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Rotating black holes
(plan for lecture 2)

Spherical black holes

Adding slow rotation: Lense-Thirring
spacetimes

Kerr geometry and its miraculous
properties

Black holes in higher dimensions



I) Spherical black holes



Schwarzschild solution (1916)
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Birkhoff’s theorem: This is the most general spherically
symmetric solution of vacuum Einstein equations.

Proof: start with a general spherical ansatz:
dr® 2m(r, t)

ds® = —e* fdt* + T +r2dQ*, f=1- . — Y =(r 1)
. Einstein equations
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. By redefining time, we eliminate 1) = Q/J(t)



Schwarzschild solution (1916)

. Metric outside of spherical objects

QpHERICAL ATAR
VNN NN

‘T}w =0

 iitn VACUUM METRIC
QoLUTION OUTCI pE 1€

2 _

Ok TV COHWARZCCH LD

R>>n+

. Black hole solution (two singularities)

* Horizon 7" = T — 2M (coordinate singularity)

« Curvature singularity 1 — 0

48 M?

(resolved in QG?)



IT) Adding slow rotation:
Lense-Thirring

spacetimes




Lense-Thirring spacetime (1918)
J=aM
dr?
ds® = — fdt® + e + 2a(f — 1) sin® Odtde
+ % (sin? 0do* + db?), f=1-— =M

r

rotating body

. Spacetime outside a slowly rotating body
. Approximate (linear in a) vacuum solution of EE
. Linear in a approximation to Kerr (1963)

. After proper “modification” admits hidden symmetries
(see Finn’s talk)

. Encodes gravitomagnetic effects



Frame draaqin ravitomagnetism

= general-relativistic effect due to the motion (in
particular rotation) of matter and gravitational waves,
analogous in a way to electromagnetic induction.

. Already Iin the weak field approximation
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Frame draggin ravitomagnetism

e Lens-Thirring (1918)

C.’ ) . “radially infalling geodesic”
7 experiences “Coriolis type force”
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. Gyroscope precession ("Larmor precession” due to
gravitomagnetic field)



Frame draggin ravitomagnetism

e Existence of a BH ergosphere

‘ Example of extremal frame
dragging: particle inside the

Event horizon
ergosphere has to corotate
with the black hole

« Astrophysical applications

(<D
e
(<D
=
o
(%3]
o
(@)]
=
Ll

Bardeen-Petterson effect — aligning of the
accretion disc along the black hole spin axis

Precession of orbits of stars near a supermassive
black hole (back reaction on BH spin)



The Gravity Probe B Experiment

Everitt; et al. "Gravity Probe B: Final Results of a Space Experiment
to Test General Relativity". Phys. Rev. Lett. 106 (22): 221101 (2011)

(o 000011 degree'slyearj

Guide star

IM Pegasi
(HR 8703) °

Geodetic effect
6,606 milliarcseconds/year
(0.0018 degreesl/year)

Measured Predicted
Geodetic precession 6602 = 18 6606
(mas)
Frame-dragging ST-2x 7.2 39.2
(mas)

https://physics.aps.org/articles/v4/43




ITT) Kerr geometry and its
miraculous properties



Kerr geometry

« Unique vacuum solution of Einstein equations describing a
rotating black hole in 4d

ﬁ)

Ergosphere

Event horizc)

| Roy Patrick Kerr

* Discovered in 1963 by Kerr (4 years before Wheeler coins the
term “black hole”).

* Provided cosmic censorship, Kerr solution is a final
configuration of gravitational collapse — generic in our Universe.



Kerr geometry
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« Possesses two parameters: mass and rotation (no hair
theorem)

* no (physical) interior solutions are known — interpretation
as field outside rotating objects is questionable



Remarkable properties

e Geodesic motion Is completely integrable

 The metric Is stationary and _ _
axisymmetric: ’ k = 0 , T = 890

gauiu’ = -1, ku®=—-E, meu®*=1L

« 1968 Carter discovers a mysterious constant of motion
which results in a complete integrability of geodesic motion

Ku'u’ = K




Carter’s constant derivation (Exercise)
* Consider Hamilton-Jacobi Hg o8 0S OS

equation BN + g 970 9B 0
* Try the following separation ansatz:
S = —k\+ &t — hy — R(r) — A(6)
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 Field equations decouple and separate

Scalar field, Dirac, electromagnetic, and gravitational
perturbations decouple and separate variables (Carter 1968,
Teukolsky 1972, Chandrasekhar & Page 1976, Wald 1978)

Enables to study:

* black hole shadow
plasma accretion
black hole stability
Hawking evaporation

« Kerr-Schild form: the metric can be written as a linear Iin
mass deformation of the flat space M1

g=g- S [

« Special algebraic type of the Weyl tensor




Principal tensor

“All” the above properties can be attributed to the existence
of a single object called:

Principal tensor = a (hon-degenerate) closed conformal
Killing-Yano 2-form

vcha,lb — gca,gb — gcbga

For example: Carter’s constant corresponds to the “square”
of principal tensor 7

Kab — hachbc + §gabh2

Special algebraic type: follows from integrability conditions of
the above object




Canonical Carter’s form

« Starting from the Boyer-Lindquist form, let’s perform the
following coordinate transformation:

y=acosl, YV =¢/a, T=1t—a¢
and for convience: L = 17" b, = 1M

A’l J ¢ A/ ¢ ¢
= —— 2(d7+aﬁ2d@9)2 F—— Q(d’r%—yzdz;’))z
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+ dy” + dx
Ay A,



Canonical Carter’s form

A, A,
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» More generally: Ay =2A0Ax(x), Ay,=A,~Y)

off-shell metric

« Form of this metric uniquely determined by the
principal tensor

a 1 ba a a a ¢b a
Stry = g Vol =00, Ly =~k =0y

ha, ~ b — _pn@ ha ~b _ yea,

 All separability/integrability properties remain true
off-shell.



Canonical Carter’s form

* |Imposing the vacuum (with Lambda) Einstein
equations: o
Rab — Agab

... and in particular R =4A

e 7 2 2
gives A, — A, =4A(y" — z°)

which can be solved by separation of variables
and yields

A, = (a* —2%)(1 4+ Az?/3) + 2b,x
A, = (a® —y*)(1 + Ay*/3) + 2b,y

... on-shell Kerr-NUT-AdS spacetime



IV) Black holes in higher

dimensions




What about black holes in higher dimensions?
(motivated by string theory, brane world scenarios, GR)

 Myers-Perry generalization of the Kerr metric (1986)

rotates in m=[(D-1)/2]
orthogonal planes

| Robert C. Myers  Malcolm J. Perry
extra spatial

time ; ;
$ dimension

Rotation group SO(d-1) admits the
Cartan’s subgroup [U(1)]*m.

orthogonal
2-planes of
rotation



What about black holes in higher dimensions?

» Myers-Perry generalization of the Kerr metric (1986)

Udr?
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 The constraint can be e
transformation

Iminated by the Jacobi

5 n- %( _ y@) (diagonalizes
i = S=m 5 the mu-part of
11 k:1( a, — ak) the metric)




What about black holes in higher dimensions?

« Kerr-NUT-(A)dS spacetimes: adding the cosmological
constant and NUT parameters

Chen, LU, Pope, Class. Quant. Grav. 23 , 5323 (2006).
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« “direct” higher-dimensional generalization of Carter’s
canonical form



Towers of hidden symmetries

(Off-shell) Kerr-NUT-AdS admits a principal Killing-Yano tensor.
From this tensor one can generate towers of explicit and hidden
symmetries, which guarantee its miraculous symmetries, similar in
many aspects to those of the Kerr geometry.

« Integrability of

tower of explicit tower of ) )
symmtries hidden geodesic motion
symmetries
g ! « Separation of test

field equations

« Special algebraic
type D

« SUSY for spinning
particles

e Kerr-Schild form



Other black holes in higher dimensions

2001: Black ring = black holes with S x St
horizon topology

Roberto Emparan Harvey Reall

“‘Bended black string, whose gravity is compensated for by

the centrifugal force.”

—y——

“Bumpy” black holes - — “




Phase diagram of vacuum black holes

(conje

(conjecture)

e
et

(conjecture)

( Emparan, Harmark, Obers, Rodriguez, 2007)




1)

2)

3)

Summary of lecture 2

In 4d, Kerr metric describes a unigue black hole
solution. It possess a remarkable hidden
symmetry of principal Killing-Yano (PKY) tensor
which determines its miraculous properties.

Slightly more generally, PKY exists for (off-shell)
Carter’s canonical metric, which on-shell yields
Kerr-NUT-AdS spacetimes.

Generalizes to higher dimensions, for (off-shell)
Kerr-NUT-AdS spacetimes. (Other black holes
exist in higher dimensions.)






Appendices

Inflamed Appendix

Appendix
inflamed

© PEPID, LLC



Differential forms

e Definition. A differential p-form w is a totally antisymmetric tensor of type

(0,p), that is,

1

Waq...ap = Wag...ap] = 7 E Slgn(ﬂ)fﬁaw(l)-.‘Q-,Ir(p) .
~ permm

Hence. a differential form is antisymmetric under exchange of any 2 indices. We
shall denote AP a vector space of p-forms at x. One can show that it has a

dimensionality dimA? = (;) .

e Definition. A wedge product N : AP x AT — APT9 .

(p+q)!

(uU /\‘ V)Oil~"’3fp,-51~-.‘8q — I)'q' W[Gl.‘.ap I/I,;f"_fl‘.._,:"_"}q] .

That is, w A v is a (p + ¢)-form. It obeys

wAv=(=1)rvAw.

Since dx® is a coordinate basis of 1-forms, general p-form can be written as

1

W = _wcrlma- (
p! Y

T A« ANdx®? .




Differential forms

e For any vector V', we define an inner derivative iy : AP — AP~L:

hww=Vlw=V-w=wlV): (V1w)aya, , = "/rﬁu-;bal.“apfl -

Properties of inner derivative:

1) 7y is linear
i1) 7y is linear in V' :ifviow = fiv + giw .

iii) graded Leibnitz rule: For w € A” we have
iviwAr) = (ivw) Av+ (—1)’wAiyr.

1v)
lyiw +iwiy = 0 spec. 1 f = 0.

e Definition. Exterior derivative d : AP — APT! is defined as follows:

i) On a function f we have d : f — df = %d;ﬁ" :

ii) On a p-form w we then have

1 | _
d:w—do= —!dwalmap Adr®t A ANdx? .
p!

That is (dw)ay..apis = (P + 1) 00 Was..cpiy] -

Note that we have d*> = 0. Conversely, a p-form « is called closed when
do = 0. It 1s called eract when o = df. Any closed form o can be locally
written as o = d3 but not globally.




Differential forms

e Cartan’s lemma. For a vector field V' and a p-form w, we have the following
identity:

Lyw=V_ldw+dVIw).

In particular, this implies that

Lodf =dCyf.

e Having a metric, we can also define Hodge dual * : AP — A"P

L :

1...,8}9
p'EOél...Odn_p aﬁl...ﬁp

(*@)@1...&n_p —

Where Levi-Civita tensor €Cat..an, — V |g|€@1___an

In terms of permutation symbol:

+1 for aq....,q,even permutations ofl.....n

p) —
6'/ x _L QY T

—1 for odd permutations



Differential forms

e Having a metric, we can also define co-derivative 9:

0 =T (—=1)""T s dx : AP — APTL
Here n is the dimensions of the manifold and upper/lower sign applies to Rie-
mannian/Lorentzian signature. We then find

B
(Ow)(xz...ap — _VL 1w(11...0¢p

e Integration. A p- form w can be integrated over a p-dimensional (sub)manifold.
Writing w = fdz! .dx? we then define

/ W = / (11 .dx?  where r.h.s. 1s defined as Lebesgue integral.
(Op)

Note that this definition is independent of coordinates, as we have

dxt
w= fldz"" N ANd2?, = fdet(a - ) .
)’

Stokes theorem. The following identity is valid

/ dw = / W
JQ J o0




