Overview of experimental multiboson results

Max Goblirsch-Kolb (Brandeis)

LHC EW General meeting February 16, 2022

Introduction

Multiboson measurements at the LHC: **Came a long way** since the early days

Today: Comprehensive suite of multiboson results

A few **key directions** for current efforts:

- Inclusive diboson production (agnostic of production mode)
 - Well established, differential measurements achieved
 - Background to other measurements
- Triboson production
 - Recently experimentally established
 - Strong interplay with **Higgs sector**
- Electroweak VVjj production
 - Interest in Vector-boson scattering, triple/quartic gauge couplings
 - Probe of EW sector
 - Competition / interference with strong production
 - Some overlap with triboson ("s-channel VVjj")

CMS, $\sqrt{s} = 7 \text{ TeV}$, L = 36 pb

ZZ

This talk:

Summary of recent results with **focus on theoretical limitations / hindrances / problems Not** going to cover interpretations (EFT, aTGC/QGC, etc) – time!

Differential WW

JHEP 06 (2021) 003 Phys. Rev. D 102 (2020) 092001 Eur. Phys. J. C 79 (2019) 884

WW measured differentially by ATLAS and CMS using partial and full (ATLAS) run-2 data

- Exploit leptonic WW decay modes dominant backgrounds: top, DY
 - Suppression strategy includes **b-veto**, **DF lepton pairs**, Z-veto (for SF)

Measurements becoming **more inclusive** over time:

Jet veto (ATLAS, 36/fb) \rightarrow 0,1j cut-based + MVA jet multiplicity (CMS, 36/fb) \rightarrow inclusive 1+jets (ATLAS full R2)

CMS: Use of a **MVA** (random forest) discriminant to improve purity for jet multiplicity measurement

- → Price: Increased sensitivity to WW p_T modelling uncertainties.
- → "Classical" cut based approach used for remaining fiducial XS measurements (0/1j)

ATLAS: Lower purity than CMS

 precise data-driven differential estimate of top background using in-situ b-efficiency measurement

Differential WW

 Z/γ^*

IHEP 06 (2021) 003 Phys. Rev. D 102 (2020) 092001 Eur. Phys. J. C 79 (2019) 884

ATLAS

Inclusive and differential cross-sections extracted

- Unfolding methods vary across experiments
- ATLAS: Bayesian iterative
- CMS: Likelihood unfolding and matrix inversion for Niets

High available statistics: Measurements becoming systematically limited

- Main uncertainties currently **experimental** in particular **jet calibration**
- Could profit from advances in top modelling dominant background
 - Partially mitigated by use of data-driven techniques
- Impact of signal modelling: Comparable to statistics for total XS (CMS), but below experimental sources

ATLAS Sherpa errors: Scale uncertainties (2+3j @ LO ME)

Total Uncertainty

Differential WZ

<u>arXiv:2110.11231</u> (submitted to JHEP) <u>Eur. Phys. J. C 79 (2019) 535</u>

Measurements exploit **3I** final state

- High purity main backgrounds: ZZ (missed lepton), ttZ,tZq + non-prompt leptons
 - Data-driven non-prompt leptons, other backgrounds normalized to data in control regions

Measured fid and total XS well predicted by NNLO QCD+NLO EW calculations

- Consistent across experiments
- Uncertainties limited by (experimental) systematics negligible impact of theory on fid. XS extraction

Extraction of **charge asymmetry** – major cancellation of uncertainties.

Allows to probe PDFs

ATLAS results comparable – showing CMS (larger sample)

Differential WZ

<u>arXiv:2110.11231</u> (submitted to JHEP) <u>Eur. Phys. J. C 79 (2019) 535</u>

CMS

0.4

0.3

0.2

0.1

Extraction of **polarization** fractions using MC templates

- Templates generated by reweighting in full phase-space (analytical description) \(\frac{\xi_0^{0.5}}{1} \)
- Presence of longitudinally polarized W/Z observed at $> 5\sigma$ at CMS
 - 4.2σ evidence at ATLAS with partial data
 - Use W mass constraint to resolve escaping neutrino

Extraction of **differential XS** by both collaborations

137 fb⁻¹ (13 TeV)

Observed, 68% CL Observed, 95% CL

Observed, 99% CL Best fit Powheg+Pythia

ZZ (and inclusive 4-leptons)

ZZ (4l): High-purity final state

Main backgrounds: non-prompt leptons, ttV, triboson

Interesting: **Complementary** approaches in most recent publications:

CMS: Focus on ZZ production, ATLAS: Inclusive 4l production

Fiducial (and for CMS, total ZZ) XS extracted – compatible with SM **Differential** cross-sections extracted using matrix inversion (CMS) or iterative Bayesian (ATLAS)

Role of NLO EW corrections at high m₄₁!

Complementary strategies!

Detour: Off-shell Higgs production

Interesting feature in ZZ continuum: Effect of s-channel Higgs diagram

- **Destructive** interference with gg→ZZ affects ZZ lineshape at high mass
 - Most pronounced above 2m_{top}
- Sensitive to off-shell Higgs signal strength
 - Under certain assumptions: Use to constrain Higgs width

Recent CMS result: First evidence for off-shell Higgs contribution

- Combination of 4l and 2l2v
- Sensitivity enhanced using matrix element discriminants

Theory uncertainties on **ZZ production**: Among the **leading systematics**

• Both qq→ZZ and (higher-order) gg→ZZ – hard to constrain using data

• Use of jet information (VBF Higgs): Jet modelling in ZZ production

→ Advances will benefit future measurements

arXiv:2202.06923 (submitted to Nature)

Total, no off-shell qq+EW SM total

Triboson observations

First massive triboson observation: CMS, combining WWW/WWZ (+WZZ/ZZZ)

Combined

www wwz

> WZZ ZZZ

- Using SS2L / 3L for WWW; 4L for WWZ, 5/6L for WZZ/777
- Discovery driven by WWW/WWZ (3.3/3.4σ)

Recently: **Standalone WWW observation** in ATLAS

- Again, combination of SS2L and 3L channels
- 8.0 (5.4) σ observed (expected)
- Measured signal strength ~2.6σ above NLO QCD still within CMS errors

A few common features / challenges

- WZ diboson now a background non-negligible modelling uncertainty
 - Though (still) statistically limited
 - Partially mitigated by normalization to data (CRs)
 - Second leading systematic behind non-prompt background
- Important role of s-channel WH→WWW* production in interpretation
 - Depending on analysis, 30-40% of total triboson yield
- Discovery sensitivity enhanced by multivariate discriminants (BDT) in both analyses

Phys. Rev. Lett. 125 (2020) 151802 arXiv:2201.13045 (submitted to PRL)

Role of WZ /ZZ as a background process!

Electroweak production – VBF / VBS

Of particular interest: Vector boson scattering

- Important role of triple / quartic gauge couplings
- Sensitive to EWSB, close relation to Higgs sector

Even at LHC luminosities, rare process

• Typically, $O(\alpha_{FW}^4)$ x decay BR

'Classic' signature: VBS jet topology

- Two forward jets in opposite hemispheres, high m_{ii} , little jet activity in rapidity gap
- Challenge for modelling in particular when fitting m_{ii} or vetoing gap jets

Strong VV+jj production is now a key background

- > Jets either from **hard scatter**, or (rarely) from **pileup** activity
- Gives rise to **modelling uncertainties** for EW signal extraction
- Interference with the EW signal

10

Suppressing QCD diboson – same-sign WW

Phys. Rev. Lett. 123 (2019) 161801 Phys. Lett. B 812 (2020) 136018

Same-sign WW: Strong production suppressed to $\mathcal{O}(\alpha_S^2)$

- > EW process more enriched than in other channels
- Observation already achieved in both experiments using partial Run-2 data

Run-2 data
Key backgrounds: **WZ** (missed l.), non-prompt leptons, Vγ (conversions and MC normalization in ξ control regions

Recent **CMS** result: Measurement of W **polarization fractions**

- Use of BDT to enhance longitudinal against transverse components
- Limits on W₁W₁, absence of longitudinal W disfavoured at 2.3σ

Even if strong WW suppressed: **Non-negligible theory uncertainties**

- Strong WW normalization and interference with EW component
- WZ modelling
- Acceptance and shape predictions for EW ssWW signal
- **NLO EW** corrections to signal sizeable effects
 - Fairly recent adoption still in progress

12

Opposite-sign EW WW

Recent CMS measurement: WW VBS in *opposite-sign* final states

Very large ttbar background, strong WW more prominent as well

- Separation of flavor channels and use of MVA (NN) in eµ region maximises sensitivity
- DD estimate of non-prompt leptons and control-region normalisation of ttbar / DY

Significant **theory** contribution to uncertainties

- Scale uncertainties in ttbar background (NLO)
- Signal modelling for VBF

Observation established at 5.6σ – cross-section consistent with the SM

Electroweak WZ+jj

Electroweak WZ+jj **established** in **3I** final state by both experiments

Use of MVA techniques (BDT) to enrich against strong production

Recent addition: First evidence of EW WZ in **semihadronic** final state

Phys. Lett. B 793 (2019) 469
Phys. Lett. B 809 (2020) 135710
Phys. Rev. D 100 (2019) 032007
arXiv:2112.05259 (submitted to PLB)

Semihadronic search: Combine **resolved 4-jet** with "boosted" **dijet + large-R jet** topologies

- Large W+jets and top backgrounds
- Signal enhancement using **DNN** classifiers

Result: 4.4 σ evidence of EW process.

 Also perform simultaneous measurement with strong process

Again: Large theory uncertainties – above experimental and statistical sources

Electroweak ZZ+jj

Textbook example of strong vs EW separation problem: EW ZZ

- 4l final state dominated by **strong** + EW ZZ
 - EW enhanced against strong using **multivariate** discriminants (ME for CMS, BDT for ATLAS)
 - ATLAS: Addition of **semileptonic** (llvv) decays to the search
 - WZ, top, WW background from MC, normalized to data

EW signal successfully extracted:

- **Evidence** (4.0σ) at CMS
- **Observation** (5.5σ) at ATLAS

with fiducial cross-sections consistent with SM

Currently, **statistically** limited

- However: ZZ modelling among top systematics
 - Both for EW signal and for QCD process
- Again, sizeable NLO EW effects predicted
- Stand to profit from modelling advances as Run-3/4 dataset is collected

Electroweak Zy

Recent results in **EW Zy**:

- **2-lepton** decay mode **observed** by both experiments
- invisible Z decay observed by ATLAS

Key non-diboson background: **Z+jets** with non-prompt photon

- Estimated using **data-driven** techniques in both experiments
- For invisible decay: Additional background from W decays
 - Lost leptons constrained by control region data

Enrichment against \mathbf{QCD} production using $\mathbf{m_{ii}}$ spectrum

All measurements observe signal strength consistent with SM
 CMS: Differential measurements using likelihood-based unfolding

Common feature: Large theory uncertainties

- Dominant source besides statistics and jets (CMS)
- > Split ~equally between strong and EW modelling

Phys. Rev. D 104 (2021) 072001 ATLAS-CONF-2021-038 Eur. Phys. J. C 82 (2022) 105

A different approach to VBS – photon-induced WW

Photon-Photon scattering: Can leave initial protons intact

Unique topology: Initial protons either escape intact or fragment outside tracking detector acceptance

➤ Signature of W decay products in **isolation of other charged-particle activity**

Strategy based on **track counting**:

Count **additional charged tracks** n_{trk} within **1mm** of the lepton pair vertex

 \triangleright Select **signal** by **vetoing** additional tracks ($n_{trk} = 0$)

Requires **excellent understanding** of pileup and underlying event properties!

- Pileup tracks: Reduce signal efficiency
- Underlying event: Determines background rates

Data-driven corrections to simulation to describe collision data

ightharpoonup Dedicated auxiliary measurement of **charged particle production** in Z->II as function of boson p_T

Phys. Lett. B 816 (2021) 136190

A different approach to VBS – **photon-induced** WW

Phys. Lett. B 816 (2021) 136190

Main surviving background after selection: Strong **WW** production

- Further sources: Non-prompt leptons and DY (tautau)
 - Data-driven estimate of non-prompt, constraint of DY to data in low-p_T CR

Observe photon-induced process at **8.4\sigma**, signal strength (1.33) **compatible** with **SM** prediction

Resulting **fiducial cross-section** of 3.13 ± 0.31 (stat.) ± 0.28 (syst.) fb agrees with predictions after accounting for dissociative contributions and survival factor

Uncertainties include non-negligible **theory** component

- Signal and strong WW modelling
- This time: From underlying event rather than jet observables

Further potential for this type of measurement – e.g. proton tagging

Summary

Rich diboson programme established at the LHC – barely able to scratch the surface in this talk!

From a modelling perspective: **Inclusive diboson** measurements fairly "safe"

- Experimental uncertainties tend to dominate over modelling for direct measurement
- Improved modelling still beneficial: Role as **background** in other measurements
 - Both within the diboson area and outside (BSM searches, Higgs)

Triboson searches see inclusive dibosons as a **background**

• Depending on choice of sensitive observables, modelling can become a limitation with high statistics

Largest potential from modelling improvements: **Electroweak** and **VBS** measurements

- Strong diboson production often dominant background
- Reliance on precise modelling of jet observables both in EW signal and strong background
- Will profit as availability and adoption of higher-order signal corrections increases