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Why?
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Past 40 years

WIMP, glorious WIMP*

*Also axions
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WIMP

mDM = ↵⇥ 30 TeV
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For Weak coupling, Weak scale emerges

Weakly Interacting Massive Particle (WIMP)
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WIMP 
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Thermal Relic: 
Simple and Predictive
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WIMP 
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Guiding principle  
in cosmology
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Searching for WIMPs
Direct Production           Direct Detection         Indirect Detection

e.g. LHC e.g. LUX

Experiments are getting increasingly sensitive… 
but we still haven’t found it

e.g. FERMI
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Dominant paradigm being challenged.  
 

Great opportunity for new ideas!
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Status in 2022



Beyond the WIMP
dark matter mass

ssss
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Thermal particle dark 
matter

unitaritywarm BBN
planck 
scale
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WIMP

GeV1050



mDM = ↵⇥ 30 TeV
<latexit sha1_base64="OZ3aZY6FRdsOvHCLpbEFfzRAWE8="></latexit>

Correct relic abundance for 

h�annvi =
↵2

m2
DM
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Unitarity Bound

For perturbative couplings 
  α < 4π



Unitarity Bound
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time
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DM SM

Amount 
of DM

��annv�
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ng

1. Larger cross section 
  DM annihilates away more 

2. Fewer dark matter particles 
 must be heavier to give 

observed energy density 

3. Annihilations are never 
efficient enough to predict 
very heavier DM

→

→



Compare Processes

Γann = nDM ⟨σannv⟩ ∝ e−mDM/T

DM

DM

time
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Less efficient

thing2

thing1

(rare)

Boltzmann suppressed 



Compare Processes

Much more efficient!

Γann = nDM ⟨σannv⟩ ∝ e−mDM/T

DM

DM

time

lighter
thing

DM

thing2

time

Γann = nlight ⟨σannv⟩
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vs.
thing2

thing1 thing1

(abundant)

Boltzmann suppressed Less (or not) 
Boltzmann suppressed 

Less efficient

(rare)



Example #1: 
Zombies



Zombies
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[Kramer, EK, Levi, Outmezguine, Ruderman, PRL 2020]



DM
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Zombies
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time

1. Dark matter finds a zombie, gets turned into zombie. 

2. Some dark matter survives the pandemic until today 

3. Zombies eventually decay away



Zombies
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time

mζ < mDM < 3mζ

Not forbidden (as ), 
to get heavy DM

T → 0 Dark matter should be 
(meta)stable

DM

ζ

ζ

ζ



Zombie Simulation
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Zombie Simulation
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Basic Ingredients

χ : dark matter
ζ : zombie

χ

ζ† ζ

ζ

S

ζ

ζ†

sm

sm

ℒyuk = yζSζ̄cζ + yχSζ̄χ + yeHζ̄Le + yμHζ̄cLμ + h . c .

Z′ 

Zombie process Equilibrium process

U(1)e−μ

χ

ζ
S

1
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Phase Diagram
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Metastable DM
Zombies too abundant 
  zombies must decay→

ζ ζ

ζχ
decay

decay

decay

Metastable DM with strong indirect 
detection signal



Example #2: 
Chain Dark Matter



Chain Dark Matter

24
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FIG. 1. Dark matter coscatter and codecay chain.

process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (9)

where Yi = ni/s, � = (nsmh�vi/H)|x=1. The asymptotic
value of the relic abundance is

Y1(1) ⇡
45

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
one solves

Y
0
1 = �

�

x2
Y1, (11)

to find that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵

2
/m

2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is

�1

�2
⇠

⇣
↵

16⇡2

⌘2
. (12)

Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction

Very efficient because the SM particles are abundant

[Kim, EK PRL 2019]

mχ1
≃ mχ2

≃ ⋯ ≃ mχN

DM candidate
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DM candidate decays
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FIG. 1. Dark matter coscatter and codecay chain.

process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (9)

where Yi = ni/s, � = (nsmh�vi/H)|x=1. The asymptotic
value of the relic abundance is

Y1(1) ⇡
45

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
one solves

Y
0
1 = �

�

x2
Y1, (11)

to find that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵

2
/m

2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is

�1

�2
⇠

⇣
↵

16⇡2

⌘2
. (12)

Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction

Last particles decays in equilibrium:  
system is in chemical equilibrium

Chain Dark Matter



Need a chain
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FIG. 1. Dark matter coscatter and codecay chain.

process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (9)

where Yi = ni/s, � = (nsmh�vi/H)|x=1. The asymptotic
value of the relic abundance is

Y1(1) ⇡
45

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
one solves

Y
0
1 = �

�

x2
Y1, (11)

to find that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵

2
/m

2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is

�1

�2
⇠

⇣
↵

16⇡2

⌘2
. (12)

Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction

Otherwise DM is too unstable
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FIG. 1. Dark matter coscatter and codecay chain.

process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (9)

where Yi = ni/s, � = (nsmh�vi/H)|x=1. The asymptotic
value of the relic abundance is

Y1(1) ⇡
45

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
one solves

Y
0
1 = �

�

x2
Y1, (11)

to find that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵

2
/m

2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is

�1

�2
⇠

⇣
↵

16⇡2

⌘2
. (12)

Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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FIG. 1. Dark matter coscatter and codecay chain.

process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
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continue to scatter away. Neglecting the inverse process,
one solves
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�2xfo . One also

sees from this solution that the abundance stops changing
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From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process
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the dark matter bath is kept in equilibrium with the SM
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stantaneous freezeout approximation will not give a good
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it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
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we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are
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scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
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�, then
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fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation
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From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation
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sees from this solution that the abundance stops changing
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From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �
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2 ! 4 sm. The decay rate of �1 is
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are
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where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
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suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
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From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are
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scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
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�, then
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation
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�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �
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2 ! 4 sm. The decay rate of �1 is
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (9)

where Yi = ni/s, � = (nsmh�vi/H)|x=1. The asymptotic
value of the relic abundance is

Y1(1) ⇡
45

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
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From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
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Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
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satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵
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�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).
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librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
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process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
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�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
one solves

Y
0
1 = �

�

x2
Y1, (11)

to find that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵

2
/m

2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is

�1

�2
⇠

⇣
↵

16⇡2

⌘2
. (12)

Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction

Consider 2-chain first

⟨σv⟩ =
1

m2
χ

mχ = 6 × 1014 GeV→

Very heavy dark matter
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FIG. 1. Dark matter coscatter and codecay chain.

process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. Therefore, we propose
that there is a coscattering chain, such that scatters take
place only for nearest neighbor

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

This is summarized in Fig. 1. Here �1 is still the dark
matter, but its decay width is suppressed due to the large
phase space needed to decay to the SM (�1 decays to 2N
SM particles).

III. TWO PARTICLE CASE

We first consider the simplest case of N = 2 dark sec-
tor particles. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
There are two degenerate states �1 and �2, which coscat-
ter [1] o↵ SM bath particles via the process

�1 + SM $ �2 + SM. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.
The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1), (7)

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (8)

where h�vi is a thermally averaged cross section for the
scattering process, neq is equilibrium number density of
�, and �2 is the decay rate of �2 in the thermal bath. This
system is similar to the co-scattering scenario [1], but here
the dark matter bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations.

If the decay rate is larger than the Hubble expansion
parameter when the temperature of the universe is equal
to the dark matter mass, the number density of �2 closely
follows its equilibrium value. Then an approximate so-
lution to the �1 density can be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (9)

where Yi = ni/s, � = (nsmh�vi/H)|x=1. The asymptotic
value of the relic abundance is

Y1(1) ⇡
45

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�). (10)

The fact that the relic abundance scales as Y1(1) ⇠

e
�2xfo and not e

�xfo , is a result of the slow freezeout.
From the Boltzmann equation (9), �1 departs equilibrium
when �/x

2
fo ⇠ 1. At this point, �1 creation stops, but can

continue to scatter away. Neglecting the inverse process,
one solves

Y
0
1 = �

�

x2
Y1, (11)

to find that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also

sees from this solution that the abundance stops changing
significantly when xfin ⇠ � = x

2
fo.

From this estimation, we can find h�vi, reproduc-
ing the observed relic abundance of dark matter, while
satisfying the unitarity bound. For instance, param-
eterizing the cross-section as h�vi ⌘ ↵

2
/m

2
�, then

m� = mpl = 2.4⇥ 1018 GeV and ↵ ' 17, reproduces the
correct relic abundance (assuming the DM scatters o↵ all
all SM particles and that g?s = 106.75).

Unfortunately, the minimal scenario is not vi-
able because the dark matter can decay through
�1 ! 2 sm + �

⇤
2 ! 4 sm. The decay rate of �1 is

�1

�2
⇠

⇣
↵

16⇡2

⌘2
. (12)

Considering that we assumed that the decays are in equi-
librium, �1 is short lived and therefore cannot be identi-
fied as dark matter.

IV. N > 2 DEGENERATE CASE

Although the simplest N = 2 example does not work,
it is interesting to observe that the decay rate of �1 is
suppressed relative to that of �2 due to the small available
phase space and the coupling constant. In this regard,
we consider N > 2 case with the same type of nearest-
neighbor interactions. Similarly, we assume that only �N

is able to decay into SM particles, that the masses are
degenerate, and that the cross section for each interaction

DM candidate decays
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Numerics

−mT
∂N′ 1

∂T
= − ⟨σv⟩nsm(N1 − N2)

For the N-chain

−mT
∂N′ j

∂T
= ⟨σv⟩nsm(Nj−1 − Nj) − ⟨σv⟩nsm(Nj − Nj+1)

−mT
∂N′ N

∂T
= ⟨σv⟩nsm(NN−1 − NN) − ΓχN

(NN − Neq
N )

Turn it into a  
diffusion equation

(∂τ − D∂2
ℓ)Nℓ(τ) = 0

τ = − T/mℓ = πj/[2(N − 1)]

D = π2λ /[4(N − 1)2]

∂ℓN |ℓ=0 = 0, Nπ/2(τ) = Neq(τ)

Diffusion coefficient:

Boundary conditions
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Beyond Thermal Unitarity

Both cases: nearly degenerate dark sector states and 
metastable dark matter. 

This is generic for going beyond thermal unitarity

Will prove this with students Ronny Frumkin and Itay Lavie

Look for cosmic rays up to the Planck scale!



Example #3: 
Squeezeout



SU(3), NF = 1 mQ ≫ TC ≃ Λconfinement

Simple theory:

ℒ ⊃ −
1
4

GμνGμν + Q̄ (iγμDμ − mQ) Q ,

Asymptotically free with first order phase transition

Mesons QQ̄ Baryons QQQ, Q̄Q̄Q̄

Bounds states:

sm stable, DM?

Squeeze-out
Asadi, Kramer, EK, Ridgway, Slatyer, Smirnov, PRL 2021, PRD 2021



time

Amount 
of DM

Quark Freezeout

Q̄ Q̄

Q̄Q Q

T ≃ mQ

Neq

Nobs

DM too abundant for  
M ≫ 100 TeV

NQ = N
Q̄



Phase Transition
Not the end of the story

How do these pair up into mesons and baryons? 
(only baryons will be DM) 

 
What does the phase transition do?



Stage 1: Freezeout



Stage 1: Freezeout
Too far apart to ‘recombine’  

into hadrons



Stage 2: Nucleation

T ∼ Tc



Stage 2: Nucleation
Bubble nucleation

Γ ≃ T4e− F
Tc

Rc =
2σ Tc

l (Tc − T )

Nucleation rate:

Minimal bubble size

Free energy at critical size

Fc =
16π

3 ( σ
T3

c )
3

( l
T4

c )
−2

T3
c

(Tc − T )2

Rc



Stage 3: Growth and 
Coalescing



Stage 3: Growth and 
Coalescing

Coalescing

Rate to coalesce fast for 

2 bubbles radius    bubble radius R → 22/3R

R1

Force and time needed to rearrange

ρ
4
3

π3R3 R
t2

∼ Ma = F ∼
ΔE
R

∼ 4πR2 σ
R

Time is faster than Hubble ( ) t < H−1

R1 ≲ ( σ
ρH2 )

1/3

∼ M2/3
pl /T5/2

c

R1 ≃ M2/3
pl /T5/2

c

Witten 84 



Stage 3: Growth and 
Coalescing

R1 Pessimist 

R1 ≃ M2/3
pl /T5/2

c

Universe now half full with bubbles 
with size  



Stage 4: Pockets

R1

Optimist 

R1 ≃ M2/3
pl /T5/2

c

Universe now half full with pockets 
with size  



Stage 5: Shrinkage

R1

Pockets shrink 
condensing quarks and antiquarks



Stage 5: Shrinkage

quarks cannot escape

Γstring ∼
mq

4π3
e−m2

q /Λ2

only hadrons can escape



Stage 5: Squeezeout

R1

baryons are formed in the pocket

baryons squeeze out from the pocket



Baryon survival rate
•Complicated physics based 
on recombination rates, 
binding energies, quark 
pressure, wall speed, 
baryon speed, etc.. 

•Quarks, mesons and 
baryons, equilibrate 
    NB ≪ ≪ ≪ NM

•Mesons decays when 
formed, depleting all states.



Accidental Asymmetry
•All quarks and anti-quarks 
are eliminated except for 

•Accident in each pocket

Asymmetric component!

|NQ − NQ̄ | ≃ NQ

•All we need know is 
original number in pocket

Npocket
Q =

4
3

πR3
1 N freeze−out

Q̄



Whole picture



Parameter space
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Further squeeze-out
• Consider charged quarks: 

• Long ranged forces wash out asymmetry — much heavier 
dark matter 

• can lead early matter dominated era 

• Consider different mediators to the visible sector. 

• Gravitational wave signal.  

• More careful escape rate calculation from the walls.
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Preliminary
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Outlook
• Lots of activity for thermal dark matter. 

• Many different interactions, processes, and their relative 
importance throughout the cosmological history.  

• Novel dark matter frameworks. 

• Generic. 

• Discovery—often point to string indirect detection signal.  

• Much more to do. 
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