

Reporter: Ziming Wang

Z. Wang, L. Shao, and C. Liu

The Astrophysical Journal, 921:158

- I. Introduction
- **II**. Birefringence of Gravitational Waves
- III. Constraints on the Lorentz Invariance Violation Coefficients
- IV. Results and Summary

PKU I. Introduction

Ziming Wang (王子铭)

- Lorentz invariance plays a fundamental role in modern physics
- However, the Lorentz symmetry may break at some yet unknown energy scale
- Originated from extreme astrophysical environments, Gravitational Waves (GWs) provide fantastic approaches for testing the Lorentz symmetry
- The Standard-Model Extension (SME) is a powerful and popular framework to explore Lorentz Invariance Violation (LIV)

PKU I. Introduction

- Physical objects : Gravitational waves
- Framework : SME

Ziming Wang (王子铭)

- Phenomena : Birefringence of GWs
 - Differences of the arrival times between two modes of GWs
 - Splitting of detected GW waveforms
- Units : Natural units ($\hbar = c = 1$)

M. Mewes, Phys. Rev. D 99, 104062 (2019)

March 19 2022

4/11

PKU II. Birefringence of GWs

• Phase speed of GWs in SME

$$v_{\pm} = 1 - \varsigma^{0} \pm |\vec{\varsigma}|$$
where $|\vec{\varsigma}| \equiv \sqrt{|\varsigma_{(+4)}|^{2} + |\varsigma_{(0)}|^{2}}$ birefringence term
M. Mewes, Phys. Rev.
D 99, 104062 (2019) $\varsigma^{0} = \sum_{djm} (-1)^{j} \omega^{d-4} {}_{0}Y_{jm}(\hat{p}) k^{(d)}_{(I)jm},$
 $\varsigma_{(+4)} = \sum_{djm} (-1)^{j} \omega^{d-4} {}_{-4}Y_{jm}(\hat{p}) \left(k^{(d)}_{(E)jm} + ik^{(d)}_{(B)jm}\right)$
 $\varsigma_{(0)} = \sum_{djm} (-1)^{j} \omega^{d-4} {}_{0}Y_{jm}(\hat{p}) k^{(d)}_{(V)jm}.$
mass dimension d spin-weighted
spin-weighted
spherical harmonics SME coefficients
or LIV coefficients)

PKU Time Difference between Two Modes

 Assuming that gLIV mainly occurs at a specific dimension, in an expanding universe, the **theoretical** time difference between two modes

Now there is "no" splitting in the detected signal, we assume that the observed time difference between two modes satisfies
 L. Shao, Phys. Rev. D 101, 104019 (2020)

Modes satisfiesL. Shao, Phys. Rev. D 101, 104019 (2020) $|\Delta t| \leq \frac{1}{\rho f}$ (2)network signal-to-
noise ratioGW frequency at the
amplitude peakZiming Wang (王子铭)March 19 2022

PKU III. Constraints on the LIV Coefficients

- Take *d* = 5 for example. At mass dimension 5, there are 16 independent components in total
- Based on Eqs. (1-2), for the *i*-th GW event we construct an inequality of the SME coefficients
 only depend on the

$$\left|\sum_{jm} a_i^{jm} k_{(V)jm}^{(5)}\right| \le \frac{1}{\rho_i f_i}$$

→ GW event
 parameters

Every GW event gives one limit on the SME coefficients.
 These combinations are linearly independent because
 GW events scatter in different sky areas

Ziming Wang (王子铭)

PKU Multiple Events

Ziming Wang (王子铭)

At the time of previous work, one only have a few events to constrain the SME coefficients
 V. A. Kostelecký and M. Mewes, Phys. Lett.
 L. Shao, Phys. Rev. D 101, 104019

B 757, 510 (2016)

- However, there are 50 events in the whole GWTC-1 and GWTC-2 catalog
 B. P. Abbott *et al.*, Phys. Rev. X, 9, 031040 (2019); 11, 021053 (2021)
- Now we can completely break the coupling among the SME coefficients (at some specific dimension) for the first time !

(2020)

PKU Break the Degeneracy among Coefficients

Ziming Wang (王子铭)

For every GW event, the inequality gives an area between two hypersurfaces symmetrical about the origin

The 50 pairs of hypersurfaces can enclose a closed region where every coefficient is bounded

March 19 2022

PKU IV. Results and Summary

Ziming Wang (王子铭)

- To obtain the distribution of these SME coefficients, one requires the distribution of the "measured" time delay
- Assuming that the "measured" time delay obeys a Gaussian normal distribution with $\mu = 0$ and $\sigma = 1/(\rho f)$

March 19 2022

10/11

PKU IV. Results and Summary

Summary

- LIV will lead to the birefringence of GWs
- LIV can be described by SME coefficients
- Multiple GW events can break the degeneracy among coefficients

11/11

Thanks for listening!

•PEKING UNIVERSITY• Ziming Wang (Email: 1900011622@pku.edu.cn) 2022/3/19

