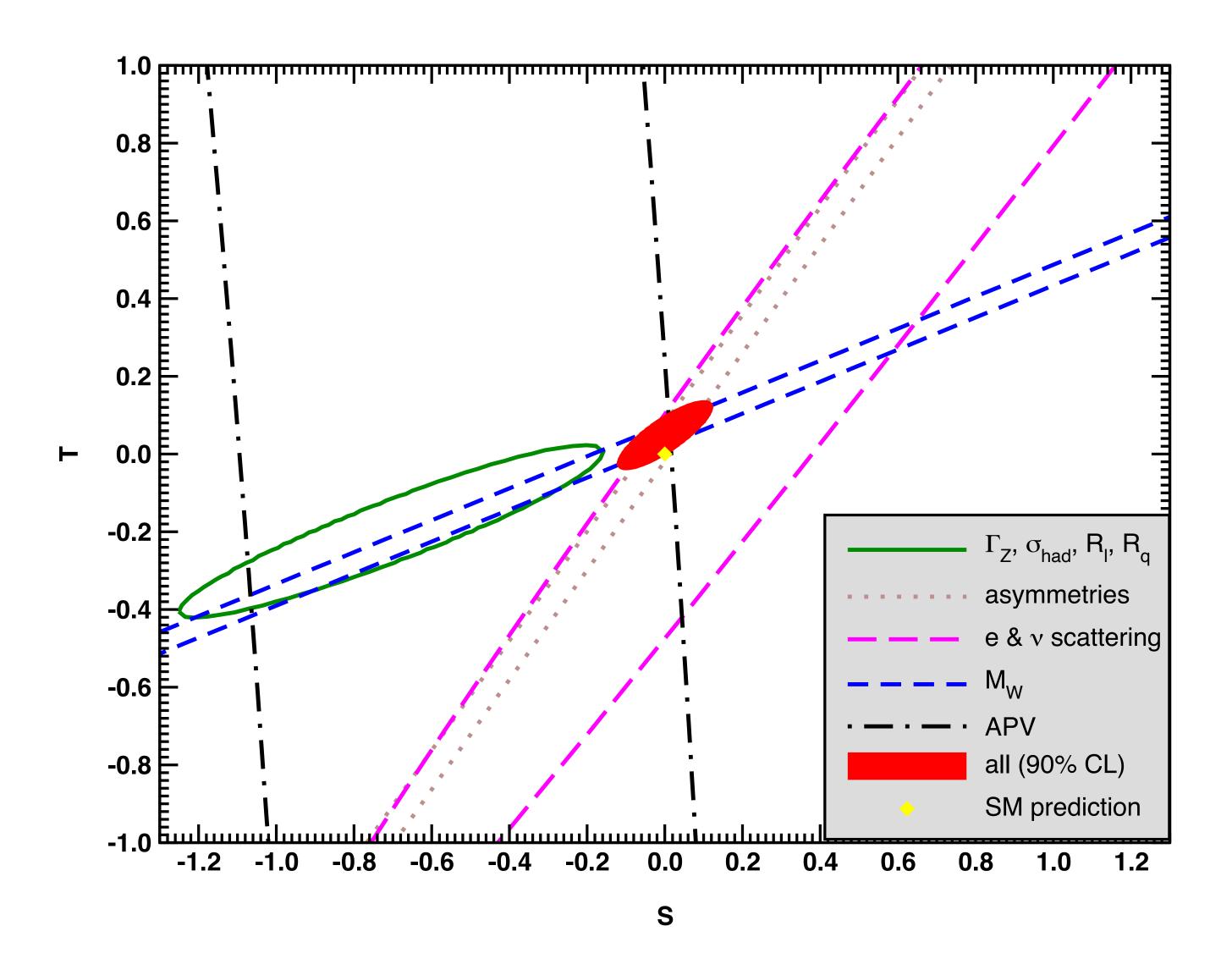
$\sin^2\!\theta^\ell_{ m eff}$

group	$sin^2 heta^\ell_{eff}$	comment
ATLAS	0.2308 ± 0.0012	4.8 fb ⁻¹ @ 7 TeV
ATLAS	0.23140 ± 0.00036	15 million lepton pairs @ 8 TeV (20.1 fb ⁻¹)
CMS	0.23101 ± 0.00053	13.1 million lepton pairs @ 8 TeV
LHCb	0.23142 ± 0.00106	I fb ⁻¹ @ 7 TeV and 2 fb ⁻¹ @ 8 TeV
LHC	0.23129 ± 0.00033	assumes common ±0.00024 (= ATLAS PDF)
Tevatron	0.23148 ± 0.00033	I.8 million lepton pairs @ CDF and DØ
LEP I	0.23184 ± 0.00021	includes theory update for A _{FB} (b)
SLC	0.23098 ± 0.00026	polarized e- beam (2.6 σ lower than LEP)
low energy PV	0.23151 ± 0.00076	APV, SLAC–E–158, (PVDIS & Qweak)@JLab
direct	0.23147 ± 0.00013	world average
indirect	0.23154 ± 0.00004	SM prediction
all data	0.23153 ± 0.00004	global fit

$\sin^2\theta\ell_{\text{eff}}$ improvement @ the LHC?

- * today: $\sin^2\theta_{\text{eff}} = 0.23147 \pm 0.00013$
 - M_H (indirect) = 92^{+19}_{-17} GeV M_H (direct) = 125.14 ± 0.15 GeV (1.5 σ tension)
- * assuming $\sin^2\theta_{\text{eff}} = 0.2316 \pm 0.0001$ from LHC
 - $^{"}$ M_H (indirect) = 107 ± 16 GeV (tension reduced to 1 σ)

Mt


mt

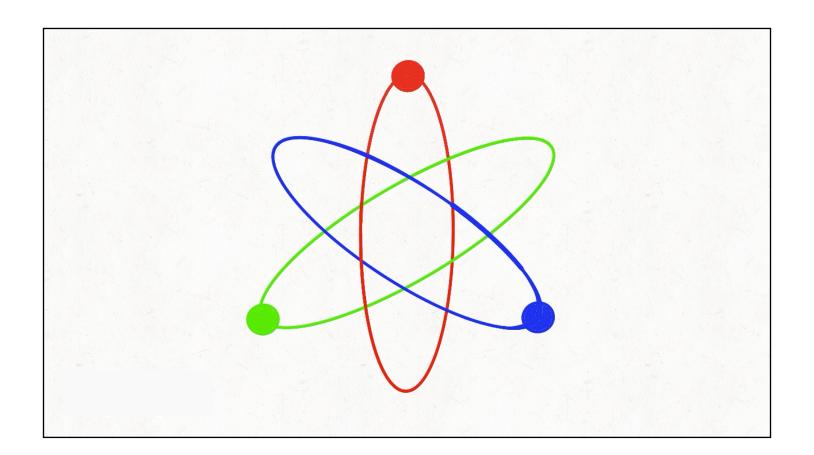
group	mt [GeV]	comment
ATLAS	172.69 ± 0.48	Run I
ATLAS	174.48 ± 0.78	Run 2 (lepton + jet channel)
CMS	172.43 ± 0.48	Run I
CMS	172.26 ± 0.61	Run 2 (hadronic channels)
CMS	172.33 ± 0.70	Run 2 (di-lepton channel)
Tevatron	174.30 ± 0.64	CDF & DØ
direct	$172.89 \pm 0.28 + \Delta m_{MC}$	assumes common ±0.17 GeV (= ATLAS Run 2 theory)
indirect	176.0 ± 1.9	Ι.6 σ
all data	173.2 ± 0.6	assumes $\Delta m_{MC} = 0 \pm 0.52$ GeV

mt improvement @ the LHC?

- * today: $m_t = 172.89 \pm 0.28$ GeV + Δm_{MC} very precise but there are discrepancies (e.g. 2.8 σ or 2.73 GeV between DØ and CMS Run 2 lepton + jets channels)
- * difficult to estimate $\Delta m_{MC} = m_{pole} m_{MC}$ Hoang, Plätzer & Samitz, arXiv:1807.06617
- * Δ mmc expected to be of order $\alpha_s(Q_0)$ Q_0 with a low scale $Q_0 \sim \mathcal{O}(1 \text{ GeV})$ but its value unknown in hadron collider environments $\alpha_s(Q_0)$ $Q_0 = 0.52$ GeV for reference $Q_0 = \Gamma_t = 1.42$ GeV
- * however, Δm_{MC} only bookkeeping device: only MS-bar $\bar{m}_t(\bar{m}_t)$ (short-distance) matters
- * $\Delta m_t = 1 \text{ GeV} \rightarrow \Delta M_H \text{ (indirect)} = 8.6 \text{ GeV}$
- * $\Delta m_t = 1 \text{ GeV} \rightarrow \Delta \rho = -10^{-4} \rightarrow \text{mass splittings within new iso-doublets, SUSY, triplet VEVs...}$
- * alternative: differential $t\bar{t}$ production cross-sections at NNLO (easier to interpret) Catani et al., arXiv:1906.06535

S and T

S	0.00 ± 0.07
Τ (ρ)	0.05 ± 0.06
$\Delta \chi^2$	- 3.9


- * $M_{KK} \gtrsim 3.6 \, \text{TeV}$ in warped extra dimension models
- * M_V ≥ 4 TeV in minimal composite Higgs models

Freitas & JE, PDG (2020)

Conclusions

- * Only part of Run 2 precision data analyzed, but LHC already entering its high-precision era
- * recent LEP luminosity update confirms $N_V = 3$ active neutrinos, but α_s from Z pole now somewhat puzzling \rightarrow need more (better) W and Z decay measurements
- * greatest opportunity is M_W as there remains a small tension with the SM so far no 8 or 13 TeV data exploited by ATLAS and CMS → should be a priority
- * currently $\sin^2\theta_W$ faces PDF bottleneck exploit complementary PDF dependences (M_W, high rapidity, $pp\ vs.\ p\bar{p}$) anti-correlations!
- * m_t nominally quite precise, but kinematic reconstruction comes with severe strong interaction uncertainties.
 - There are also experimental discrepancies alternative determinations desired

Thank You

