(Dark) matter production in the (very) early Universe

" Available energy is the

 main object at stake in the struggle for existence and the evolution of the

Yann Mambrini, IJCLab, Université Paris-Saclay Simon Clery, Marcos Garcia, Kunio Kāneta, Keith Olive and Sarunas Vonner

PhD students :

Simon Clery (IJCLab, Paris-Saclay)

Sarunas Verner (Minneapolis U.)

$\underset{\substack{\text { Interstellar medium (gaz of atoms) } \\ \text { of density Ne }}}{\substack{\text { Ne }}}$
Fig. 5.10 Moving particle in an intersellar medium of density N_{c}.
distance at which the influence of the traveling particle on the electron is negligible.
It corresponds roughly to the time when the orbital period is lower than the typical

 the later becomes weak. If one write τ the interacting time and v
the rotating electron in the atom ($\left(v_{0}=w_{0} / 2 \pi\right)$, it corresponds to

The lower limit $b_{\text {min }}$ can $-\frac{\nu_{0}}{\nu_{0}} \Rightarrow b<\frac{v_{0}}{2 v_{0}}=b_{\text {max }}$ The lower limit $b_{\text {min }}$ can be obtained if we suppose, by a quantum treatment and
the application of the uncerainy principle, that the maximum energy transer is
 $\Delta p_{m a x}=2 m_{e} v$ (becaus as we discussed carier, the maximum velocity transterred
tote electron sisv) from $\Delta p \Delta x \gtrsim \hbar$ (Heisenberg principle) we have $\Delta x \gtrsim \hbar / 2 m_{e}$.
We can then write

B.4.4.11 Annihilation in the case of vectorial Dark Matter to pairs of fermions

One can compute this annihilation cross section by the normal procedure or noticing
that a neutral vectorial dark matter of spin 1 corresponds to 3 degrees of freedom that a neutral vectorial dark matter of spin 1 corresponds to 3 degres of freedom.
After averaging on the spin one can then write $\langle\sigma v\rangle v=\frac{3}{3<3}\left\langle(\sigma v\rangle\left\langle\frac{1}{3}\langle\sigma v\rangle\right.\right.$. The academical computation for $V_{\mu}\left(p_{1}\right) V_{\mu}\left(p_{2}\right) \rightarrow f \bar{f}$ gives equation, which is the equation for an oscillator with a time dependant frequenc $\omega^{2}(t)=\frac{k^{2}}{a^{2}}+\mu \Phi_{0} \cos \left(m_{\Phi} t\right)$, and is present in a lot of classic phenomena involving periodical force. It can be shown that for

$$
\frac{m_{\Phi}}{2}-\frac{\mu \Phi_{0}}{2 m_{\Phi}}<\frac{k}{a}<\frac{m_{\Phi}}{2}+\frac{\mu \Phi_{0}}{2 m_{\Phi}},
$$

we enter in a regime where the solution grows exponentially with time ${ }^{23}$. We can understand it easily, from the shape of the Mathieu equation, where, periodically, exponential solution, periodically. The evolution of S is shown in Fig.(2.8). A mor refined treatment necessitate to compute the Bogoliubov coefficient to extract the occupation number [10], but we give in the following section a more intuitive view of the phenomena, solving the equation for the density of the ϕ decay products. For the analytical solution of the Mathieu equation (2.170) the reader is directed to [9] which is without doubt the best textbook treating it, and [10] which is (paradoxically) litar research paper on the subject and of the clearer and more detaile in the literature

A Student's Guide to Particle Physics and Cosmology

500+ pages, from inflation to dark matter detection. All what is needed to compute cross-sections, relic abundance, and retrace the history of a Dark Universe.

Preface and forewords by K. Olive, J. Peebles and J. Silk
1). Reheating : generalities

2). Non-instantaneous reheating
3). Preheating phase

4). Application to gravitational production
5). Conclusion

A brief history of the energy in the Early Universe

«Available energy is the main object at stake in the struggle for existence and the evolution of the world.»
L. Boltzmann

Mechanisms to produce (dark) matter at the thermal reheating stage

After several oscillations ($N \gtrsim 100$) : The reheating phase

$$
\begin{aligned}
& \rho_{\phi}=T_{00}^{\phi}=\frac{1}{2} \dot{\phi}^{2}+V(\phi) \\
& P_{\phi}=T_{i i}^{\phi}=\frac{1}{2} \dot{\phi}^{2}-V(\phi) \\
& \ddot{\phi}(t)+3 H \dot{\phi}-\frac{\nabla}{a^{2}} \phi(t)+V^{\prime}(\phi)=0
\end{aligned}
$$

$$
\begin{aligned}
\rho_{\phi} & =T_{00}^{\phi}=\frac{1}{2} \dot{\phi}^{2}+V(\phi) \\
P_{\phi} & =T_{i i}^{\phi}=\frac{1}{2} \dot{\phi}^{2}-V(\phi) \\
\ddot{\phi}(t)+3 H \dot{\phi}-\frac{\nabla}{a^{2}} \phi(t)+V^{\prime}(\phi)=0 &
\end{aligned}
$$

$$
\begin{array}{cc}
\rho_{\phi}=T_{00}^{\phi}=\frac{1}{2} \dot{\phi}^{2}+V(\phi) & V(\phi)=\lambda_{k} \phi^{k} \\
P_{\phi}=T_{i i}^{\phi}=\frac{1}{2} \dot{\phi}^{2}-V(\phi) & \dot{\rho}_{\phi}+\frac{6 k}{k+2} H \rho_{\phi}=0 \\
\ddot{\phi}(t)+3 H \dot{\phi}-\frac{\nabla}{a^{2}} \phi(t)+V^{\prime}(\phi)=0 & \Rightarrow \rho_{\phi} \propto a^{-\frac{6 k}{k+2}}=\langle V(\phi)\rangle
\end{array}
$$

$$
\begin{aligned}
& \rho_{\phi}=T_{00}^{\phi}=\frac{1}{2} \dot{\phi}^{2}+V(\phi) \quad V(\phi)=\lambda_{k} \phi^{k} \\
& P_{\phi}=T_{i i}^{\phi}=\frac{1}{2} \dot{\phi}^{2}-V(\phi) \\
& \dot{\rho}_{\phi}+\frac{6 k}{k+2} H \rho_{\phi}=0 \\
& \ddot{\phi}(t)+3 H \dot{\phi}-\frac{\nabla}{a^{2}} \phi(t)+V^{\prime}(\phi)=0 \\
& \Rightarrow \rho_{\phi} \propto a^{-\frac{6 k}{k+2}}=\langle V(\phi)\rangle
\end{aligned}
$$

Adding a coupling to matter (1)

$$
V=V(\phi)+\gamma \phi \overline{f f}+\sigma \phi^{2} \chi^{2}
$$

$$
\begin{gathered}
\ddot{\phi}(t)+3 H \dot{\phi}-\frac{\nabla}{a^{2}} \phi(t)+V^{\prime}(\phi)=0 \\
\dot{\rho}_{\phi}+\frac{6 k}{k+2} H \rho_{\phi}=0
\end{gathered}
$$

$$
\begin{gathered}
\ddot{\phi}(t)+3 H \dot{\phi}-\frac{\nabla}{a^{2}} \phi(t)+V^{\prime}(\phi)=-\Gamma_{\phi} \dot{\phi} \\
\dot{\rho}_{\phi}+\frac{6 k}{k+2} H \rho_{\phi}=-\Gamma_{\phi} \rho_{\phi}
\end{gathered}
$$

$$
\phi
$$

Temperature
(T)

$$
\begin{array}{ll}
\frac{d \rho_{\Phi}}{d t}+\frac{6 k}{k+2} H \rho_{\Phi}=-\Gamma_{\Phi} \rho_{\Phi} & V(\phi)=\lambda_{k} \phi^{k} \\
\frac{d \rho_{R}}{d t}+4 H \rho_{R}=+\Gamma_{\Phi} \rho_{\Phi} &
\end{array}
$$

$\frac{d \rho_{R}}{d t}+4 H \rho_{R}=+\Gamma_{\Phi} \rho_{\Phi}$

Adding a coupling to matter (2)

$$
\begin{aligned}
& V=V(\phi)+y \phi \overline{f f}+\sigma \phi^{2} \chi^{2} \\
& \sigma \neq 0, \quad \sigma \times \phi_{\text {end }}^{2} \ll m_{\phi}^{2}
\end{aligned}
$$

$$
\begin{gathered}
V(\phi)=\frac{1}{2} m_{\phi}^{2} \phi^{2}+y \phi \bar{f} f+\sigma \phi^{2} \chi^{2} \\
\ddot{\chi}(t, x)+3 H \dot{\chi}-\frac{\nabla}{a^{2}} \chi(t, x)+2 \sigma \phi^{2} \chi=0 \\
m_{\chi}^{\text {eff }}=\sqrt{2 \sigma} \phi
\end{gathered}
$$

$$
\begin{gathered}
\ddot{\chi}(t, x)+3 H \dot{\chi}(t, x)-\frac{\nabla}{a^{2}} \chi(t, x)+2 \sigma \phi^{2} \chi(t, x)=0 \quad m_{\chi}^{\mathrm{eff}}=\sqrt{2 \sigma} \Phi \\
\chi=\int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[e^{-i p x} \chi_{p}(t) a_{p}+e^{i p x} \chi_{p}^{*}(t) a_{p}^{\dagger}\right] \\
\ddot{\chi}_{p}(t)+\left[\frac{p^{2}}{a^{2}}+\left(m_{\chi}^{\mathrm{eff}}\right)^{2}+\sigma \Phi^{2}(t) \times \cos 2 m_{\phi} t\right] \chi_{p}(t)=0 \quad \begin{array}{l}
\text { Mathieu } \\
\text { equation }
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\ddot{\chi}(t, x)+3 H \dot{\chi}(t, x)-\frac{\nabla}{a^{2}} \chi(t, x)+2 \sigma \phi^{2} \chi(t, x)=0 \quad m_{\chi}^{\mathrm{eff}}=\sqrt{2 \sigma} \Phi \\
\chi=\int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[e^{-i p x} \chi_{p}(t) a_{p}+e^{i p x} \chi_{p}^{*}(t) a_{p}^{\dagger}\right] \\
\ddot{\chi}_{p}(t)+\left[\frac{p^{2}}{a^{2}}+\left(m_{\chi}^{\mathrm{eff}}\right)^{2}+\sigma \Phi^{2}(t) \times \cos 2 m_{\phi} t\right] \chi_{p}(t)=0 \quad \begin{array}{c}
\text { Mathieu } \\
\text { equation }
\end{array}
\end{gathered}
$$

The Mathieu equation is present in any system with a periodical source of energy. From electric circuit to mechanical balance, spring excitations...

$$
\begin{gathered}
\ddot{\chi}(t, x)+3 H \dot{\chi}(t, x)-\frac{\nabla}{a^{2}} \chi(t, x)+2 \sigma \phi^{2} \chi(t, x)=0 \quad m_{\chi}^{\mathrm{eff}}=\sqrt{2 \sigma} \Phi \\
\chi=\int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[e^{-i p x} \chi_{p}(t) a_{p}+e^{i p x} \chi_{p}^{*}(t) a_{p}^{\dagger}\right] \\
\ddot{\chi}_{p}(t)+\left[\frac{p^{2}}{a^{2}}+\left(m_{\chi}^{\mathrm{eff}}\right)^{2}+\sigma \Phi^{2}(t) \times \cos 2 m_{\phi} t\right] \chi_{p}(t)=0 \quad \begin{array}{c}
\text { Mathieu } \\
\text { equation }
\end{array}
\end{gathered}
$$

The Mathieu equation is present in any system with a periodical source of energy. From electric circuit to mechanical balance, spring excitations...

$$
\ddot{\chi}_{p}(t)+\left[\frac{p^{2}}{a^{2}}+\left(m_{\chi}^{\mathrm{eff}}\right)^{2}+\sigma \Phi^{2}(t) \times \cos 2 m_{\phi} t\right] \chi_{p}(t)=0 \quad \begin{aligned}
& \text { Mathieu } \\
& \text { equation }
\end{aligned}
$$

$$
\ddot{\chi}_{p}(t)+\left[\frac{p^{2}}{a^{2}}+\left(m_{\chi}^{\mathrm{eff}}\right)^{2}+\sigma \Phi^{2}(t) \times \cos 2 m_{\phi} t\right] \chi_{p}(t)=0
$$

$$
\ddot{\chi}_{p}(t)+\left[\frac{p^{2}}{a^{2}}+\left(m_{\chi}^{\mathrm{eff}}\right)^{2}+\sigma \Phi^{2}(t) \times \cos 2 m_{\phi} t\right] \chi_{p}(t)=0
$$

Backreaction effects of χ on ϕ

Backreactions

Formally speaking, this is the effect of χ on the condensate ϕ through te equation of motion

The net effect is the destruction of the ϕ-condensate into ϕ-particles

Backreactions

Formally speaking, this is the effect of χ on the condensate ϕ through te equation of motion

The net effect is the destruction of the ϕ-condensate into ϕ-particles

$$
\ddot{\chi}+3 H \dot{\chi}-\frac{\nabla}{a^{2}} \chi+2 \sigma \phi^{2} \chi=0
$$

Backreactions

Formally speaking, this is the effect of χ on the condensate ϕ through te equation of motion

The net effect is the destruction of the ϕ-condensate into ϕ-particles

$$
\begin{gathered}
\ddot{\chi}+3 H \dot{\chi}-\frac{\nabla}{a^{2}} \chi+2 \sigma \phi^{2} \chi=0 \\
\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0
\end{gathered}
$$

$\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0$
$\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0$

$$
\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{V}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0
$$

Frequency $\frac{1}{2} m_{\phi}$
$\Leftrightarrow \mathrm{N}$ coherent oscillators of density

$$
n_{\phi}=\frac{\rho_{\phi}}{m_{\phi}} \text { and frequency } \frac{1}{2} m_{\phi}
$$

$\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0$

$$
\chi\left(p_{4}\right)
$$

$$
\chi\left(p_{1}\right) \quad \chi\left(p_{2}\right)
$$

$$
\chi\left(p_{3}\right)
$$

$\Leftrightarrow \mathrm{N}$ coherent oscillators of density

$$
n_{\phi}=\frac{\rho_{\phi}}{m_{\phi}} \text { and frequency } m_{\phi}
$$

$\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0$

Frequency m_{ϕ}
$\Leftrightarrow \mathrm{N}$ coherent oscillators of density

$$
n_{\phi}=\frac{\rho_{\phi}}{m_{\phi}} \text { and frequency } m_{\phi}
$$

$\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0$

Frequency $\frac{1}{2} m_{\phi}$
$\Leftrightarrow \mathrm{N}$ incoherent oscillators of mean

$$
\text { momentum } p_{*}=\sqrt{m_{\phi} m_{\chi}}
$$

$\ddot{\phi}(t, x)+3 H \dot{\phi}(t, x)+m_{\phi}^{2} \phi(t, x)-\frac{\nabla}{a^{2}} \phi(t, x)+2 \sigma \chi^{2} \phi=0$

Frequency $\frac{1}{2} m_{\phi}$
$\Leftrightarrow \mathrm{N}$ incoherent oscillators of mean

$$
\text { momentum } p_{*}=\sqrt{m_{\phi} m_{\chi}}
$$

Example :

(dark) matter from gravitational scattering of the inflaton

$$
\mathscr{L}=\frac{1}{M_{P}} h_{\mu \nu} T_{\phi}^{\mu \nu}+\frac{1}{M_{P}} h_{\mu \nu} T_{S}^{\mu \nu}+y \phi \overline{f f}+\sigma \phi^{2} \chi^{2}
$$

Y. Mambrini and K. A. Olive, Phys. Rev. D 103 (2021) no.11, 115009 [arXiv:2102.06214].
S. Clery, Y. Mambrini, K. A. Olive, and S. Verner, [arXiv:2112.15214].
$\phi / S M$

$$
\frac{T_{\phi / S M}^{\mu \nu}}{M_{P_{,}},}, \gamma_{\mu \nu}-\frac{T_{X / S M}}{M_{P}}
$$

$$
X / S M
$$

$\phi / S M$

There exists a minimal maximal temperature in the Universe $\sim 10^{12} \mathrm{GeV}$

	$k=2$	$k=4$	$k=6$
$T_{\max }$	$1.0 \times 10^{12} \mathrm{GeV}$	$7.5 \times 10^{11} \mathrm{GeV}$	$6.5 \times 10^{11} \mathrm{GeV}$
$y_{\max }$	1.8×10^{-6}	1.4×10^{-6}	1.1×10^{-6}
$T_{\mathrm{RH}_{\max }}$	$7.9 \times 10^{8} \mathrm{GeV}$	470 GeV	$9.7 \times 10^{-4} \mathrm{GeV}$

$$
\phi / S M
$$

$X / S M$

$\phi / S M$
$X / S M$

We can even gravitationally reheat!!

Also working for Dark Matter

$\phi / S M$
$X / S M$

$$
\begin{aligned}
& \phi / S M \\
& X / S M
\end{aligned}
$$

Summary

Important remark : the preheating says nothing about reheating, and especially gives the same reheating temperature than a perturbative treatment.

This comes from the fact that the reheating happens for

$$
\rho_{R}=\rho_{\phi} \simeq \sqrt{\Gamma_{\phi} M_{P}} \sim T_{R H}^{4},
$$

It just happens before.

Evolution of energy densities from preheating to perturbative reheating, $y=1 e-05$

Conclusion

Studying the details of dark matter production in the earliest phase of the Universe is important for DM production in freeze-in scenario

