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Dark Matter Landscape - Mass 
The nature of dark matter is still shrouded in mystery 

!"# ≃ 1.2×10*+ GeV/cm2 = 4"#5"#

Fuzzy DM                 QCD axion          Warm DM               WIMP DM         Primordial Black Hole, 

Sterile neutrino, Axino Ultra Compact Mini Halo, Q-ball   
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Dark Matter Landscape - Production Mechanism
The nature of dark matter is still shrouded in mystery 

!"# ≃ 1.2×10*+ GeV/cm2 = 4"#5"#

Fuzzy DM                 QCD axion          Warm DM               WIMP DM         Primordial Black Hole,

Sterile neutrino, Axino Ultra Compact Mini Halo, Q-ball   

5

10*66eV 7☉ ∼ 10297:7:4;<eV=eV

Misalignment, 
Fluctuations 
during inflation

Freeze-in and Freeze-out 
(scattering with thermal bath)

Enhanced density perturbation 
during inflation & phase transition 
& Affleck-Dine mechanism  



Dark Matter Landscape - Production Mechanism
The nature of dark matter is still shrouded in mystery 

!"# ≃ 1.2×10*+ GeV/cm2 = 4"#5"#

Fuzzy DM                 QCD axion          Warm DM               WIMP DM         Primordial Black Hole, 

Sterile neutrino, Axino Ultra Compact Mini Halo, Q-ball

Interactions between DM and thermal bath are more crucial for DM production

Gravitational interactions are more crucial for DM production 
6

Freeze-in and Freeze-out 
(scattering with thermal bath)

Enhanced density perturbation 
during inflation & phase transition 
& Affleck-Dine mechanism 
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Dark Matter Landscape - Production Mechanism
The nature of dark matter is still shrouded in mystery 

!"# ≃ 1.2×10*+ GeV/cm2 = 4"#5"#

Fuzzy DM                 QCD axion          Warm DM               WIMP DM         Primordial Black Hole, 

Sterile neutrino, Axino Ultra Compact Mini Halo, Q-ball

Interactions between DM and thermal bath are more crucial for DM production

Gravitational interactions are more crucial for DM production 
7

Freeze-in and Freeze-out 
(scattering with thermal bath)

Enhanced density perturbation 
during inflation & phase transition 
& Affleck-Dine mechanism 

Heavy Dark Matter

particle-like
46 ≪ 4"# ≪ 89

:eV 8☉ ∼ 102<898946

Misalignment, 
Fluctuations 
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Unitarity Bound for Thermal Heavy DM
DM annihilation cross-section becomes cosmologically ineffective when the ann. rate becomes smaller then the Hubble rate.

Freeze-out happens at around !"# which gives Γ%&& = (%&&) *+, = - ! ∼ !//12
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Unitarity Bound for Thermal Heavy DM
DM annihilation cross-section becomes cosmologically ineffective when the ann. rate becomes smaller then the Hubble rate.

Freeze-out happens at around !"# which gives Γ%&& = (%&&) *+, = - ! ∼ !//12

Unitarity bound for (point-like) DM annihilation process 

means that generically  (%&&) *1, ≲ 1/1, è +,/5 *67
increases as 1, increases.

For thermal DM with 1, ≫ 9(100 TeV),  1,/!"# ∼ 9(10) and  Ω,ℎ/ ≫ 9(1) è Thermal heavy DM is not favored 

(c.f. there are several references which include Sommerfeld effect and bound state effect like [Smirnov, Beacom 1904.11503]) 9
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Personal Motivations for Thermal Heavy DM  
* As a compelling source of unidentified high energy cosmic rays: Decaying DM

* Even if DM is absolutely stable, an interesting effect on the star evolution could exist  
when there is a sizable interaction between DM and the star
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Personal Motivations for Thermal Heavy DM 
* An interesting role for the star evolution with a sizable scattering cross-section between heavy DM and stars
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Supernovae Sparked By
Dark Matter in White Dwarfs

Javier F. Acevedog and Joseph Bramanteg,†

gThe Arthur B. McDonald Canadian Astroparticle Physics Research Institute,

Department of Physics, Engineering Physics, and Astronomy,

Queen’s University, Kingston, Ontario, K7L 2S8, Canada
†Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada

November 27, 2019

Abstract

It was recently demonstrated that asymmetric dark matter can ignite supernovae
by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and
that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter
accumulated inside a white dwarf and collapsing under its own weight, sheds enough
gravitational potential energy through scattering with nuclei, to spark the fusion
reactions that precede a Type Ia supernova explosion. In this article we elaborate
on this mechanism and use it to place new bounds on interactions between nucleons
and asymmetric dark matter for masses mX = 106 � 1016 GeV. Interestingly, we
find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition
can proceed through the Hawking evaporation of a small black hole formed by the
collapsed dark matter. We also identify how a cold white dwarf’s Coulomb crystal
structure substantially suppresses dark matter-nuclear scattering at low momentum
transfers, which is crucial for calculating the time it takes dark matter to form
a black hole. Higgs and vector portal dark matter models that ignite Type Ia
supernovae are explored.

Contents

1 Introduction 2

2 Dark matter capture, thermalization and collapse in white dwarfs 4
2.1 Dark matter capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Accumulated DM by thermalization à form a mini blackhole inside the white dwarf  

,-

à Hawking evaporation with ./0 ∼ 6 TeV 56/10:;GeV
;/=

à Spark the fusion reaction for Type Ia SN explosion
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Abstract

It was recently demonstrated that asymmetric dark matter can ignite supernovae
by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and
that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter
accumulated inside a white dwarf and collapsing under its own weight, sheds enough
gravitational potential energy through scattering with nuclei, to spark the fusion
reactions that precede a Type Ia supernova explosion. In this article we elaborate
on this mechanism and use it to place new bounds on interactions between nucleons
and asymmetric dark matter for masses mX = 106 � 1016 GeV. Interestingly, we
find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition
can proceed through the Hawking evaporation of a small black hole formed by the
collapsed dark matter. We also identify how a cold white dwarf’s Coulomb crystal
structure substantially suppresses dark matter-nuclear scattering at low momentum
transfers, which is crucial for calculating the time it takes dark matter to form
a black hole. Higgs and vector portal dark matter models that ignite Type Ia
supernovae are explored.
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Personal Motivations for Thermal Heavy DM 
* Some development of theoretical ideas for heavy DM with a correct relic density 

From the old story... 
In SUSY models, it is natural for a scalar ! whose VEV " is much larger than its mass #
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Personal Motivations for Thermal Heavy DM 
* Some development of theoretical ideas for heavy DM with a correct relic density 

From the old story... 
In SUSY models, it is natural for a scalar ! whose VEV " is much larger than its mass #

At high temperatures, ! can be trapped at the origin due to the thermal effect. 
As the temperature drops, eventually there is the phase transition from ! = 0 to ! = &' ≠ 0 at )*+

For Δ- ≪ "/, generically )*+
/ ≪ Δ-

the Universe experiences “supercooled period” 
(mini-inflation period) à reheating process 

à large entropy production 
à DM abundance is diluted as (roughly) 

Heavy DM can naturally have a correct relic density

(but not special for thermal heavy dark matter) 
13
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Personal Motivations for Thermal Heavy DM 
Evolution of the DM mass is related with phase transition at the early Universe 

A mass of the heavy DM is identified as !" = $% →
'(
) *+*

=
'(
) ,-./012

∼
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∼ 0.01
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Super-cool Dark Matter

Thomas Hambye
a
, Alessandro Strumia

b,c,d
, Daniele Teresi

a

a
Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium

b
CERN, Theory Division, Geneva, Switzerland

c
Dipartimento di Fisica dell’Università di Pisa

d
INFN, Sezione di Pisa, Italy

Abstract

In dimension-less theories of dynamical generation of the weak scale,

the Universe can undergo a period of low-scale inflation during which

all particles are massless and undergo super-cooling. This leads to a

new mechanism of generation of the cosmological Dark Matter relic

density: super-cooling can easily suppress the amount of Dark Matter

down to the desired level. This is achieved for TeV-scale Dark Matter,

if super-cooling ends when quark condensates form at the QCD phase

transition. Along this scenario, the baryon asymmetry can be gener-

ated either at the phase transition or through leptogenesis. We show

that the above mechanism takes place in old and new dimension-less

models.
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Personal Motivations for Thermal Heavy DM 
* Considering a standard thermal history and a constant DM mass 

With series of co-scattering, the DM abundance is effectively reduced (keeping its metastability). 
Signatures from DM decay products, etc. 

15

Super heavy thermal dark matter

Hyungjin Kim
Department of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot 7610001, Israel

Eric Kuflik
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

We propose a mechanism of elementary thermal dark matter with mass up to 1014 GeV, within a
standard cosmological history, whose relic abundance is determined solely by its interactions with the
Standard Model, without violating the perturbative unitarity bound. The dark matter consists of
many nearly degenerate particles which scatter with the Standard Model bath in a nearest-neighbor
chain, and maintain chemical equilibrium with the Standard Model bath by in-equilibrium decays
and inverse decays. The phenomenology includes super heavy elementary dark matter and heavy
relics that decay at various epochs in the cosmological history, with implications for CMB, structure
formation and cosmic ray experiments.

INTRODUCTION

One of the biggest questions in fundamental physics
is the nature of dark matter (DM). The possibility that
DM is a thermal Weakly Interacting Massive Particle
(WIMP), whose abundance is determined by 2 ! 2 an-
nihilations into Standard Model (SM) bath particles, is
exciting, but has alluded detection thus far. The WIMP
is particularly intriguing because it is very predictive—
its abundance is determined only by its interactions with
the SM, which informs us how it may be detected.
The WIMP paradigm has been a guide towards the

properties of DM, such as its mass and interactions. In
particular, within the WIMP freezeout mechanism, there
is a an upper bound on the DM mass from perturba-
tive unitarity, of O(100)TeV [1]. The reason is that the
WIMP annihilation rate is proportional to an exponen-
tially decreasing DM density, and so the amount of dark
matter that can be annihilated away before freezeout is
limited by the theoretical size of the cross-section.
Of course, DM may be much heavier than this bound,

if it is not a WIMP. Such models include non-thermal
dynamics, decoupled dark sectors, inflationary and grav-
itational production, nonstandard cosmological histories,
and large entropy production [2–20]. In none of these
cases, however, is the DM abundance solely determined
by its interactions with the SM. The common lore is that
an elementary DM candidate that is thermally coupled to
the SM, within a standard cosmological history, cannot
have mass well above the WIMP perturbative unitarity
bound. Exceptions include composite DM, but still do
not go much beyond the above bound [21–23].
In this Letter we present a new freezeout mechanism

within a standard cosmological history. The DM is an
elementary particle that is thermalized with the SM at
high temperatures, its relic abundance is determined via
its freezeout from the SM bath, and the DM mass can be
as high as 1014 GeV for s-wave processes, without violat-
ing the perturbative unitarity limit. In future work, we
show how Planck-scale DM can be reached for velocity-

dependent processes [24].
The general idea is as follows. The dark matter con-

sists of N approximately degenerate states, �i (i = 1..N).
These states co-scatter [25] o↵ of the SM bath, but only
in a chain of nearest-neighbor interactions

�i + sm $ �i+1 + sm, (1)

while the N th state co-decays [26–31] in equilibrium with
the SM,

�N ! sm + sm . (2)

Here �1 is the DM candidate. This setup is summa-
rized in Fig. 1. The processes in Eq. (1) can main-
tain chemical equilibrium much longer than annihila-
tions can, because the interaction rate for the scattering
�sctr = nSM h�visctr never becomes exponentially sup-
pressed. The in-equilibrium decay allows for the whole
system to have vanishing chemical potential for a long
time—if the N th particle was annihilating with the bath,
the system would inherit the unitarity bound from co-
annihilations. Finally, the chain, which will typically re-
quire N > 5 � 20, depending on the DM mass, ensures
the stability of the DM �1.

GENERAL IDEA

Consider a DM particle �1, whose density changes via
scattering with a light SM bath particle,

�1 + sm $ �2 + sm, (3)

where �2 has similar mass to �1. This process can main-
tain chemical equilibrium much longer than annihilations
with the same interaction strength, because the interac-
tion rate for the scattering does not depend on the DM
density, and therefore the rate does not become exponen-
tially suppressed. The DM is able to maintain equilib-
rium to smaller temperatures, becoming more Boltzmann
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FIG. 1. Freezeout mechanism: the dark matter consists
of many nearly degenerate particles which scatter with the
Standard Model bath in a nearest-neighbor chain, and main-
tain chemical equilibrium with the Standard Model bath by
in-equilibrium decays and inverse decays.

suppressed than a WIMP for the same size cross-section.
However, �1 can only reduce exponentially for as long

as �2 reduces exponentially (for instance, by maintaining
chemical equilibrium with the SM bath). Thus in order
to go beyond the unitarity bound on annihilations, some
other process is still needed to reduce the �2 density. If
this process is annihilations (such as �2+�2 $ sm+sm),
then it will freezeout too early, and the unitarity bound
on annihilations will apply again. If instead, �2 de-
cays equilibrium with the SM bath, chemical equilibrium
can be maintained for much longer. Thus, our proposed
mechanism is a combination of co-decay and co-scattering
dark matter.
However, one can easily see that the combination of the

scattering process Eq. (3), and the in-equilibrium decay
process �2 ! sm + sm, will necessarily lead to the fast
decay of �1 via an o↵-shell �2. In the presence of a co-
scattering chain, such that scatters take place only for
nearest neighbors

�i + sm $ �i+1 + sm, (4)

which codecay in equilibrium with �N ,

�N ! sm + sm . (5)

�1 can instead be long lived; here �1 is still the DM,
but its decay width is suppressed due to the large phase
space needed to decay to the SM (�1 decays to 2N SM
particles). This is summarized in Fig. 1.

TWO PARTICLE CASE

As a toy example, we first work through the simplest
case of N = 2 dark matter particles with mass m. While
this example is not cosmologically viable, it demonstrates
the basic idea of the mechanism. Consider two degenerate
states �1 and �2, which co-scatter [25] o↵ of SM bath
particles via the process

�1 + sm $ �2 + sm. (6)

The dark matter candidate is �1, while �2 decays in equi-
librium with the SM bath.

The Boltzmann equations for the system are

ṅ1 + 3Hn1 = nsmh�vi(n2 � n1),

ṅ2 + 3Hn2 = nsmh�vi(n1 � n2)� (n2 � n
eq
2 )�2, (7)

where h�vi is a thermally averaged cross section for the
scattering process, neq is the equilibrium number density
of �, and �2 is the decay rate of �2 in the thermal bath.
This system is similar to the co-scattering scenario [25],
but here the DM bath is kept in equilibrium with the SM
bath via decays and inverse-decays, rather than annihi-
lations. Ultimately, since decays and inverse-decays can
stay in equilibrium much longer, this will allow for much
heavier DM.

Unlike the case for freezeout via annihilations, the in-
stantaneous freezeout approximation will not give a good
estimate of the relic abundance. This is because the rate
for �1 scattering, � ⇠ nsmh�vi, is not dropping o↵ expo-
nentially fast with the expansion, and therefore freezeout
takes a long time. However, an approximate analytic so-
lution to the relic abundance can still be determined from
the Boltzmann equations, as we now detail.

If the decay rate �2 is larger than the Hubble expan-
sion parameter when the temperature T of the universe is
equal to the DM mass, the number density of �2 closely
follows its equilibrium value. An approximate solution
to the �1 density can then be found by considering the
single equation

Y
0
1 =

�

x2
(�Y1 + Yeq), (8)

where Yi = ni/s with s the entropy density, x = m/T and
� = (nsmh�vi/H)|x=1. We have also assumed that the
thermally averaged cross-section is velocity independent
and took the number of relativistic degrees of freedom
g? = g?s to be constant. The asymptotic value of the
relic abundance is

Y1(1) ⇡
45g�

23/2⇡3g?s
�e

�2
p
�
⌘ Y1(�) , (9)

where g� is the number of internal degrees of freedom of
a � particle.

From the Boltzmann equation (8), �1 departs equilib-
rium when �/x

2
fo ⇠ 1. The fact that the relic abundance

then scales as Y1(1) ⇠ e
�2xfo and not as e

�xfo (as one
finds in the instantaneous freezeout approximation), is
the result of the slow freezeout. At this point �1 creation
stops, but �1 can continue to scatter away. Neglecting
the inverse process, solving

Y
0
1 = �

�

x2
Y1, (10)

yields that Y1(x) = Y1(xfo)e
�
x� �

xfo ! e
�2xfo . One also sees

from this solution that the abundance stops changing sig-
nificantly when xfin ⇠ � = x

2
fo.

From the above estimation, one can find h�vi that re-
produces the observed relic abundance of dark matter,
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We propose a mechanism of elementary thermal dark matter with mass up to 1014 GeV, within a
standard cosmological history, whose relic abundance is determined solely by its interactions with the
Standard Model, without violating the perturbative unitarity bound. The dark matter consists of
many nearly degenerate particles which scatter with the Standard Model bath in a nearest-neighbor
chain, and maintain chemical equilibrium with the Standard Model bath by in-equilibrium decays
and inverse decays. The phenomenology includes super heavy elementary dark matter and heavy
relics that decay at various epochs in the cosmological history, with implications for CMB, structure
formation and cosmic ray experiments.

INTRODUCTION

One of the biggest questions in fundamental physics
is the nature of dark matter (DM). The possibility that
DM is a thermal Weakly Interacting Massive Particle
(WIMP), whose abundance is determined by 2 ! 2 an-
nihilations into Standard Model (SM) bath particles, is
exciting, but has alluded detection thus far. The WIMP
is particularly intriguing because it is very predictive—
its abundance is determined only by its interactions with
the SM, which informs us how it may be detected.
The WIMP paradigm has been a guide towards the

properties of DM, such as its mass and interactions. In
particular, within the WIMP freezeout mechanism, there
is a an upper bound on the DM mass from perturba-
tive unitarity, of O(100)TeV [1]. The reason is that the
WIMP annihilation rate is proportional to an exponen-
tially decreasing DM density, and so the amount of dark
matter that can be annihilated away before freezeout is
limited by the theoretical size of the cross-section.
Of course, DM may be much heavier than this bound,

if it is not a WIMP. Such models include non-thermal
dynamics, decoupled dark sectors, inflationary and grav-
itational production, nonstandard cosmological histories,
and large entropy production [2–20]. In none of these
cases, however, is the DM abundance solely determined
by its interactions with the SM. The common lore is that
an elementary DM candidate that is thermally coupled to
the SM, within a standard cosmological history, cannot
have mass well above the WIMP perturbative unitarity
bound. Exceptions include composite DM, but still do
not go much beyond the above bound [21–23].
In this Letter we present a new freezeout mechanism

within a standard cosmological history. The DM is an
elementary particle that is thermalized with the SM at
high temperatures, its relic abundance is determined via
its freezeout from the SM bath, and the DM mass can be
as high as 1014 GeV for s-wave processes, without violat-
ing the perturbative unitarity limit. In future work, we
show how Planck-scale DM can be reached for velocity-

dependent processes [24].
The general idea is as follows. The dark matter con-

sists of N approximately degenerate states, �i (i = 1..N).
These states co-scatter [25] o↵ of the SM bath, but only
in a chain of nearest-neighbor interactions

�i + sm $ �i+1 + sm, (1)

while the N th state co-decays [26–31] in equilibrium with
the SM,

�N ! sm + sm . (2)

Here �1 is the DM candidate. This setup is summa-
rized in Fig. 1. The processes in Eq. (1) can main-
tain chemical equilibrium much longer than annihila-
tions can, because the interaction rate for the scattering
�sctr = nSM h�visctr never becomes exponentially sup-
pressed. The in-equilibrium decay allows for the whole
system to have vanishing chemical potential for a long
time—if the N th particle was annihilating with the bath,
the system would inherit the unitarity bound from co-
annihilations. Finally, the chain, which will typically re-
quire N > 5 � 20, depending on the DM mass, ensures
the stability of the DM �1.

GENERAL IDEA

Consider a DM particle �1, whose density changes via
scattering with a light SM bath particle,

�1 + sm $ �2 + sm, (3)

where �2 has similar mass to �1. This process can main-
tain chemical equilibrium much longer than annihilations
with the same interaction strength, because the interac-
tion rate for the scattering does not depend on the DM
density, and therefore the rate does not become exponen-
tially suppressed. The DM is able to maintain equilib-
rium to smaller temperatures, becoming more Boltzmann
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Personal Motivations for Thermal Heavy DM 
Thermal Heavy DM scenario can provide interesting phenomenology.  

In this talk we want to focus more on the relation between phase transition and the stable DM mass & abundance
highlighting the role of the first order phase transition  for thermal DM : filtering-out effect during the phase transition

à finding evidences of thermal heavy DM scenario from gravitational probes like Gravitational Wave Observations

Cosmological phase transition 
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# ∝ exp −)*+
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GW 
observations

1st order 
phase transition 

Heavy DM 
production
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Basic Idea of Filtering-Out Mechanism
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Dark matter filtering-out effect during a first-order phase transition

Dongjin Chway,1,* Tae Hyun Jung ,1,2,† and Chang Sub Shin 1,‡

1Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051, Korea
2Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Received 10 December 2019; revised manuscript received 10 March 2020; accepted 4 May 2020; published 14 May 2020)

If the mass of dark matter is generated from a cosmological phase transition involving the nucleation of
bubbles, the corresponding bubble walls can filter out dark matter particles during the phase transition.
Only particles with sufficient momentum to overcome their mass inside the bubbles can pass through the
walls. As a result, the dark matter number density after the phase transition has a suppression factor
expð−Mχ=2γ̃TÞ, where Mχ is the dark matter mass, and γ̃ and T are the Lorentz factor and temperature of
the incoming fluid in the bubble wall rest frame, respectively. Under certain assumptions, we show that the
filtering-out process can naturally provide a large suppression consistent with the observed dark matter
density for a wide range of dark matter masses up to the Planck scale. Since the first-order phase transition
is the decisive ingredient in our mechanism, a new connection is made between heavy dark matter scenarios
and gravitational wave observations.
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I. INTRODUCTION

Thermal freeze-out mechanism has been regarded as a
standardway to explain the amount of darkmatter (DM) [1].
As the temperature of theUniverse falls below the freeze-out
temperature, DM is no longer in chemical equilibrium and
its comoving number density is frozen to the value propor-
tional to the inverse of theDMannihilation cross section. For
the observed DM density, DMs need a sizable annihilation
rate, roughly as large as the electroweak interaction rate. We
call such hypothetical DM particles as weakly interacting
massive particles (WIMPs).
Motivated by the WIMP paradigm, there have been lots

of experimental studies to reveal the particle nature of DM.
Especially, direct detection experiments to observe scatter-
ing events between DMs and nucleons have enormously
increased their sensitivities for the last decades. However,
we have not yet obtained a convincing signal. The absence
of a direct detection signal provides strong constraints on
the simple WIMP DM models with masses from GeV to
TeV scale [2].
Even if we can take refuge in heavy WIMP scenarios,

there is a strong upper bound on DM mass within the

freeze-out mechanism. The upper bound comes from that
as the DM mass increases, the maximum value of the
annihilation cross section allowed by the perturbative
unitarity decreases and eventually gets smaller than the
required value for the correct DM density. The unitarity
bound implies the WIMP mass to be less than around
100 TeV [3,4].
Therefore if the DM mass is heavier than 100 TeV, there

should be an additional process to fit in the correct relic
density. Along this direction, the pioneering works [5–9]
studied the role of the early matter domination and inflation
periods to obtain the correct heavy DM relics. The freeze-in
thermal production [10], and the series of co-scattering

FIG. 1. A schematic of the filtering-out mechanism. Most of
DM particles ( χ) cannot penetrate through the bubble wall if
momenta of particles outside the bubbles are not high enough
to overcome the DM mass inside the bubbles. Outside the
bubble, DM particles are massless and DM pair creation and
annihilation processes are in thermal equilibrium. The light
particles ðγ; e# ; νi; qi; $ $ $Þ which do not get sizable masses from
bubbles can freely enter the bubbles.
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Bubble Formation from 1st order Phase Transition
1st order phase transition at the nucleation temp. !". Dark matter # gets a mass by ⟨%⟩, e.g. '( % = *%
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DM Filtering-out Effect 
1st order phase transition at the nucleation temp. !". Dark matter # gets a mass by ⟨%⟩, e.g. '( % = *%
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DM Filtering-out Effect 
1st order phase transition at the nucleation temp. !". Dark matter # gets a mass by ⟨%⟩, e.g. '( % = *%

DMs in chemical equilibrium outside bubbles

Most of DMs are reflected against the bubble wall: 
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A List of Questions
1. How can we determine !", # and the relation with $%, #&, #'(? 

2. What is the fate of the reflected DMs against the wall? 

3. Is the filtering-out process safe from bubble collisions?

4. What are the conditions for the scalar potential of )?

#& global → #012 local → #'( global ≪ 56
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Expansion of Bubbles with Hydrodynamics
1. How can we determine !", # and the relation with $%, #&, #'(? 

2. What is the fate of the reflected DMs against the wall? 
The assumption: particles interacting with bubble walls can instantly (microscopic time scale) exchange their energy and 
momentum with the ambient thermal plasma. Before bubble collisions, perfect fluid approximation can be used for the plasma.

"± (#±) is the fluid velocity (temperature) 
of the plasma near the wall in the wall rest frame 

"* (#*) "- #-. ≠ 0 . = 0

$% = 2%/4

23

shock 
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$ = 2/4, "($) is the fluid velocity in the plasma rest frame

Deflagration: "- < "* = $% < 67, #* < #& < #-
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Figure 3. Pictorial representation of expanding bubbles of different types. The black circle is the
phase interface (bubble wall). In green we show the region of non-zero fluid velocity.

this profile, remember that the matching conditions across the wall give

wN = w+ = w−

(

1 − ξ2
w

ξw

)(

v−
1 − v2

−

)

, (3.2)

where the subscript N denotes the plasma at the temperature of nucleation far in front of
the wall. Then, eq. (2.29) transforms into

w(ξ) = wN

(

ξw

1 − ξ2
w

)(

1 − v2
−

v−

)

exp

[

−
∫ v(ξw)

v(ξ)

(

1 +
1

c2
s

)

γ2 µ dv

]

. (3.3)

Similar formulas can be derived for other quantities like the entropy (also shown in figure 4),
the temperature, etc. It is straightforward to show that

T− > T+ = TN . (3.4)

by using the detonation condition r < 1/(1 + 3α+).

3.2 Deflagrations

A pictorial representation of a typical deflagration is depicted in figure 3, left plot. The
corresponding velocity profile is as in figure 4, upper left plot. In contrast with detonations,
in deflagrations the plasma is at rest right behind the wall, so that the wall velocity is now
ξw = v−. These solutions correspond to the lower branches in figure 1, with a fluid velocity
that is larger behind the wall than in front, v− > v+. From figure 1 we also see that in this
case the hydrodynamic relations across the wall imply v+ < cs. The fluid velocity just in
front of the wall jumps to v(ξw) = µ(v−, v+). As v− > v+, we get v(ξw) < ξw, so that the
profile of deflagration solutions start below the line v = ξ, as indicated in figure 2.

As one moves out in ξ, v(ξ) decreases and eventually would become double-valued before
reaching zero.3 Now we cannot accommodate the required jump to zero velocity using the

3In spite of appearances, this happens even for very low values of the starting v(ξ) due to the improper-node
nature of the point (cs, 0) (see discussion above).
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3In spite of appearances, this happens even for very low values of the starting v(ξ) due to the improper-node
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Dynamics for the Wall-Velocity (minimal consideration)
The terminal wall velocity !" (also #$) by force balancing condition: % = Δ(
Filtered dark matters are the main source of the pressure (No direct effect from SM particles)
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Dynamics for the Wall-Velocity (minimal consideration)
The terminal wall velocity !" (also #$) by force balancing condition: % = Δ(
Filtered dark matters are the main source of the pressure (No direct effect from SM particles)

Using the approximation of reflection and transmission of thermal particles at the wall

(1) : )*/24 .*/ 0/ ,           (2) : 1*→3* #4 5306 from soft radiation of DM

(1)&(2) : 7/)*/90 1 + #$ 6 #4/0< since most DMs are reflected (.* > #40),   (3) (.* ≲ #40)à (2)

If % = Δ( happens at  #4∗ ≪ .*/0, DM filtering is effective 

In most working parameter space, #4∗ ≫ 1 i.e. detonation profile ( #$ ≃ !C ≃ 1, 0 ≃ 0E) 
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DM Production from Bubble (plasma) Collisions
Depends on the plasma profile around the bubble wall 

For deflagration, no problem                For hybrid, spoils the filtering effect               For detonation, several possibilities 

For detonation, the energy density of the plasma just behind the bubble wall  

!"# ∼ %&'("#
) ,      where  ("# ≃ (+ ∼ %& (, ∼ (-. (reheating temp.)

During collisions, plasma is assumed to be in local thermal equilibrium

!#/01# Δ3 → 0 ∼ (617) ,   where  (617 = 9(0.1)%&(,

and such local temperature will decrease as the collision volume increases:  

(#/01# Δ3 → 0 = (617,    (#/01# Δ3 → >& = (-.

We require (617 < (@/ which is conservative bound on (617
Hierarchies of various temperatures: 
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this profile, remember that the matching conditions across the wall give
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, (3.2)

where the subscript N denotes the plasma at the temperature of nucleation far in front of
the wall. Then, eq. (2.29) transforms into

w(ξ) = wN
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exp
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. (3.3)

Similar formulas can be derived for other quantities like the entropy (also shown in figure 4),
the temperature, etc. It is straightforward to show that

T− > T+ = TN . (3.4)

by using the detonation condition r < 1/(1 + 3α+).

3.2 Deflagrations

A pictorial representation of a typical deflagration is depicted in figure 3, left plot. The
corresponding velocity profile is as in figure 4, upper left plot. In contrast with detonations,
in deflagrations the plasma is at rest right behind the wall, so that the wall velocity is now
ξw = v−. These solutions correspond to the lower branches in figure 1, with a fluid velocity
that is larger behind the wall than in front, v− > v+. From figure 1 we also see that in this
case the hydrodynamic relations across the wall imply v+ < cs. The fluid velocity just in
front of the wall jumps to v(ξw) = µ(v−, v+). As v− > v+, we get v(ξw) < ξw, so that the
profile of deflagration solutions start below the line v = ξ, as indicated in figure 2.

As one moves out in ξ, v(ξ) decreases and eventually would become double-valued before
reaching zero.3 Now we cannot accommodate the required jump to zero velocity using the

3In spite of appearances, this happens even for very low values of the starting v(ξ) due to the improper-node
nature of the point (cs, 0) (see discussion above).
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in deflagrations the plasma is at rest right behind the wall, so that the wall velocity is now
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ces, this happens even for very low values of the starti

ng v(ξ) due to the improper-node

nature of the point (cs, 0)
(see discussion

above).
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plasma collision happens 
in the broken phase

Massive DMs can be produced 
by pair creation processes
(C, ℓ, F. . ) + (C, ℓ, F. . ) → HH

in local hot thermal bath27



Summary of the Set-up 
1st order phase transition at !"

à Bubble formations and expansions à DM filtering 
à Bubble collisions à Reheating the Universe with the temp !#$

Mini (thermal) inflation can happen for Δ& ≫ (#)* !" ∼ ,-.!"/.  In such a case,  ,-.!#$
/ ≃ Δ& à !#$

/ ≫ !"/

Including all the effects 

Ω2.ℎ
4 = 2.8 ×10<

=>

GeV

B>
C DEFGH#EIJ KLG

≃ 0.11
=>

10MNGeV

,>
0.01,-. !"

!"
0.1 !#$

O
=>

2PQ!"
exp −

=>

2PQ!"
UVOO.W

dilution effect 
by entropy production 

filtering-out effect 
by 1st order phase transition
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Working Parameter Space 
Defining two useful parameters 

how much the Universe is supercooled

how small Δ" in the unit of DM mass

Rainbow colored region: filtering-out effect is dominant 

Parametrically, exp − '(
)*+,-

∼ exp − /(1)

34556-
7/9

Numerically, :;<<=> ∼ 10AB for correct density

Top-right corner: bubbles run away (dilution is dominant)
difficult to estimate the effect of bubble collision 
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Implications for Model Building
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About the Scalar Potential of ! ("#$$%& ∼ 10*+) 
"#$$%& should be a very small value for the successful DM filtering-out mechanism

Ex1) , ! = −/0!0 + "!2,  34 = 54! :     ! ∼ //√",  Δ, ∼ /0 ! 0

Then, "#$$ ∼ "/542,   9& ∼ //54,   %& ∼ 10*2542/"
à "#$$%& ∼ 10*2 ≫ 10*+

Ex2) Inspired by gauge mediation in SUSY axion model (the messenger scale 3) 
,; ! = −/0!0 for ! ≪ 3

= −/030 ln&(!/3) for ! ≫ 3
The scalar potential of ! is 

, ! = ,; ! +/A/0
0 !0 with /A/0 ≪ / : ! ∼ 3 ///A/0 ≫ 3,  Δ, ∼ /030 ≪ /0 ! 0

à "#$$%& ∼ /A/0//
2 ∼ 10*+ can be easily obtained 
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V T
(ϕ
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%& ≡
Δ,

CDEF 9&
"#$$ ≡

Δ,
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Summary
Although there is the Unitarity upper bound on the mass of thermal DM, the thermal heavy DM scenario still can be 
considered as an interesting  possibility due to its phenomenological implication

The mass of DM could result from a symmetry-breaking effect, whose abundance is closely related to the cosmic phase 
transition at the early Universe. 

The first-order phase transition can provide the filtering-out effect for the heavy DM relic abundance, allowing a wide range of
DM mass beyond the Unitarity bound.

GW generated from the first-order phase transition is one of the observable results from which the detailed information 
about DM mass and its interaction strength can be inferred.

There are still many questions about the transport of DM  around the ultra-relativistic bubble wall, the fate of DMs confined 
locally in the symmetric phase before the bubble collisions, the possible DM evolution after the bubble collisions, and the 
concrete model buildings
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