Lecture 3: Kerr-NUT-AdS spacetimes: towers of symmetries

David Kubizňák

(Charles University/Perimeter Institute)

Asia-Pacific School and Workshop on Gravitation and Cosmology 2022

Soochow University, GSROC, Taiwan (online) March 19-22, 2022

Kerr-NUT-AdS spacetimes: towers of symmetries

(plan for lecture 3)

- a) More on Killing tensors
- b) Principal tensor
- c) Liouville's integrability
- d) Geodesic integrability: towers of Carter's constants

I) More on Killing tensors

Killing tensors

=totally symmetric tensors obeying

$$\nabla^{(a_1} K^{a_2 a_3 \dots a_{p+1})} = 0.$$

Generate constants of geodesic motion of degree p

M. Walker and R. Penrose, Comm. Math. Phys. 18, 265 (1970).

$$\mathcal{K}_p = K^{a_1 \dots a_p} p_{a_1} \cdots p_{a_p}$$

Poisson commute with the Hamiltonian generating geodesic flow

$$\mathcal{H} = \frac{1}{2}g^{ab}p_ap_b$$

Reducibility

$$K_{(1)}^{(a)}K_{(2)}^{bc)}$$
, or $K_{(3)}^{(a)}K_{(4)}^{b}K_{(5)}^{c)}$,

Algebra of Killing tensors

Killing tensors form an algebra with respect to (symmetric) **Schouten-Nijenhuis brackets:**

$$\{\mathcal{K}_{p}, \mathcal{K}_{q}\} = \frac{\partial \mathcal{K}_{p}}{\partial q^{i}} \frac{\partial \mathcal{K}_{q}}{\partial p_{i}} - \frac{\partial \mathcal{K}_{q}}{\partial q^{i}} \frac{\partial \mathcal{K}_{p}}{\partial p_{i}}$$

$$\equiv [K_{p}, K_{q}]^{a_{1}a_{2}...a_{p+q-1}}_{SN} p_{a_{1}} p_{a_{2}} \cdots p_{a_{p+q-1}}.$$

$$[K_p, K_q]_{\text{SN}}^{a_1 \dots a_{p+q-1}} = p K_p^{c(a_1 \dots p-1)} \nabla_c K_q^{a_p \dots a_{p+q-1}}$$
$$-q K_q^{c(a_1 \dots a_{q-1})} \nabla_c K_p^{a_q \dots a_{q+p-1}}$$

For example:

$$[K_{(i)}, K_{(j)}]_{\text{SN}}^{abc} \equiv K_{(i)}^{e(a} \nabla_e K_{(j)}^{bc)} - K_{(j)}^{e(a} \nabla_e K_{(i)}^{bc)}$$
$$[\xi, K_p]_{\text{SN}}^{a_1 \dots a_p} = \mathcal{L}_{\xi} K_p^{a_1 \dots a_p}.$$

Algebra of Killing tensors

• Spec: metric g is a (trivial) Killing tensor

$$[\xi, g]_{\text{SN}}^{ab} = \mathcal{L}_{\xi} g^{ab} = -2\nabla^{(a} \xi^{b)}$$

$$[K_p, g]_{\text{SN}}^{a_1...a_p} = -p\nabla^{(a_1}K_p^{a_2...a_p)}$$

• <u>In other words:</u> Killing vector and Killing tensor equations can be conveniently expressed as

$$[\xi, g]_{SN} = 0$$
 $[K_p, g]_{SN} = 0$

 Note also that in principle one can generate higher-rank Killing tensors by employing SN brackets.

$$[K_p, K_q]_{\rm SN}^{a_1 \dots a_{p+q-1}}$$

Examples of spacetimes with rank-2 KTs

1. Kerr geometry (in all dimensions)

P. Krtouš, D. Kubizňák, D. N. Page, and V. P. Frolov, Killing-Yano Tensors, Rank-2 Killing Tensors, and Conserved Quantities in Higher Dimensions, JHEP 0702 (2007) 004

2. <u>Taub-NUT space:</u> generalization of Runge-Lenz vector

G. W. Gibbons and P. J. Ruback, "The Hidden Symmetries Of Taub-NUT And Monopole Scattering," Phys. Lett. B 188 (1987) 226.

3. Various SUGRA black holes

D.D. Chow, Symmetries of supergravity black holes, Class. Quant. Grav. 27, 205009 (2010), arXiv:0811:1264.

Not known spacetimes with irreducible higher-rank Killing-Stackel tensors!

See, however:

- Finn's talk
- G. Gibbons, T. Houri, DK, C. Warnick, Some spacetimes with higher-rank Killing tensors, PLB700 (2011), 68.

II) Principal Killing-Yano tensor

Families of Killing-Yano tensors

for a general differential p-form

$$\nabla \omega = (\text{exterior} + \text{divergence} + \text{harmonic}) \text{ parts}$$

Conformal Killing-Yano (CKY) tensor

$$\nabla_X \mathbf{k} = \frac{1}{p+1} \mathbf{X} \, \rfloor \, d\mathbf{k} - \frac{1}{D-p+1} \mathbf{X}^{\flat} \wedge \delta \mathbf{k} \, .$$

Killing-Yano (KY) tensor: divergence part is missing

closed CKY tensor: exterior part is missing

Under Hodge duality divergence part transforms into exterior part and vice versa.

*(closed CKY) = KY

Principal Killing-Yano tensor

= (non-degenerate) closed CKY 2-form

$$\nabla_X \boldsymbol{h} = \boldsymbol{X}^{\flat} \wedge \boldsymbol{\xi}$$
 .

$$\nabla_X h = X^{\flat} \wedge \xi$$
. $\nabla_X h_{ab} = 2X_{[a} \xi_{b]}$

It follows

$$dh = 0$$

$$dh = 0$$
 $\xi_b = \frac{1}{D-1} \nabla_a h^a{}_b$

non-degenerate: full matrix rank, eigenvalues are functionally independent (can be used as coordinates)

Eigenvalues of $-h^2$:

$$\{\underbrace{x_1^2,\ldots,x_1^2,\ldots,\underbrace{x_n^2,\ldots,x_n^2}_{2l_n},\underbrace{\xi_1^2,\ldots,\xi_1^2}_{2m_1},\ldots,\underbrace{\xi_N^2,\ldots,\xi_N^2}_{2m_N},\underbrace{0,\ldots,0}_{K}\}}_{1}\}$$

Canonical metric element

a) Darboux basis:

$$egin{aligned} oldsymbol{g} &= \delta_{ab} oldsymbol{\omega}^{\hat{a}} oldsymbol{\omega}^{\hat{b}} = \sum_{\mu=1}^{n} (oldsymbol{\omega}^{\hat{\mu}} oldsymbol{\omega}^{\hat{\mu}} + ilde{oldsymbol{\omega}}^{\hat{\mu}} ilde{oldsymbol{\omega}}^{\hat{\mu}}) + arepsilon oldsymbol{\omega}^{\hat{0}} oldsymbol{\omega}^{\hat{0}} \ oldsymbol{h} &= \sum_{\mu=1}^{n} x_{\mu} oldsymbol{\omega}^{\hat{\mu}} \wedge ilde{oldsymbol{\omega}}^{\hat{\mu}} \ . & D = 2n + arepsilon \ \end{aligned}$$

(PKY is non-degenerate, Euclidean signature)

b) Towers of symmetries:

construction based on the following Lemma:

Lemma ([Krtouš et al., 2007b]). Let $k^{(1)}$ and $k^{(2)}$ be two closed CKY tensors. Then their exterior product $k \equiv k^{(1)} \wedge k^{(2)}$ is also a closed CKY tensor.

P. Krtouš, DK, D.N. Page, V.P. Frolov, <u>Killing-Yano Tensors</u>, <u>Rank-2 Killing Tensors</u>, and <u>Conserved Quantities in Higher Dimensions</u>, JHEP 0702 (2007) 004.

Towers of hidden symmetries

closed CKY tensors:

$$m{h}^{(j)} \equiv m{h}^{\wedge j} = m{\underline{h} \wedge \ldots \wedge m{h}}_{ ext{total of } j ext{ factors}}$$
 .

$$f^{(j)} \equiv *h^{(j)}$$
 .

Killing-Yano tensors:
$$f^{(j)} \equiv *h^{(j)}$$
. $\nabla_{(\alpha_1} f_{\alpha_2)\alpha_3...\alpha_{p+1}} = 0$.

Killing tensors:
$$K_{ab}^{(j)} \equiv \frac{1}{(D-2j-1)!(j!)^2} f_{ac_1...c_{D-2j-1}}^{(j)} f_b^{(j)}^{(j)} c_1...c_{D-2j-1}.$$

$$\boldsymbol{K}^{(j)} = \sum_{n=1}^{n} A_{\mu}^{(j)} (\boldsymbol{\omega}^{\hat{\mu}} \boldsymbol{\omega}^{\hat{\mu}} + \tilde{\boldsymbol{\omega}}^{\hat{\mu}} \tilde{\boldsymbol{\omega}}^{\hat{\mu}}) + \varepsilon A^{(j)} \boldsymbol{\omega}^{\hat{0}} \boldsymbol{\omega}^{\hat{0}} . \quad \boxed{\nabla_{(a} K_{bc)}^{(j)} = 0}$$

$$\nabla_{(a} K_{bc}^{(j)}) = 0$$

$$\text{ where } \quad A^{(j)} \; = \; \sum_{\nu_1 < \dots < \nu_j} x_{\nu_1}^2 \dots x_{\nu_j}^2 \; , \quad A^{(j)}_{\mu} = \sum_{\substack{\nu_1 < \dots < \nu_j \\ \nu_i \neq \mu}} x_{\nu_1}^2 \dots x_{\nu_j}^2 \; ,$$

Tower of explicit symmetries:

Primary Killing vector:
$$oldsymbol{\xi} = oldsymbol{l}_{(0)} = rac{1}{D-1}
abla \cdot oldsymbol{h}$$

Secondary Killing vectors:
$$oldsymbol{l}_{(j)} = oldsymbol{K}_{(j)} \cdot oldsymbol{\xi}$$

Since all symmetries generated from a single object h, they all mutually (Schouten-Nijenhuis) commute:

$$[\boldsymbol{l}_{(i)}, \boldsymbol{K}_{(j)}] = 0, \quad [\boldsymbol{l}_{(i)}, \boldsymbol{l}_{(j)}] = 0.$$

$$[K^{(j)}, K^{(l)}]_{abc} \equiv K_{e(a}^{(j)} \nabla^e K_{bc)}^{(l)} - K_{e(a}^{(l)} \nabla^e K_{bc)}^{(j)} = 0.$$

c) Canonical coordinates:

- The n "eigenvalues" $\,x_{\mu}\,$ are natural coordinates
- $\{x_u, \psi_i\}$
- These can be "upgraded" by adding (n+ε) new Killing coordinates: $oldsymbol{l}_{(k)} = oldsymbol{\partial}_{\psi_k}$

d) Canonical metric:

$$g = \delta_{ab}\omega^{\hat{a}}\omega^{\hat{b}} = \sum_{\mu=1}^{n} (\omega^{\hat{\mu}}\omega^{\hat{\mu}} + \tilde{\omega}^{\hat{\mu}}\tilde{\omega}^{\hat{\mu}}) + \varepsilon\omega^{\hat{0}}\omega^{\hat{0}},$$

$$\omega^{\hat{\mu}} = \frac{dx_{\mu}}{\sqrt{Q_{\mu}}}, \quad \tilde{\omega}^{\hat{\mu}} = \sqrt{Q_{\mu}} \sum_{j=0}^{n-1} A_{\mu}^{(j)} d\psi_{j}, \quad \omega^{\hat{0}} = \sqrt{\frac{-c}{A^{(n)}}} \sum_{j=0}^{n} A^{(j)} d\psi_{j}.$$

$$Q_{\mu} = \frac{X_{\mu}}{U_{\mu}}, \quad U_{\mu} = \prod_{\substack{\nu=1\\\nu\neq\mu}}^{n} (x_{\nu}^{2} - x_{\mu}^{2}).$$
 $X_{\mu} = X_{\mu}(x_{\mu}).$

$$X_{\mu} = X_{\mu}(x_{\mu}).$$

e) Kerr-NUT-(A)dS spacetime: $X_{\mu} = X_{\mu}(x_{\mu})$.

$$X_{\mu} = X_{\mu}(x_{\mu}).$$

Einstein space condition: $R_{ab} = (-1)^n (D-1) c_n q_{ab}$,

$$R_{ab} = (-1)^n (D-1) c_n g_{ab} ,$$

implies the specific form of metric functions:

$$X_{\mu} = \sum_{k=\varepsilon}^{n} c_k x_{\mu}^{2k} - 2b_{\mu} x_{\mu}^{1-\varepsilon} + \frac{\varepsilon c}{x_{\mu}^2}.$$

W. Chen, H. Lü and C. N. Pope, Class. Quant. Grav. 23, 5323 (2006).

 Constants are related to mass, NUT parameters, rotations, and cosmological constant

Uniqueness Theorem: The most general solution of vacuum Einstein equations that admits the principal Killing-Yano tensor is the Kerr-NUT-(A)dS spacetime.

Krtouš, Frolov, DK, Hidden Symmetries of Higher Dimensional Black Holes and Uniqueness of the Kerr-NUT-(A)dS spacetime, Phys. Rev. D 78 (2008) 064022.

III) Liouville's integrability

Integrable systems

Conserved quantity (constant/integral of motion)

$$\{g,H\}=0$$

Definition. The dynamical system with n degrees of freedom (2n-dimensional phase space) is <u>completely (Liouville) integrable</u>, if it possess n independent conserved quantities $F_i(q,p) = f_i$, $\{H,F_i\} = 0$, that are in <u>involution</u>: $\{F_i,F_j\} = 0 \ \forall i,j$.

Nice piece of 19th century mathematics:

Liouville's theorem. The solution of equations of motion of a completely integrable system can be obtained by "*quadrature*", that is by a finite number of algebraic operations and integrations.

Integrable systems

Independence. Each integral defines a hypersurface in phase space, dynamical trajectories must remain in this surface:

 $M_{\{f\}}$ given by $\{F_i = f_i\}$ has dimension n.

One cannot have more than n independent integrals of motion that are in involution. Otherwise, the Poisson bracket would be degenerate. This implies that $H = H(F_i)$.

Integrable systems

Under a suitable global hypothesis, $M_{\{f\}}$ is an *n*-dimensional <u>tori</u> T_n .

Ex: harmonic oscillator
$$H = \frac{1}{2} \left(p^2 + \omega^2 q^2 \right)$$

phase space is fibred into

quellipses $H = E$... T .

(except $(0,0)$.. stationary point)

introduce $p = g \cos \theta$, $q = \frac{e}{\omega} \sin \theta$

=) motion = $\frac{1}{2} g = \sqrt{2} E$, $\theta = \cot + \theta_0$

glevialization $H = \frac{1}{2} \sum_{i} \left(p_i^2 + \cos^2 q_i^2 \right)$ (\$\text{\$\text{\$\text{\$Y\$}}\$}\right)

Fi in conserved quentities in involution

 $M_f = \frac{1}{2} F_i = \frac{1}{2} i \int_0^\infty T_{in}$

"all integrable systems look like (+)"

One can show that whenever the Hamilton–Jacobi completely separates, the motion is completely integrable.

Idea of Proof of Liouville's theorem

- Proof is constructive: shows how to integrate system by one integration and several algebraic operations.
- The idea is to construct a canonical transformation (by constructing the corresponding generating function) to coordinates where the EOM are trivial.
 - We want to find a canonical transformation $(q^i, p_i) \to (F^i, \psi_i)$, where F^i are our conserved quantities. If we succeed, then

$$\dot{F}^i = \{H, F^i\} = 0,$$

 $\dot{\psi}_i = \{H, \psi_i\} = \frac{\partial H}{\partial F^i} = \Omega_i = \Omega_i(F_j) \dots \text{constant in time.}$

This then means that we get a solution

$$F^{i}(t) = F^{i}(0), \quad \psi_{i}(t) = \psi_{i}(0) + \Omega_{i}t.$$

Canonical transformations: generating functions

 Strength of Hamiltonian dynamics derives from canonical transformations (gauge freedom)

$$Q^{j} = Q^{j}(q^{i}, p_{i}), \quad P_{j} = P_{j}(q^{i}, p_{i})$$

$$\omega = dp_i \wedge dq^i = dP_i \wedge dQ^i$$

Consider Cartan's 1-forms

$$\theta = p_j dq^j$$
, $\omega = d\theta$ $\tilde{\theta} = P_j dQ^j$, $\omega = d\tilde{\theta}$

$$d(\theta - \tilde{\theta}) = 0 \implies \theta - \tilde{\theta} = dF$$
 locally

So we have a generating function F:

$$p_j dq^j - P_j dQ^j = dF$$

Canonical transformations: generating functions

In particular

$$S\left(q^{j},Q^{j}\right) = F(q^{j},p_{i}(Q^{j},q^{j})) \left[\det \frac{\partial(Q,q)}{\partial(q,p)} \neq 0\right]$$

$$\left[\det \frac{\partial(Q,q)}{\partial(q,p)} \neq 0\right]$$

Then we have

$$p_j dq^j - P_j dQ^j = \frac{\partial S}{\partial q^j} dq^j + \frac{\partial S}{\partial Q^j} dQ^j$$

Which yields the following relations for S:

$$p_j = \frac{\partial S}{\partial q^j}, \quad P_j = -\frac{\partial S}{\partial Q^j}$$

Idea of Proof of Liouville's theorem

– We want to find a canonical transformation $(q^i, p_i) \to (F^i, \psi_i)$, where F^i are our conserved quantities. If we succeed, then

$$\dot{F}^{i} = \{H, F^{i}\} = 0,$$

$$\dot{\psi}_{i} = \{H, \psi_{i}\} = \frac{\partial H}{\partial F^{i}} = \Omega_{i} = \Omega_{i}(F_{j}) \dots \text{constant in time.}$$
 (2.74)

This then means that we get a solution

$$F^{i}(t) = F^{i}(0), \quad \psi_{i}(t) = \psi_{i}(0) + \Omega_{i}t.$$
 (2.75)

– To construct this let's find the corresponding generating function S. We have $M_{\{f\}} = \{F^i(p,q) = f^i\}$. In principle we can invert this, to get $p_i = p_i(f,q)$

on $M_{\{f\}}$ and can define

$$S(q,F) = \int_{q_0}^q p_i dq^i.$$

Idea of Proof of Liouville's theorem

If such an integral exists (see figure) then (c.f. (2.19))

$$\psi_j = -\frac{\partial S}{\partial F^j} \tag{2.77}$$

gives the desired canonical transformation. [Note that $\frac{\partial S}{\partial q^i} = p_i$ is automatically satisfied.]

- One finally needs to show that S is well defined, that is integral (2.76) is independent of integration path. One can show that is exactly equivalent to the requirement that F^i are in involution: $\{F^i, F^j\} = 0$.
- So we have obtained the solution of EOM by one integral (2.76) and some algebraic operations (needed to express p as function of q and F).

IV) Goedesic integrability: towers of Carter's constants

Complete integrability of geodesic motion

Definition. The dynamical system with n degrees of freedom (2n-dimensional phase space) is completely (Liouville) integrable, if it possess n independent conserved quantities $F_i(q,p) = f_i$, $\{H,F_i\} = 0$, that are in <u>involution</u>: $\{F_i, F_i\} = 0 \ \forall i, j.$

D= $2n+\epsilon$ constants of motion:

• Killing vectors:
$$|\Psi_k = oldsymbol{l}_{(k)} \cdot oldsymbol{u}|_{\dots} n + \epsilon$$

Moreover we have Killing tensors:

$$\kappa_j = K^{(j)}_{ab} u^a u^b = \boldsymbol{u} \cdot \boldsymbol{K}^{(j)} \cdot \boldsymbol{u} \cdot \boldsymbol{n}$$

...tower of Carter's constants

Complete integrability of geodesic motion

Involution: "trivial" - follows from SN bracket commutation

$$\{\kappa_i, \kappa_j\} = 0, \quad \{\kappa_i, \Psi_j\} = 0, \quad \{\Psi_i, \Psi_j\} = 0$$

• Indeed
$$\{\mathcal{K}_p, \mathcal{K}_q\} = \frac{\partial \mathcal{K}_p}{\partial q^i} \frac{\partial \mathcal{K}_q}{\partial p_i} - \frac{\partial \mathcal{K}_q}{\partial q^i} \frac{\partial \mathcal{K}_p}{\partial p_i}$$

$$\equiv [K_p, K_q]^{a_1 a_2 \dots a_{p+q-1}} p_{a_1} p_{a_2} \dots p_{a_{p+q-1}}.$$

and

$$[l_{(i)}, K_{(j)}] = 0, \quad [l_{(i)}, l_{(j)}] = 0.$$

$$\left[\left[K^{(j)}, K^{(l)} \right]_{abc} \equiv K_{e(a}^{(j)} \nabla^e K_{bc)}^{(l)} - K_{e(a}^{(l)} \nabla^e K_{bc)}^{(j)} = 0 \right].$$

Complete integrability of geodesic motion

- <u>Functional independence</u>: gradients on the phase space are linearly independent.
- Since all Killing vectors and Killing tensors are independent (in the x-direction), it is enough to show what happens in the "momentum direction".

$$J = \partial_p \kappa_0 \wedge \cdots \wedge \partial_p \kappa_{n-1} \wedge \partial_p \Psi_0 \wedge \cdots \wedge \partial_p \Psi_{d-n-1}$$

One can show that we have

$$J \propto \partial_{x_1} \wedge \cdots \wedge \partial_{x_n} \wedge \partial_{\psi_0} \wedge \cdots \wedge \partial_{\psi_{d-n-1}} \neq 0$$

D.N. Page, DK, M. Vasudevan, P. Krtouš, Complete Integrability of Geodesic Motion in General Higher-Dimensional Rotating Black-Hole Spacetimes, PRL 98 (2007) 061102.

Summary of lecture 3

- 1) Killing tensors form an algebra w.r.t Schouten-Nijenhuis (SN) brackets. Spacetimes with higherrank Killing tensors still yet to be explored (see Finn's talk).
- 2) Kerr-NUT-AdS is the unique spacetime admitting the principal Killing-Yano tensor in all dimensions. It generates towers of explicit and hidden symmetries.
- 3) These symmetries in particular guarantee complete integrability of geodesic motion in the Liouville sense (more predictable than weather on Earth).