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Big questions
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• How much dark matter are there in the 
solar system? Do we really know?

• Can planetary data set meaningful dark 
matter constraints? General Relativity? 
5th forces? 

• Can we use current or future space 
Quantum Technology to study 
fundamental physics?



Answers
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• How much dark matter are there in the solar 
system? We don’t really know!

• Can planetary data set meaningful dark 
matter constraints? General Relativity? 
5th forces? Yes!

• Can we use current or future space Quantum 
Technology to study fundamental physics? 
Yes, I will show you an example today.



Theme of this talk: 

Bridging Planetary Date, Space (Quantum) 
Technologies, and Fundamental Physics

This talk may have real-life consequences!

4Anteaters - Starship Don’t Please Look Up
Photo by Oriana Gonzalez/Staff. Public Domain



Why Space Quantum Clocks?
Auto-Navigating Spacecraft & Space Travel
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Exploring the deep space: auto-driving Spacecraft; 
needs precision timing!!!

NASA Deep Space Atomic Clocks (current technology!) & 
Deep space and global navigation satellite system (GNSS) 

Can we use the technology to study fundamental physics?

Torpor/NASA future concept. SpaceWorks

NASA Kennedy Space Center's Visitor Complex (Public Domain)
Torpor/NASA collaboration



NASA DSAC as a major motivation
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Up to 50 times more stable than the atomic 
clocks on GPS satellites, the mercury-ion Deep 
Space Atomic Clock loses one second every 10 
million years, as proven in controlled tests on 
Earth. 

• Launched in 2019, the clock has operated for more than 12 months in space 
and demonstrated there a long-term stability of 3 × 10^{−15} at 23 days
Burt, Prestage, Tjoelker, Enzer, Kuang, Murphy et al., Nature 595 (2021) 43.

• Exceeds previous space clock performance by up to an order of magnitude

Parker Solar Probe: billion-dollar mission
Kasper, Klein, Lichko, Huang, Chen, Badman et al., 
Parker solar probe enters the magnetically dominated 
solar corona, Phys. Rev. Lett. (2021)



Caesium Standard and Atomic Clock
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• Atomic clocks: used to measure the distance between objects by 
timing how long it takes a signal to travel from A to B.

• For space exploration, clocks must be extremely precise: 

• An error of even one second can mean the difference between landing 
on Mars or missing it by hundreds of thousands of miles.

http://hyperphysics.phy-astr.gsu.edu/hbase/acloc.html
Reference: U.S. Naval Observatory, Cesium Clocks

HyperPhysics Georgia State U

Definition of a second

http://hyperphysics.phy-astr.gsu.edu/hbase/acloc.html
http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html


Outline

• Ultralight Dark Matter

• Solar Bound-State Halo

• Sensitivity of (Space-based)
Clocks

8



Dark Matter Coupling
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Oscillation of Massive Scalars
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DM



Atomic Physics Probe
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Atomic Probe Basics
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• For example, if A is a hyperfine microwave transition and B is an electronic 
optical transition, ζA = 1 and ζB = 0.

• For details, see 1405.2925, Arvanitaki, Huang, Tilburg, PRD 15

Experimental observable! There are other observables, which Marianna may cover



Solar Bound-State Halo
or Solar Halo
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Dark matter in solar system? Planetary constraint!
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Mercury, Venus, Earth, Mars, Jupiter, Saturn
Pitjev, Pitjeva, 1306.5534, Astronomy Letters ’13
Tsai, Eby, Safronova, 2112.07674
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Scalar DM Halo
Stable solution supported by external potential

Banerjee, Budker, Eby, Flambaum, Kim, Matsedonskyi, and Perez, 1912.04295

,
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Enhancement of the density

Tsai, Eby, Safronova, 2112.07674



Dark matter in solar system? Planetary constraint!
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New project!
Improve the constraint with asteroid data! Model independent! 
Tsai +, to improve Pitjev, Pitjeva, 1306.5534, Astronomy Letters ’13
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Results

• Motivate	Specific	Frequency	Region!
• Motivate Nuclear	Clocks!
• Tsai, Eby, Safronova, 2112.07674

Naturalness	condition

See	relaxion	discussions	
&	predictions in	paper



More on the Planetary Constraints:
Ultralight Dark Sector
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Asteroids	hitting	the	earth

~ 65 million years ago

Tracking asteroids is extremely important
e.g., unexpected 2013 Chelyabinsk meteor injured >1500 people
Also, near-Earth asteroid search accidentally found ʻOumuamua

Engin Akyurt –Unsplash - free usage for 
commercial & non-commercial purposes
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Asteroids

https://commons.wikimedia.org/wiki/File:InnerSolarSystem-
en.png, public domain, granted usage for any purposes 

“Is he not the celebrated author of The Dynamics of an 
Asteroid, a book which ascends to such rarefied heights of 
pure mathematics that it is said that there was no man in the 
scientific press capable of criticizing it?
— Sherlock Holmes, The Valley of Fear

“Professor Moriarty stood before me”

By Sidney Paget

https://commons.wikimedia.org/wiki/File:InnerSolarSystem-en.png
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Radar	Observations
• Radar – Goldstone Observatory:

Provide very precise location and 
velocity information of the asteroids

• Radar astronomy:
observing nearby astronomical objects 
by reflecting microwaves off target 
objects and analyzing the reflections.

• Round-trip light time (RTLT): The 
elapsed time taken by a signal travelling 
from the Earth to a spacecraft or other 
celestial body

• Doppler shift:

https://www.desertusa.com/desert-
california/goldstone-deep-space.htmlBy Charly Whisky, CC BY-SA 3.0 

https://en.wikipedia.org/wiki/Doppler_effect#/media/File:Dopplerfrequenz.gif

https://commons.wikimedia.org/wiki/User:Charly_Whisky


Perihelion Precession: Einstein’s	Success
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Precession of Mercury's perihelion (closest point to the Sun)

• Consider planar motion and fix θ = π/2.

• Define inverse radius variable u ≡ 1/r = u(ϕ) 

•

https://en.wikipedia.org/wiki/Apsidal_precession#/media/File:Prec
essing_Kepler_orbit_280frames_e0.6_smaller.gif under CC BY 3.0

Made by Wikipedia User WilllowW
https://commons.wikimedia.org/wiki/User:WillowW

M. W. Toews (CC0)

, 𝑎 is the semi-major axis

(GR)

https://en.wikipedia.org/wiki/Apsidal_precession
https://creativecommons.org/licenses/by/3.0
https://commons.wikimedia.org/wiki/User:WillowW


5th force	and	Yukawa	Potential
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• Gauge boson, dark photon of 𝑈(1)! or scalar coupled to baryon number

• g is new physics coupling constant, and m is the mediator mass

• See, e.g., Poddar et al, https://arxiv.org/abs/2002.02935

(fifth	force)



Ultralight	Bosons
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1. Spin 0: ultralight scalars coupled to Standard Model particles

2. Spin 1: Dark photon of gauged 𝑼(𝟏)𝑩, 
with coupling 𝑔#$ charging all baryons equally
charge: 𝑞 %= 𝑞&= 1 

𝑈(1)! has chiral anomaly, so extra heavy particle is needed, 
and there may be additional constraints & model building needed for those constraints 
(Constraints: Dror, Lasenby, Pospelov, arXiv:1705.06726, arXiv:1707.01503)
(Models to alleviate bounds: Green, Schwarzy, PLB 87, Kaplan, NPB 91)

3. Our study can also be applied to 𝑼(𝟏)𝑩+𝑳, 𝑳𝒆 − 𝑳𝝁,𝝉, etc. ,
Need to understand the asteroid compositions for these.



Precession	(Analytical)	at	Low-Mass	Limit

26

• 𝒎𝒑 is proton mass

• for low mass, m << 1/ 𝒂 (Natural Unit)

• The term gets larger with 𝒂

• That’s why we should explore objects further away from the Sun: 
not just Mercury or other planets

• Not depending on target celestial bodies’ mass

(fifth	force)
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Results	for	the	new	physics

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038

Optimal 2022 results, 

Best reach:
TU3, MN, BD19

Recast
Verma, Margot, 
Greenberg, APJ ‘17

Fuzzy DM

https://arxiv.org/abs/2107.04038
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Asteroid	Constrain	EP	Conserving	5th forces

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038
We are conducting a detailed study using MONTE with people from JPL & ESA

• LLR: Lunar Laser Ranging
Williams, Turyshev, Boggs, PRL 04

• Planets:
Poddar, Mohanty, Jana, EPJC 21

• Asteroidal / Planetary / Lunar 
Probes are the strongest for 
equivalence principle conserving 
fifth forces.

Fuzzy DM

https://arxiv.org/abs/2107.04038
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Torsion	Balance:	Modern-Day	Tower	of	Pisa	experiment

The Eöt-Wash Group, University of Washington
https://www.npl.washington.edu/eotwash/torsion-balances

Wikipedia

https://www.npl.washington.edu/eotwash/
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Equivalence	Principle-Breaking	Fifth	Forces

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038

We are conducting a detailed study using MONTE with people from JPL & ESA

• Best reach: TU3, MN, BD19

• Torsion Balance Exp:
Schlamminger, Choi, Wagner, 
Gundlach, Adelberger, PRL 08

• Superradiance:
Baryakhtar, Galanis, Lasenby, and 
Simon, PRD 21

• LLR: Lunar Laser Ranging
Williams, Turyshev, Boggs, PRL 04

• Planets:
Poddar, Mohanty, Jana, EPJC 21

Fuzzy DM

𝑔"= 𝑔#= 𝑔$.

https://arxiv.org/abs/2107.04038
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Future	objects	of	interest

• Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038

• Can also probe dark matter, primordial black hole, etc

https://arxiv.org/abs/2107.04038
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Compilations	of	Various	Probes

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038

We are conducting a detailed study using MONTE with people from JPL & ESA

• LLR: Lunar Laser Ranging
Williams, Turyshev, Boggs, PRL 04

• Planets:
Poddar, Mohanty, Jana, EPJC 21

• Asteroidal / Planetary / Lunar 
Probes are the strongest for 
equivalence principle conserving 
fifth forces.

Fuzzy DM

Preliminary

Preliminary

https://arxiv.org/abs/2107.04038
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Other	Exciting	Research	Directions

• Asteroidal/Planetary	Tracking	Array;	develop a tracking array to study bosonic 
ultralight dark matter (possible) and gravitational wave (difficult)

• Model	independent	DM	constraint

• Lunar	Laser	+	Radar	Ranging
LLR + transponder; multi-messenger localization!
exploring ideas with Tim on probing lunar physics; with Asantha about LISA+
Also, more collaborations with UCSD regarding LLR!

• Q-SEnSE + SpaceQ informal meeting:

https://www.colorado.edu/research/qsense/


Thank you.
Happy to discuss more!

Thank Josh, Marianna, Luca, Sunny, Youjia for comments
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