Planetary Defense & Space Quantum Technologies for Fundamental Physics

Yu-Dai Tsai

University of California, Irvine with Josh Eby, Marianna Safronova Youjia Wu, Sunny Vagnozzi, Luca Visinelli Contact: yudait1@uci.edu & yt444@cornell.edu

Burt, J. Prestage, R. Tjoelker, D. Enzer, D. Kuang D. Murphy et al., Nature 595 (2021) 43. Page Editor: NASA Administrator NASA Official: Brian Dunbar

- <u>https://arxiv.org/abs/2112.07674</u>
- <u>https://arxiv.org/abs/2107.04038</u>
 Under review by Nature Astronomy

Big questions

- How much dark matter are there in the solar system? Do we really know?
- Can planetary data set meaningful dark matter constraints? General Relativity? 5th forces?
- Can we use current or future space Quantum Technology to study fundamental physics?

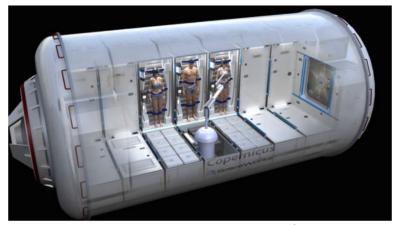
Answers

- How much dark matter are there in the solar system? We don't really know!
- Can planetary data set meaningful dark matter constraints? General Relativity?
 5th forces? Yes!
- Can we use current or future space Quantum Technology to study fundamental physics?
 Yes, I will show you an example today.

Theme of this talk:

Bridging **Planetary Date, Space (Quantum) Technologies**, and **Fundamental Physics**

This talk may have real-life consequences!


Anteaters - Starship

Don't Please Look Up

Why Space Quantum Clocks? Auto-Navigating Spacecraft & Space Travel

Artist's concept for Mars-ready habitat. Image Credit: SpaceWorks Torpor/NASA collaboration

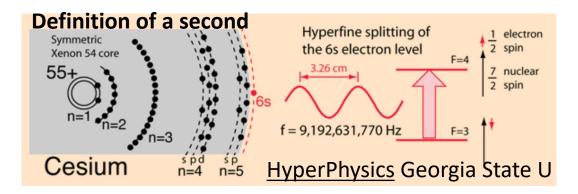
Exploring the deep space: auto-driving Spacecraft; needs precision timing!!!

NASA Deep Space Atomic Clocks (current technology!) & Deep space and global navigation satellite system (GNSS)


Can we use the technology to study fundamental physics?

NASA DSAC as a major motivation

Up to 50 times more stable than the atomic clocks on GPS satellites, the **mercury-ion Deep Space Atomic Clock loses one second every 10 million years**, as proven in controlled tests on Earth.


- Launched in 2019, the clock has operated for more than 12 months in space and demonstrated there a long-term stability of 3 × 10^{-15} at 23 days Burt, Prestage, Tjoelker, Enzer, Kuang, Murphy et al., Nature 595 (2021) 43.
- Exceeds previous space clock performance by up to an order of magnitude

Parker Solar Probe: billion-dollar mission Kasper, Klein, Lichko, Huang, Chen, Badman et al., Parker solar probe enters the magnetically dominated solar corona, Phys. Rev. Lett. (2021)

Caesium Standard and Atomic Clock

- Atomic clocks: used to measure the distance between objects by timing how long it takes a signal to travel from A to B.
- For space exploration, clocks must be extremely precise:
- An error of even one second can mean the difference between landing on Mars or missing it by hundreds of thousands of miles.

http://hyperphysics.phy-astr.gsu.edu/hbase/acloc.html Reference: U.S. Naval Observatory, Cesium Clocks

Outline

• Ultralight Dark Matter

• Solar Bound-State Halo

 Sensitivity of (Space-based) Clocks

Dark Matter Coupling

$$\mathcal{L} \supset \kappa \phi \left(d_{m_e} m_e \bar{e} e + \frac{d_\alpha}{4} F_{\mu\nu} F^{\mu\nu} + \frac{d_g \beta_3}{2g_s} G^A_{\mu\nu} G^{A\mu\nu} \right),$$
(1)

where e is the electron field, $F^{\mu\nu}$ ($G^{A\mu\nu}$) is the electromagnetic (QCD) field strength, g_s and β_3 are the strong interaction coupling constant and beta function (respectively), and $\kappa = \sqrt{4\pi}/M_P$ with $M_P = 1.2 \times 10^{19}$ GeV.

Oscillation of Massive Scalars

$$V(\phi) = rac{1}{2}m_{\phi}^2\phi^2 + rac{1}{3}a_{\phi}\phi^3 + rac{1}{4}\lambda_{\phi}\phi^4.$$

$$\phi(t, \vec{x}) = \phi_0 \cos(m_\phi t - \vec{k}_\phi \cdot \vec{x} + \dots).$$

 $\omega \simeq m_{\phi}.$

DM energy density $ho_\phi = rac{1}{2} m_\phi^2 \phi_0^2$

Atomic Physics Probe

$$\mathcal{L} \supset \kappa \phi \left(d_{m_e} m_e \bar{e} e + \frac{d_\alpha}{4} F_{\mu\nu} F^{\mu\nu} + \frac{d_g \beta_3}{2g_s} G^A_{\mu\nu} G^{A\mu\nu} \right),$$
(1)

$$\mu(\phi) \simeq \mu_0 \left(1 + d_{m_e} \kappa \phi \right), \quad \alpha(\phi) \simeq \alpha_0 \left(1 - d_\alpha \kappa \phi \right)$$
$$\alpha_s(\phi) \simeq \alpha_{s,0} \left(1 - \frac{2d_g \beta_3}{g_s} \kappa \phi \right), \quad (2)$$

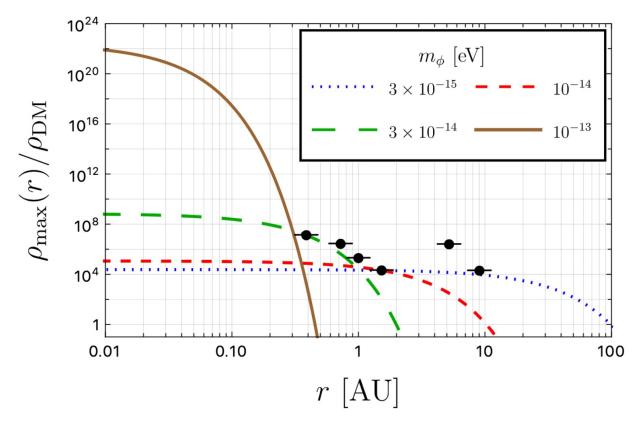
where $\mu = m_e/m_p$ is the electron-proton mass ratio, and the subscript $_0$ denotes the central (time-independent) value of μ , α , and α_s .

Atomic Probe Basics

$$\mathcal{L} \supset \kappa \phi \left(d_{m_e} m_e \bar{e} e + \frac{d_\alpha}{4} F_{\mu\nu} F^{\mu\nu} + \frac{d_g \beta_3}{2g_s} G^A_{\mu\nu} G^{A\mu\nu} \right), \tag{1}$$

Turning off d_{m_e} and d_g for demonstrations,

$$egin{aligned} &f_A \propto lpha^{\xi_A+2}, \ &lpha &= lpha_0(1+d_lpha\kappa\phi(t)). \ &rac{\delta(f_A/f_B)}{f_A/f_B} \simeq (\xi_A-\xi_B)d_lpha\kappa\phi(t). \end{aligned}$$


Experimental observable! There are other observables, which Marianna may cover

- For example, if A is a hyperfine microwave transition and B is an electronic optical transition, ζA = 1 and ζB = 0.
- For details, see 1405.2925, Arvanitaki, Huang, Tilburg, PRD 15

Solar Bound-State Halo or Solar Halo

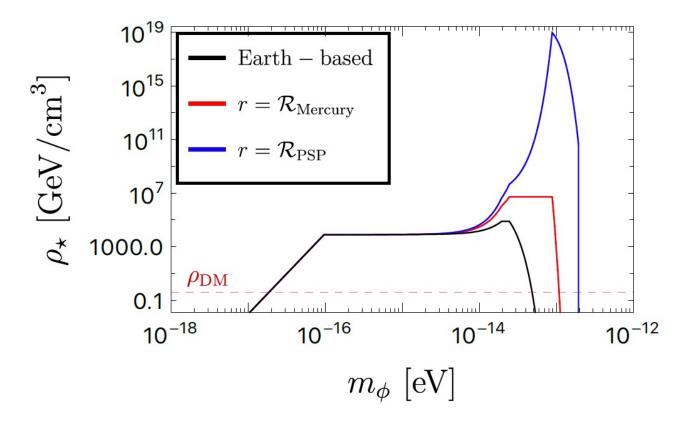
Yu-Dai Tsai, UC Irvine, '22 yudait1@uci.edu

Dark matter in solar system? Planetary constraint!

Mercury, Venus, Earth, Mars, Jupiter, Saturn Pitjev, Pitjeva, 1306.5534, Astronomy Letters '13 Tsai, Eby, Safronova, 2112.07674

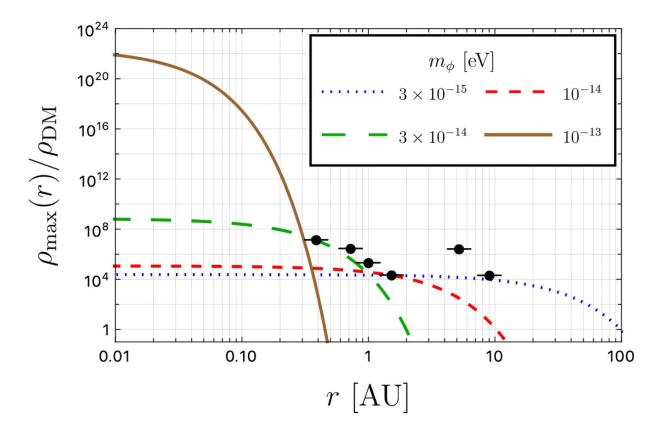
Scalar DM Halo

Stable solution supported by external potential


$$V_{\text{ext}} = \begin{cases} -\frac{G \, m_{\phi} \, M_{\text{ext}}}{r} & \text{for } R_{\star} > R_{\text{ext}} ,\\ -\frac{3 \, G \, m_{\phi} \, M_{\text{ext}}}{2 \, R_{\text{ext}}} \left[1 - \frac{1}{3} \left(\frac{r}{R_{\text{ext}}} \right)^2 \right] & \text{for } R_{\star} \le R_{\text{ext}} , \end{cases}$$

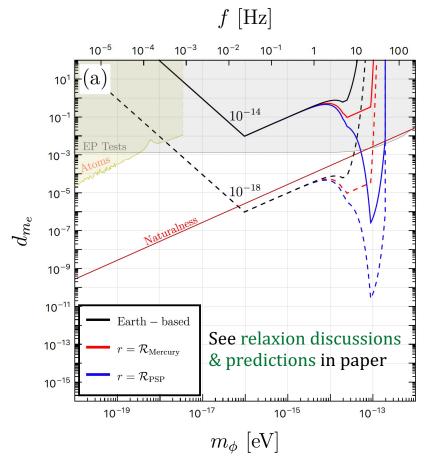
$$ho(r)\simeq
ho_\star\exp\left(-2r/R_\star
ight)$$
 for $R_\star>R_{
m ext}$

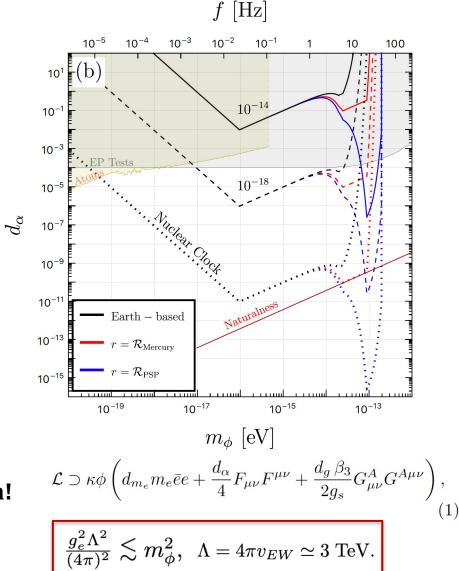
$$R_{\star} \simeq rac{M_P^2}{M_{
m ext} m_{\phi}^2}, \qquad {
m where } M_{
m ext} = M_{\odot} \ {
m is the mass of the external host body;} \ {
m note that } R_{\star} \ {
m is independent of the total mass in the halo} \ v_{\star} = (m_{\phi} \, R_{\star})^{-1},$$


Banerjee, Budker, Eby, Flambaum, Kim, Matsedonskyi, and Perez, 1912.04295

Enhancement of the density

Tsai, Eby, Safronova, 2112.07674

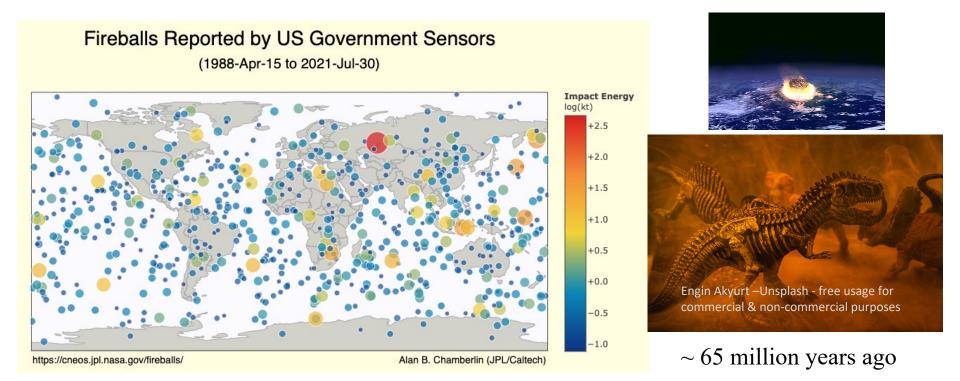

Dark matter in solar system? Planetary constraint!


New project!

Improve the constraint with asteroid data! Model independent! Tsai +, to improve Pitjev, Pitjeva, 1306.5534, Astronomy Letters '13

Results

- Motivate Specific Frequency Region!
- Motivate Nuclear Clocks!
- Tsai, Eby, Safronova, 2112.07674



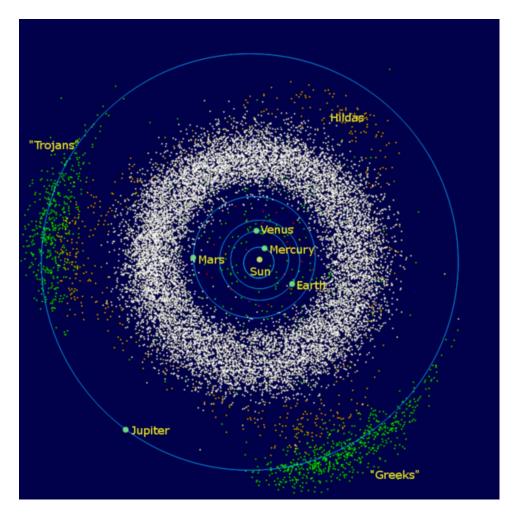
Naturalness condition

More on the Planetary Constraints: Ultralight Dark Sector

Yu-Dai Tsai, UC Irvine, '22 yudait1@uci.edu

Asteroids hitting the earth

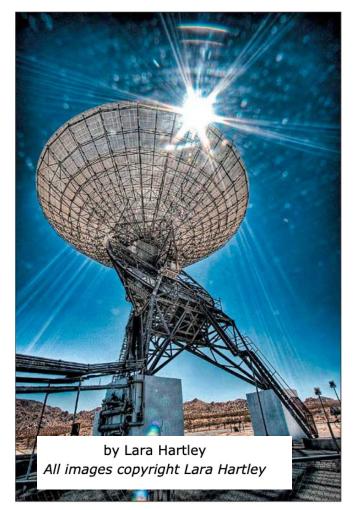
Tracking asteroids is extremely important e.g., unexpected 2013 Chelyabinsk meteor injured >1500 people Also, near-Earth asteroid search accidentally found 'Oumuamua


Asteroids

"Professor Moriarty stood before me"

"Is he not the celebrated author of *The Dynamics of an Asteroid*, a book which ascends to such rarefied heights of pure mathematics that it is said that there was no man in the scientific press capable of criticizing it?

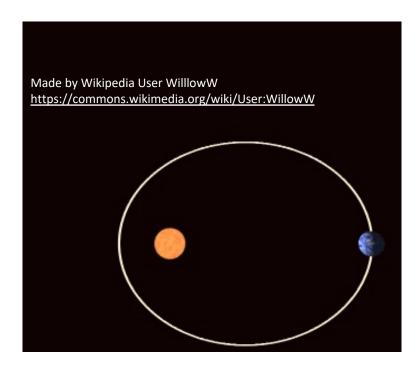
- Sherlock Holmes, The Valley of Fear



https://commons.wikimedia.org/wiki/File:InnerSolarSystemen.png, public domain, granted usage for any purposes

Radar Observations

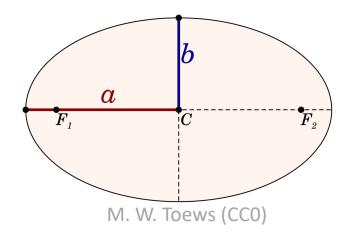
- Radar Goldstone Observatory: Provide very precise location and velocity information of the asteroids
- Radar astronomy: observing nearby astronomical objects by reflecting microwaves off target objects and analyzing the reflections.
- Round-trip light time (RTLT): The elapsed time taken by a signal travelling from the Earth to a spacecraft or other celestial body
- Doppler shift:



Students can control the huge Echo radio telescope to collect data from objects in the universe at which the antenna is pointed.

https://www.desertusa.com/desertcalifornia/goldstone-deep-space.html

Perihelion Precession: Einstein's Success


Precession of Mercury's perihelion (closest point to the Sun)

https://en.wikipedia.org/wiki/Apsidal_precession#/media/File:Prec essing_Kepler_orbit_280frames_e0.6_smaller.gif under CC BY 3.0

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\varphi^2} + u - \frac{GM_{\odot}}{L^2} = \frac{3GM_{\odot}}{c^2}u^2 \cdot \mathbf{GR}$$

- Consider planar motion and fix $\theta = \pi/2$.
- Define inverse radius variable $u \equiv 1/r = u(\phi)$
- $a = rac{L^2}{M_{\odot}(1-e^2)}$, a is the semi-major axis

5th force and Yukawa Potential

$$\begin{split} V(r) &= \widetilde{\alpha} \frac{GM_{\odot}M_{*}}{r} \, \exp\left(-\frac{r}{\lambda}\right) \,, \\ V(r) &= \mp \frac{g^{2}}{4\pi} \frac{Q_{\odot}Q_{*}}{r} \, \exp\left(-\frac{mc^{2}}{\hbar c}r\right) \,, \\ \frac{\mathrm{d}^{2}u}{\mathrm{d}\varphi^{2}} + u - \frac{GM_{\odot}}{L^{2}} &= \frac{3GM_{\odot}}{c^{2}}u^{2} + \underbrace{\widetilde{\alpha}\frac{GM_{\odot}}{L^{2}}\left(1 + \frac{1}{\lambda u}\right)e^{-\frac{1}{\lambda u}}}_{}, \end{split}$$
(fifth force)

- Gauge boson, dark photon of $U(1)_B$ or scalar coupled to baryon number
- g is new physics coupling constant, and m is the mediator mass
- See, e.g., Poddar et al, https://arxiv.org/abs/2002.02935

Ultralight Bosons

1. Spin 0: ultralight scalars coupled to Standard Model particles

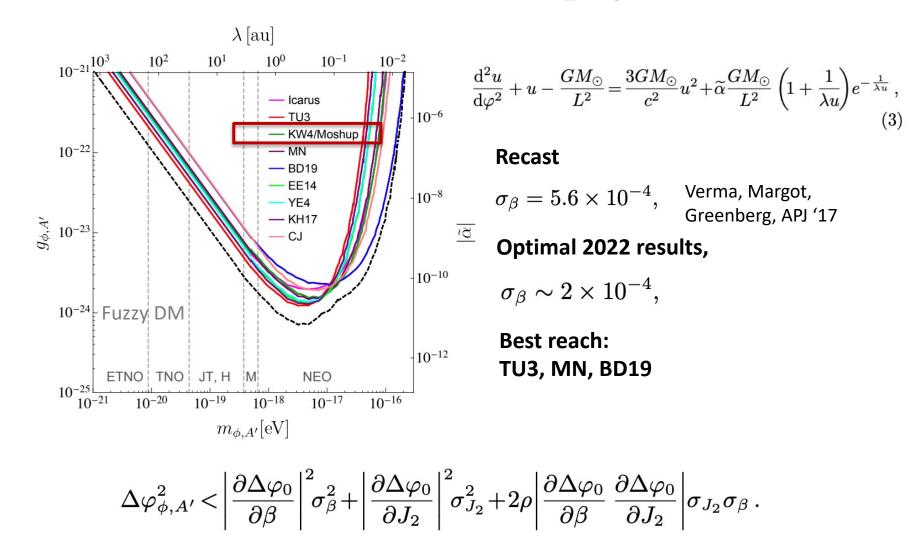
 $\mathcal{L}_{\phi} \, \subset \, (g_{\phi,p} ar{p} p \; + \; g_{\phi,n} ar{n} n \; + \; g_{\phi,e} ar{e} e \;) \phi$

2. Spin 1: Dark photon of gauged $U(1)_B$, with coupling g_A , charging all baryons equally charge: $q_p = q_n = 1$

 $U(1)_B$ has chiral anomaly, so extra heavy particle is needed, and there may be additional constraints & model building needed for those constraints (Constraints: Dror, Lasenby, Pospelov, arXiv:1705.06726, arXiv:1707.01503) (Models to alleviate bounds: Green, Schwarzy, PLB 87, Kaplan, NPB 91)

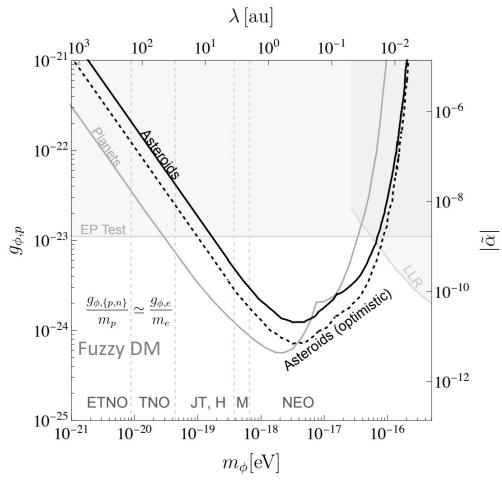
3. Our study can also be applied to $U(1)_{B-L}$, $L_e - L_{\mu,\tau}$, etc. , Need to understand the asteroid compositions for these.

Precession (Analytical) at Low-Mass Limit


$$\begin{split} |\Delta\varphi_{\phi,A'}| \simeq \frac{2\pi}{1 + \frac{g^2}{4\pi G m_p^2}} \frac{g^2}{4\pi G m_p^2} \left(\frac{amc}{\hbar}\right)^2 (1 - \mathbf{e}) \,. \end{split}$$
 (fifth force)

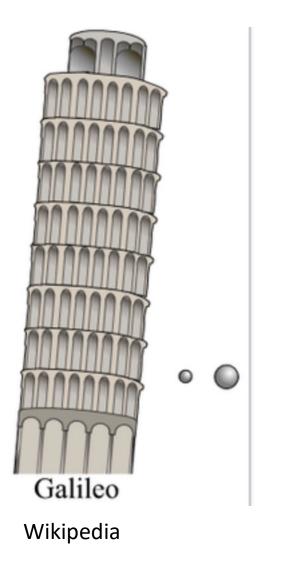
• m_p is proton mass

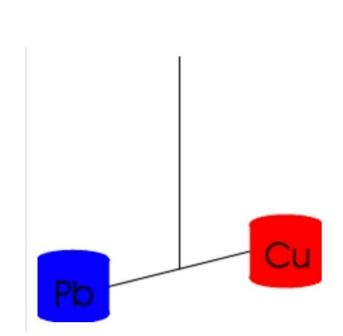
$$\Delta \varphi_0 = \frac{6\pi G M_{\odot}}{a(1-\mathsf{e}^2)c^2} \left[\frac{2-\beta+2\gamma}{3}\right]$$
(GR)


- for low mass, m << 1/ a (Natural Unit)
- The term gets larger with *a*
- That's why we should explore **objects further away from the Sun:** not just Mercury or other planets
- Not depending on target celestial bodies' mass

Results for the new physics

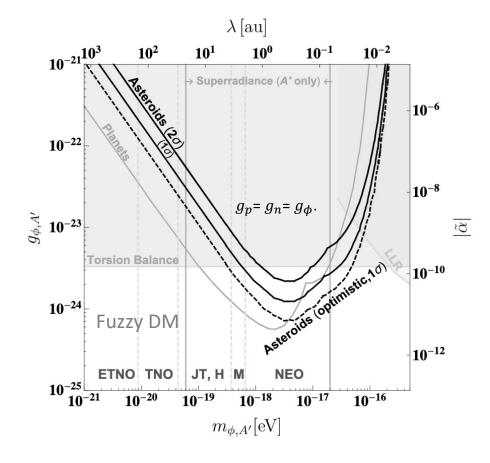
Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038


Asteroid Constrain EP Conserving 5th forces



- LLR: Lunar Laser Ranging Williams, Turyshev, Boggs, PRL 04
- Planets: Poddar, Mohanty, Jana, EPJC 21
- Asteroidal / Planetary / Lunar Probes are the strongest for equivalence principle conserving fifth forces.

Tsai, Wu, Vagnozzi, Visinelli, <u>arXiv:2107.04038</u> We are conducting a **detailed study** using **MONTE** with people from JPL & ESA


Torsion Balance: Modern-Day Tower of Pisa experiment

<u>The Eöt-Wash Group</u>, University of Washington https://www.npl.washington.edu/eotwash/torsion-balances

Equivalence Principle-Breaking Fifth Forces

• Best reach: TU3, MN, BD19

۲

- **Torsion Balance Exp:** Schlamminger, Choi, Wagner, Gundlach, Adelberger, PRL 08
- Superradiance: Baryakhtar, Galanis, Lasenby, and Simon, PRD 21
- LLR: Lunar Laser Ranging Williams, Turyshev, Boggs, PRL 04
- Planets: Poddar, Mohanty, Jana, EPJC 21

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038

We are conducting a **detailed study** using **MONTE** with people from JPL & ESA

Future objects of interest

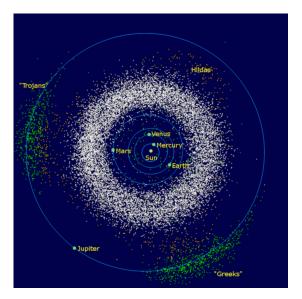
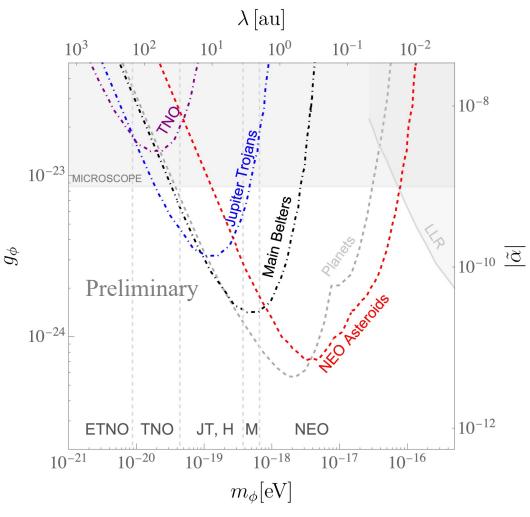

Minor Planets	a [au]	\sim Numbers
Near-Earth Object (NEO)	$< 1.3^*$	> 25000
Main-Belt Asteroid (M)	$\sim 2-3$	~ 1 million
Hilda (H)	3.7 - 4.2	> 4000
Jupiter Trojan (JT)	5.2	> 9800
Trans-Neptunian Object (TNO)	> 30	2700
Extreme TNO (ETNO)	> 150	12

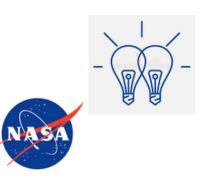
TABLE I. Targets for our future studies, for which exciting opportunities are provided by sheer numbers and observational programs, classified roughly based on their typical semimajor axes.


*NEOs are defined as having perihelia a(1 - e) < 1.3 au.

$$\left|\Delta\varphi_{\phi,A'}\right| \simeq \frac{2\pi}{1+\frac{g^2}{4\pi G m_p^2}} \frac{g^2}{4\pi G m_p^2} \left(\frac{amc}{\hbar}\right)^2 \left(1-\mathsf{e}\right).$$

- Tsai, Wu, Vagnozzi, Visinelli, <u>arXiv:2107.04038</u>
- Can also probe dark matter, primordial black hole, etc

Compilations of Various Probes


Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038

- LLR: Lunar Laser Ranging Williams, Turyshev, Boggs, PRL 04
 - **Planets:** Poddar, Mohanty, Jana, EPJC 21
 - Asteroidal / Planetary / Lunar Probes are the strongest for equivalence principle conserving fifth forces.

Other Exciting Research Directions

- **Asteroidal/Planetary Tracking Array;** develop a tracking array to study bosonic ultralight dark matter (possible) and gravitational wave (difficult)
- Model independent DM constraint
- Lunar Laser + Radar Ranging
 LLR + transponder; multi-messenger localization!
 exploring ideas with Tim on probing lunar physics; with Asantha about LISA+
 Also, more collaborations with UCSD regarding LLR!
- <u>Q-SEnSE</u> + SpaceQ informal meeting:

Dan Scheeres, <u>daniel.scheeres@colorado.edu</u> Hani Zaheer, <u>hani@udel.edu</u> Jay McMahon, <u>jay.mcmahon@colorado.edu</u> Marianna Safronova, <u>msafrono@udel.edu</u> Penny Axelrad, <u>penina.axelrad@colorado.edu</u> Yu-Dai Tsai, <u>yt444@cornell.edu</u>

Thank you. Happy to discuss more!

Thank Josh, Marianna, Luca, Sunny, Youjia for comments

Outreach/Interview: <u>https://www.youtube.com/watch?v=xDX9XwLHBuM</u> (~58K views!)

Yu-Dai Tsai, UC Irvine, '22 <u>yt444@cornell.edu</u> or <u>yudait1@uci.edu</u>