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Short reminder

 Flat Minkowski space-time in arbitrary coordinates  (  - Cartesian 
coordinates). Metric  and connection  (describing the parallel 
transport of a vector and covariant derivatives),  can be 
found from coordinate transformation  and have the following 
properties:


1.  invariant (length) interval,  


2.  connection is symmetric, 


3.    : metricity - length of a vector is constant at the parallel 
transport


4.  Covariant derivatives commute, 

xμ = fμ(ξi) ξi

gμν(x) Γα
μν

dVμ = − Γμ
ναVνdxα

xμ = fμ(ξi)

ds2 = gμνdxμdxν

Γα
μν = Γα

νμ

gμν;α = 0

∇μ ∇ν − ∇ν ∇μ = 0
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 Geometric approach to gravity, 
Riemann geometry

• distances: symmetric metric tensor                          
. Same as 1.


• parallel transport of the vector, covariant derivative:                       
;   symmetric connection  . 

Same as 2


• metricity, local Minkowski structure:                                       
  is a function of the metric . Same as 3.


• Commutator of covariant derivatives: Riemann tensor 
. Different from 4!

ds2 = gμνdxμdxν

dVμ = − Γμ
ναVνdxα Γα

μν = Γα
νμ

gμν;α = 0 ⟶ Γα
μν gμν

Vα;μ;ν − Vα;ν;μ = Rβ
αμνVβ
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 Geometric approach to gravity, 
Cartan geometry, 1922-1925

• distances: symmetric metric tensor                          
. Same as 1.


• parallel transport of the vector, covariant derivative:                       
;   arbitrary connection  . New 

object: torsion tensor . Different from 2!


• metricity, local Minkowski structure (same as 3):                                       
  is a function of the metric  and torsion 


• Commutator of covariant derivatives: Riemann tensor 
. Different from 4!

ds2 = gμνdxμdxν

dVμ = − Γμ
ναVνdxα Γα

μν ≠ Γα
νμ

Tα
μν = Γα

μν − Γα
νμ

gμν;α = 0 ⟶ Γα
μν gμν Tα

μν

Vα;μ;ν − Vα;ν;μ = Rβ
αμνVβ
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 Geometric approach to gravity, 
non-metricity

• distances: symmetric metric tensor  . Same as 1.


• parallel transport of the vector, covariant derivative:                       
;   arbitrary connection  . New object: 

torsion tensor . Different from 2!


• non-metricity.   New object: non-metricity tensor  
 is a function of the metric ,  torsion  and non-metricity 

tensor . Length of the vectors changes with parallel transport. 
Different from 3!


• Commutator of covariant derivatives: Riemann tensor 
. Different from 4!

ds2 = gμνdxμdxν

dVμ = − Γμ
ναVνdxα Γα

μν ≠ Γα
νμ

Tα
μν = Γα

μν − Γα
νμ

gμν;α = Qμνα ≠ 0
⟶ Γα

μν gμν Tα
μν

Qμνα

Vα;μ;ν − Vα;ν;μ = Rβ
αμνVβ
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 Geometric approach to gravity, 
Weyl theory (1918)

• distances: symmetric metric tensor  . Same as 1.


• Symmetric connection  . Same as 2.


• non-metricity.   New object - vector field : non-metricity tensor 
is reduced to   is a function 
of the metric  and vector field . Different from 3!


• Commutator of covariant derivatives: Riemann tensor 
. Different from 4!

ds2 = gμνdxμdxν

Γα
μν = Γα

νμ

Aμ
gμν;α = Qμνα = − 2Aαgμν ≠ 0 ⟶ Γα

μν
gμν Aμ

Vα;μ;ν − Vα;ν;μ = Rβ
αμνVβ
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Dynamics, Einstein-Hilbert 
metric action  (1915)

• Lowest order action (without cosmological 
constant) is  





• The dynamical variable is  , variation with 
respect to   gives vacuum Einstein equations. 
(We use mostly positive metric.) 

M2
P

2 ∫ d4x |g | R

gμν
gμν
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Dynamics,  
Palatini action (1919)

Palatini gravity


Basic structures: metric  (distances) and symmetric connection   =  . Riemann 
curvature tensor is expressed via connection  as:


                  


Lowest order action (without cosmological constant) is


                                           


The dynamical variables are  and   , variation with respect to   gives metricity
, i.e. the relation between  and  , the variation with respect to   gives 

vacuum Einstein equations.


                          Palatini pure gravity is equivalent to metric gravity

gμν Γρ
νσ Γρ

σν

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓ
λ
νσ − Γρ

νλΓ
λ
μσ

M2
P

2 ∫ d4x |g | R

Γρ
νσ gμν Γρ

νσ
gμν;α = 0 Γρ

νσ gμν gμν
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Same as in 

metric gravity
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Same as in 

metric gravity

Holst term

Same as in 

metric gravity

Barbero-Immirzi parameter

Einstein-Cartan gravity


Basic structures: metric  (distances) and  connection     . Riemann 
curvature tensor is expressed via connection  as: 


                 


New object - torsion tensor:   


Lowest order action (without cosmological constant) is


                                


The dynamical variables are  and   , variation with respect to   gives the relation 
between  and  , the variation with respect to   gives vacuum Einstein equations. On 
the solution  and .


                          Einstein-Cartan pure gravity is equivalent to metric gravity

gμν Γρ
νσ ≠ Γρ

σν

Rρ
σμν = ∂μΓρ

νσ − ∂νΓρ
μσ + Γρ

μλΓ
λ
νσ − Γρ

νλΓ
λ
μσ

Tρ
νσ = Γρ

νσ − Γρ
σν

M2
P

2 ∫ d4x |g | R +
M2

P

2γ ∫ d4x |g | ϵμνρσRμνρσ

Γρ
νσ gμν Γρ

νσ
Γρ

νσ gμν gμν
gμν;α = 0 Tρ

νσ = 0

Metric, Palatini and  
Einstein-Cartan gravities



 EC gravity as a gauge theory
Existence of electromagnetic field - U(1) global invariance of fermion 
Lagrangian promoted to be local


Gluons, W+, W- Z and 𝜸 of the Standard Model - SU(3)xSU(2)xU(1) global 
invariance of SM fermion Lagrangian promoted to be local


Existence of gravitational field - Poincare invariance of SM fermion 
Lagrangian promoted to be local?


Gauging of the Poincare group:  Utiyama (1956), Kibble (1961) , Sciama 
(1962,1964).
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EC gravity as a gauge theory
Basic gauge fields


•  -  tetrad one-form (frame field, translations), I=0,1,2,3


•   - spin connection one form (gauge field of the local Lorentz group). 
Euclidean: SO(4)~SU(2)LxSU(2)R


•  : curvature 2-form


Pure gauge action: 


                             


                  Again, equivalent to metric gravity

eI

ωIJ

FIJ = dωIJ + ωI
KωKJ

M2
P

4 ∫ ϵIJKLeIeJFKL +
M2

P

2γ ∫ eIeJFIJ
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EC gravity with matter fields

Once matter fields are added, the equivalence between different formulation 
of gravity is lost:


Couplings to 


• scalar fields:   (or )  


• and to fermion fields via covariant derivative  


lead to modified relation between the spin connection and tetrad (or 
Christoffel symbols and the metric). Torsion is non-zero.


                                        Physics is different!

ϕ2ϵIJKLeIeJFKL ϕ2R

DΨ = dΨ +
1
8

ωIJ[γI, γJ]Ψ
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Bosonic action in EC gravity  
with Higgs field

Inclusion of the scalar field (Higgs field of the Standard Model, unitary gauge)


Scalar action


           


Gravity part


                  


For  we get the Palatini action with non-minimal coupling. Action is 
polynomial and scale-invariant in the limit 

Sh = ∫ d4x −g (−
1
2 (∂μh)

2
− U(h)), U(h) =

λ
4 (h2 − v2)2

Sgrav =
1
2 ∫ d4x −g(M2

P + ξh2)R

+
1
2γ̄ ∫ d4x −g(M2

P + ξγh2)ϵμνρσRμνρσ

+
1
2 ∫ d4xξηh2∂μ( −gϵμνρσTνρσ)

1/γ̄ = ξγ = ξη = 0
h → ∞
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Same as in 

metric gravity

Holst term

Nieh-Yan 

invariant

Three non-minimal couplings:

 ξ, ξγ, ξη



Bosonic action in EC gravity 
with Higgs field

• Torsion is not dynamical


• The same number of degrees of freedom as in the metric gravity + 
scalar field: 2 (graviton) +1 (scalar)


• Interesting physics: gravity strength, as well as particle masses, are 
determined by the Higgs field, if 


• The theory is scale-invariant in this limit, leading to the flat potential for 
the Higgs field, exactly what is needed for inflation!


• Equivalent metric theory: use the Weyl transformation of the metric field 


                                                                           

ξh2 ≫ M2
P

gμν → Ω2gμν, Ω2 = 1 +
ξh2

M2
P
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Inflation
Metric action:


       


                 ,     


                                                               


Smetric =
M2

P

2 ∫ d4x |g | R − [ 1
2Ω2

(∂μh)2 +
U
Ω4 ] −

3M2
P

4(γ2 + 1) (
∂μη̄
Ω2

+ ∂μγ)
2

γ =
1

γ̄Ω2 (1 +
ξγh2

M2
P ), η̄ =

ξηh2

M2
P

Ω2 = 1 +
ξh2

M2
P
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Flat potential:

essential for inflation

Modified kinetic term:

essential for  inflation

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χ

0

λ v4/4

0 v

Standard Model

Metric Higgs inflation (Bezrukov, MS): 
in limit of the vanishing Holst term, 

   take .


Palatini Higgs inflation (Bauer, Demir): 
in limit of the vanishing Holst term, 

  take 


γ̄ → ∞, ξγ = 0, ξη = ξ

γ̄ → ∞, ξγ = 0, ξη = 0



Stages of Higgs Inflation

• Chaotic initial conditions: large fields on 
the plateau inflate, the small fields do not


• Slow roll making the universe flat, 
homogeneous and isotropic, and 
producing fluctuations leading to structure 
formation: clusters of galaxies, etc


• Heating of the Universe : energy stored 
in the Higgs field goes into the particles 
of the Standard Model - Higgs makes 
the Big Bang


• Radiation dominated stage of the 
Universe expansion starts, leading to 
baryogenesis, dark matter production, 
nucleosynthesis…
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0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

inflation

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ
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Metric Higgs Inflation

Jordan frame action:




Kinetic term in the Einstein frame:


,  


Cobe normalisation: 

SG = ∫ d4x −g ( M2
P

2
R +

ξh2

2
R −

1
2

(∂h)2 −
λ
4

h4)

( 1
Ω2

+
6ξ2h2

M2
PΩ4 )(∂h)2 Ω2 = 1 +

ξh2

M2
P

ξ ≃ 5 × 104 λ
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Palatini Higgs Inflation

Jordan frame action:




Kinetic term in the Einstein frame:


,  


Cobe normalisation: 

SG = ∫ d4x −g ( M2
P

2
R +

ξh2

2
R −

1
2

(∂h)2 −
λ
4

h4)

( 1
Ω2

+
6ξ2h2

M2
PΩ4 )(∂h)2 Ω2 = 1 +

ξh2

M2
P

ξ ≃ 1.5 × 1010λ
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Metric and Palatini Higgs 
inflations













Advantages of the Palatini formulation:


• Parametrically larger UV cutoff


• More robust relation between low energy and 
high energy parameters


• Natural relation between Fermi and Planck scales

Sgrav.+h. = ∫ d4x −ĝ{ −
M2

P

2
R̂ +

1
2

K(h)(∂μh)
2

−
λ

4Ω4
h4}

dh
dχ

=
1

K(h)

Sgrav.+h. = ∫ d4x −ĝ{ −
M2

P

2
R̂ +

1
2 (∂μ χ)

2
− U(χ)}

U(χ) =
λ
4

F(χ)4

21

UV cutoff at  h = 0 :
Λ ∼ MP /ξ

UV cutoff at  h = 0 :
Λ ∼ MP / ξ



0.95 0.96 0.97 0.98 0.99 1.00

ns

0.00

0.05

0.10

0.15

0.20

0.25

r 0
.0

02

Higgs infaltion

Planck TT+lowP

Planck TT+lowP+BKP

+lensing+ext

Predictions of metric and 
Palatini Higgs inflations

Metric

Palatini

Predictions of metric Higgs inflation 

are very close to predictions 

of the very first inflationary model by Starobinsky
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By varying continuously the Higgs coupling to the Nieh-
Yan term, one can deform one model into another!

New types of the Higgs inflation (see also Langvik, 
Ojanpera, Raatikainen and  Rasanen, 2007.12595):


• “Nieh-Yan Higgs inflation”: vanishing Holst term, 
.


• “Holst Higgs inflation”, .


• Generic Einstein-Cartan Higgs inflation.

γ̄ → ∞, ξγ = 0

ξγ = ξη = 0

Generic EC Higgs inflation
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Nieh-Yan Higgs inflation
Vanishing Holst term,  γ̄ → ∞, ξγ = 0

24

Metric

Palatini



Generic Einstein-Cartan Higgs 
inflation
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Generic Einstein-Cartan Higgs 
inflation

 Observations:


• Inflation is a generic phenomenon.


• Large parts of the parameter space reproduce the predictions of either metric or 
Palatini Higgs inflation. 


• The spectral index ns is mostly                                                                   
independent of the choice of                                                                          
couplings and lies very close to                                                                                                 

 .


• The tensor-to-scalar ratio                                                                                         
r can vary  between 1 and 10-10. 
Detection of r in near future?


ns = 1 − 2/N
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Challenges in Higgs inflation

1.  Classical theory of the Higgs inflation should be 
promoted to the quantum theory of Higgs inflation. Any 
theory of inflation involves gravity which is non-
renormalisable. An approach to every type of inflation 
(and HI in particular) should be formulated if the 
framework of some effective theory and be self-
consistent.


2.  The SM parameters are measured at small energies ~ 
100 GeV,  whereas inflation takes place at high energies: 
radiative corrections and RG running must be accounted 
for. What happens if the SM vacuum is metastable? 
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Challenge 1: Higher dimensional operators

Important: the energy domain of perturbative validity of the scalar-gravity theory with 
non-minimal coupling


Take some background field h, and consider all sorts of scattering reactions at 
energy E. Define the “cut-off” scale E =  𝛬  at which the perturbative expansion 
breaks down. 


This depends on the formulation of gravity, for example:


• For zero h background for the metric theory  due to kinetic mixing of 
the Higgs and the metric (Burgess, Lee, Trott; Barbon and Espinosa). This may be 
dangerous for the Higgs inflation, as the typical scale of it is .


• For zero h background for the Palatini theory  - no problem!

Λ ∼ MP /ξ

MP / ξ ≫ Λ, ξ ≫ 1

Λ ∼ MP / ξ

SG = ∫ d4x −g (−
M2

P

2
R −

ξh2

2
R +

1
2

(∂h)2 −
λ
4

h4)
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Several ways to proceed for the metric theory: 


• Add new physics (new fields) and construct a theory in 
such a way that for  zero Higgs and other fields 
backgrounds  the inflation occurs in a weak coupling 
regime (Giudice, Lee, and many generalisations, e.g. 
for Higgs-Starobinsky inflation: Bezrukov, Gorbunov, 
Shepherd, Tokareva) 


• Go beyond naive power counting: a refined effective 
field theory of Higgs Inflation


29



In fact, the cutoff is background dependent (Bezrukov, Magnin, M.S., 
Sibiryakov; see also Ferrara, Kallosh, Linde, A. Marrani, Van Proeyen).


Dynamical cutoff

Computation for the Higgs-gravity part of the SM:

Λ(h) !























MP

ξ
, for h ! MP

ξ
,

h2ξ
MP

, for MP

ξ
! h ! MP√

ξ
,

√
ξh , for h " MP√

ξ
.

London, 20 May 2015 – p. 49

MP/ξ

MP

MP/ξ MP/√ξ log(φ)

log(Λ)

Weak coupling

ξφ2/MP

√ξ φ

Strong coupling

Cutoff  is higher than the relevant dynamical scales throughout the the 
inflationary epoch. The Higgs-inflation occurs in the weakly coupled regime. 
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Beyond naive power counting: effective 
field theory of Higgs Inflation

Jordan frame

Example: m
etric

 Higgs Inflation 
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Behaviour of the scalar self-coupling λ: depending on the top quark 
Yukawa coupling, λ may cross zero at energies as small as 1011  GeV (for 
larger mt) or never cross it (for smaller mt). For all admissible SM parameters, 
|λ| ~ 0.01 in inflationary region, much smaller than at low energies
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This behaviour may change the form of the Higgs potential at large h

Challenge 2: possible  vacuum 
metastability
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• Marginal evidence (less than 2σ) for the SM vacuum metastability given uncertainties 
in relation between Monte-Carlo top mass and the top quark Yukawa coupling 


Time evolution of SM  
vacuum metastability

2015

Stability Criticality Metastability

V(h) V(h) V(h)

h h
h

0 0

0

Naive RG: V(h)=λ(h)h4



Radiative corrections in Higgs Inflation
The minimal setup, working for renormalisable theories: add to the 
Lagrangian all counter-terms necessary to make the theory finite. The 
theory is predictable: everything is expressed via few parameters.


The HI theory is not renormalisable - how to deal with radiative 
corrections? The minimal approach: add to the Lagrangian all 
counter-terms necessary to make the theory finite. The theory is not 
predictable for all energy scales, as the number of appearing 
structures - counter-terms is infinite. However, if the energy scale is 
well below the dynamical cutoff Λ(h), the reliable computations can be 
done and ignorance of UV completion can be parametrised by the 
unknown coefficients - finite part of counter-terms (Bezrukov, Magnin, 
MS, Sibiryakov; Burgess, Patil, Trott …). RG evolution of coupling 
constants from the Fermi  to inflation scale is possible. Studies of RG 
evolution: Simone, Hertzberg, Wilczek; Barvinsky, Kamenshchik, 
Kiefer, Starobinsky, Steinwachs…
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Summary  of the outcome of this program:


• The inflationary Higgs potential is well defined for               
and is expressed via low energy SM parameters


• The inflationary Higgs potential is well defined for               
and is expressed via SM low energy parameters and unknown 
matching coefficients for all coupling constants describing the 
“jumps” of couplings  at the field value 


• The predictions of HI for ns = 0.97 and r=0.0033 remain the same 
almost for all parameters (for a detailed study of the parameter space 
see Enckell, Enkvist, Nurmi; Bezrukov, Pauly, Rubio) except for one 
very specific point corresponding to the “critical” Higgs inflation. 
Studies of radiative corrections:  Fumagalli, Mooij, Postma,…


• For some choice of these matching coefficients HI can be realised 
even for metastable vacuum

h ≲ MP /ξ

h ≳ MP / ξ

h ≃ MP /ξ
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Example: m
etric

 Higgs Inflation 



Symmetries of UV completion?
• The successful  models of inflation (Starobinsky, Higgs, 𝛂 - attractors) all share the 

same feature: constant potential in the Einstein frame at large values of the canonically 
normalised scalar field:


•  The theory has a shift symmetry, 𝜙    𝜙+const. In the Jordan frame the action is scale-
invariant,


• Perhaps, the Nature is scale-invariant? The scale-invariant Higgs-dilaton inflation (scale 
invariance is broken spontaneously) requires dynamical generation of the Planck scale 
and is based on the action


 


For cosmology of scale-invariant theory see Garcia-Bellido, Rubio, MS, Zenhausern;  
Trashorras, Nesseris, Garcia-Bellido;  Ferreira, Hill, Ross,…
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S = ∫ d4x −g (−
M2

P

2
R +

1
2

(∂ϕ)2 −
λ
4

M4
P)

S = ∫ d4x −g (−
ξh2

2
R +

1
2

(∂h)2 −
λ
4

h4)
   ➝   

S = ∫ d4x −g (−
ξhh2 + ξχ χ2

2
R +

1
2

(∂h)2 +
1
2

(∂χ)2 −
λ
4

h4)



Conclusions
Einstein-Cartan gravity is an interesting theory with the following 
properties:


• It has the same number of degrees of freedom as the metric gravity.


• Higgs inflation and the hot big bang with  are the 
natural consequence of EC gravity with a universal prediction for 

, and with r which can be as small as 10-10 and as 
large as the present experimental limit.


 Topics not covered:


• EC gravity leads to a new universal mechanism for fermion dark matter 
production operating for masses as small as few keV and as large as 

 GeV.


• EC gravity may lead to an explanation why the Fermi scale is much 
smaller than the Planck scale, using non-perturbative semiclassical 
effects - a new type of singular instanton

Treh ≳ 4 × 1013 GeV

ns = 1 − 2/N ≃ 0.96

(3 − 6) × 108

36



Back up slides



Higgs inflation does not work

V

χvEW µ0 MP

ξ
MP

Stavanger, 15 July, 2016 – p. 34

Higgs inflation may work

V

χvEW µ0 MP

ξ
MP

Stavanger, 15 July, 2016 – p. 35

Higgs inflation does not work 
if the potential has this form

Higgs inflation still works if the potential 
has this form, as reheating brings the 
Higgs field to the origin.

Bezrukov, Rubio, MS

0.00 0.05 0.10 0.15 0.20 0.25
-4
-2
0
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107U
U0

T = 0
T = 5 x 1013 GeV
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T = 8 x 1013 GeV

jump of coupling constant λ 

jump of coupling constant λ 

Symmetry restoration

Example: m
etric

 Higgs Inflation 



Critical Higgs Inflation

V′ (h0) = V′ ′ (h0) = 0

For a very particular choice of top and Higgs masses, and of the 
matching coefficients the Higgs potential can develop an 
inflection point:

Small x – critical HI

URG improved(c) =
l (µ)

4
M4

P

x 2

✓
1�e

� 2cp
6M

P

◆2

Small x . 10 – l vs. dl
significant, may give
interesting “features” in the
potential (“critical inflation”,
large r )
However – tend to get both
inflation and dl “jumps” in
the same scale around
MP/x
Loop corrections change
result – harder to control

Bezrukov, Pauly, Rubio’17
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Small x – critical HI

URG improved(c) =
l (µ)

4
M4

P

x 2
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Small x . 10 – l vs. dl
significant, may give
interesting “features” in the
potential (“critical inflation”,
large r )
However – tend to get both
inflation and dl “jumps” in
the same scale around
MP/x
Loop corrections change
result – harder to control

Bezrukov, Pauly, Rubio’17
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Hamada,  Kawai, Oda, Park; Bezrukov, MS; Bezrukov, Pauly, 
Rubio, …


Primordial Black Holes?  Garcia-Bellido; Rubio,… 


  

CORE sensitivity

Example: m
etric

 Higgs Inflation 


