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Primordial Power Spectrum Reconstruction

The simplest shape of the power spectrum is the power-law form,

usually parametrized by the amplitude and spectral index

Planck Collaboration: Cosmological parameters

Fig. 7. Comparison between the 2015 and 2018 marginalized ⇤CDM parameters. Dotted lines show the 2015 results, replacing the
2015 “lowP” low-` polarization likelihood with the new 2018 “lowE” SimAll likelihood, isolating the impact of the change in the
low-` polarization likelihood (and hence the constraints on ⌧).

3.4. Scalar spectral index

The scale-dependence of the CMB power spectrum constrains
the slope of the primordial scalar power spectrum, convention-
ally parameterized by the power-law index ns, where ns = 1 cor-
responds to a scale-invariant spectrum. The matter and baryon
densities also a↵ect the scale-dependence of the CMB spectra,
but in a way that di↵ers from a variation in ns, leading to rel-
atively mild degeneracies between these parameters. Assuming

that the primordial power spectrum is an exact power law we
find

ns = 0.9649 ± 0.0042 (68 %, Planck TT,TE,EE+lowE
+lensing), (21)

which is 8� away from scale-invariance (ns = 1), confirm-
ing the red tilt of the spectrum at high significance in ⇤CDM.
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Planck Collaboration: Cosmological parameters

Fig. 6. Base-⇤CDM 68 % and 95 % marginalized constraint
contours for the matter density and �8⌦

0.25
m , a fluctuation am-

plitude parameter that is well constrained by the CMB-lensing
likelihood. The Planck TE, TT, and lensing likelihoods all over-
lap in a consistent region of parameter space, with the combined
likelihood substantially reducing the allowed parameter space.

This value is our “best estimate” of H0 from Planck, assuming
the base-⇤CDM cosmology.

Since we are considering a flat universe in this section, a
constraint on⌦m translates directly into a constraint on the dark-
energy density parameter, giving

⌦⇤ = 0.6847 ± 0.0073 (68 %, TT,TE,EE+lowE+lensing). (15)

In terms of a physical density, this corresponds to ⌦⇤h
2 =

0.3107 ± 0.0082, or cosmological constant ⇤ = (4.24 ± 0.11) ⇥
10�66 eV2 = (2.846± 0.076)⇥ 10�122

m
2
Pl in natural units (where

mPl is the Planck mass).

3.3. Optical depth and the fluctuation amplitude

Since the CMB fluctuations are linear up to lensing corrections,
and the lensing corrections are largely oscillatory, the average
observed CMB power spectrum amplitude scales nearly propor-
tionally with the primordial comoving curvature power spec-
trum amplitude As (which we define at the pivot scale k0 =
0.05 Mpc�1). The sub-horizon CMB anisotropies are however
scattered by free electrons that are present after reionization, so
the observed amplitude actually scales with Ase

�2⌧, where ⌧ is
the reionization optical depth (see Sect. 7.8 for further discus-
sion of reionization constraints). This parameter combination is
therefore well measured, with the 0.6 % constraint

Ase
�2⌧ = (1.884 ± 0.012) ⇥ 10�9 (68 %, TT,TE,EE

+lowE). (16)

In this final Planck release the optical depth is well constrained
by the large-scale polarization measurements from the Planck

HFI, with the joint constraint

⌧ = 0.0544+0.0070
�0.0081 (68 %, TT,TE,EE+lowE). (17)

Assuming simple tanh parameterization of the ionization frac-
tion,14 this implies a mid-point redshift of reionization

zre = 7.68 ± 0.79 (68 %, TT,TE,EE+lowE), (18)

and a one-tail upper limit of zre < 9.0 (95 %). This is consis-
tent with observations of high-redshift quasars that suggest the
Universe was fully reionized by z⇡ 6 (Bouwens et al. 2015). We
do not include the astrophysical constraint that zre >⇠ 6.5 in
our default parameter results, but if required results including
this prior are part of the published tables on the Planck Legacy
Archive (PLA). A more detailed discussion of reionization his-
tories consistent with Planck and results from other Planck like-
lihoods is deferred to Sect. 7.8.

The measurement of the optical depth breaks the Ase
�2⌧ de-

generacy, giving a 1.5 % measurement of the primordial ampli-
tude:

As = (2.101+0.031
�0.034) ⇥ 10�9 (68 %, TT,TE,EE+lowE). (19)

Since the optical depth is reasonably well constrained, degenera-
cies with other cosmological parameters contribute to the error
in Eq. (19). From the temperature spectrum alone there is a sig-
nificant degeneracy between Ase

�2⌧ and ⌦mh
2, since for fixed

✓⇤, larger values of these parameters will increase and decrease
the small-scale power, respectively. This behaviour is mitigated
in our joint constraint with polarization because the polariza-
tion spectra have a di↵erent dependence on ⌦mh

2; polarization
is generated by causal sub-horizon quadrupole scattering at re-
combination, but the temperature spectrum has multiple sources
and is also sensitive to non-local redshifting e↵ects as the pho-
tons leave the last-scattering surface (see, e.g., Galli et al. 2014,
for further discussion).

Assuming the ⇤CDM model, the Planck CMB parameter
amplitude constraint can be converted into a fluctuation ampli-
tude at the present day, conventionally quantified by the �8 pa-
rameter. The CMB lensing reconstruction power spectrum also
constrains the late-time fluctuation amplitude more directly, in
combination with the matter density. Figure 6 shows constraints
on the matter density and amplitude parameter combination
�8⌦

0.25
m that is well measured by the CMB lensing spectrum (see

PL2015 for details). There is good consistency between the tem-
perature, polarization, and lensing constraints here, and using
their combination significantly reduces the allowed parameter
space. In terms of the late-time fluctuation amplitude parameter
�8 we find the combined result

�8 = 0.8111 ± 0.0060 (68 %, Planck TT,TE,EE+lowE
+lensing). (20)

Measurements of galaxy clustering, galaxy lensing, and clusters
can also measure �8, and we discuss consistency of these con-
straints within the ⇤CDM model in more detail in Sect. 5.

14For reference, the ionization fraction xe = ne/nH in the tanh model
is assumed to have the redshift dependence:

xe =
1 + nHe/nH

2

"
1 + tanh

 
y(zre) � y(z)
�y

!#
,

where y(z) = (1 + z)3/2, �y = 3
2 (1 + zre)1/2�z, with �z = 0.5. Helium is

assumed to be singly ionized with hydrogen at z � 3, but at lower red-
shifts we add the very small contribution from the second reionization
of helium with a similar tanh transition at z = 3.5.
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Theoretical Models 
for Primordial Power Spectrum

Planck Collaboration: Constraints on Inflation
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joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18
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[Planck 2018]

Features in the Power Spectrum?
Deviation from the simple power-law form has been studied,
with no significant evidence.

Planck Collaboration: Constraints on Inflation
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Fig. 18. Planck TT+lowE penalized likelihood reconstruction.
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Penalized likelihood method

Planck Collaboration: Constraints on Inflation

Parameters Prior type Prior range

N Discrete uniform [0, 8]
ln V⇤ Uniform [�25,�15]
d ln V⇤/d� Log-uniform [10�3, 10�0.3]
d2ln V1/d�2, . . . , d2ln VN/d�2 Uniform [�0.5, 0.5]
�1, . . . , �N Sorted uniform [�̃min , �̃max ]
ln 1010

PR(k) Indirect constraint [2, 4]

Table 9. Parameters of the free-form potential reconstruction
analysis and details of the priors. There is a further prior con-
straint in that we require that the inflaton should evolve in an in-
flating phase throughout the observable window, that the inflaton
should be rolling downhill from negative to positive � through-
out, and that any primordial power spectra generated sit in the
range 2 < ln 1010

PR(k) < 4.

6. Primordial power spectrum reconstruction

This section reports results for the non-parametric reconstruction
of the primordial scalar power spectrum using the new Planck
2018 likelihoods, as well as comparisons with the previously re-
ported results for the Planck 2013 and 2015 releases. The objec-
tive here is to search for deviations from a simple power-law pri-
mordial power spectrum (i.e., PR(k) = As(k/k⇤)ns�1) in a manner
that does not presuppose any particular theoretical model giv-
ing rise to such deviations. This work is complementary to the
searches considered in Sect. 7, where particular functional forms
for such deviations motivated by theory are investigated.

Here we apply three distinct nonparametric methods. In 2013
only the first method was used to reconstruct the primordial
power spectrum, the so-called “penalized likelihood” method,
for which the 2018 results are presented in Sect. 6.1. In 2015
two additional methods were also used: a linear spline method
(discussed in Sect. 6.2) for which both the number of knots and
their positions were allowed to vary, and ideas from Bayesian
model selection were applied to determine the appropriate num-
ber of knots; and a method using cubic splines (discussed in
Sect. 6.3). Although the discussion below includes some descrip-
tion of each method in order to make the paper self-contained,
for details the reader is referred to the 2013 and 2015 papers.
Here we specify only those details specific to the 2018 analysis
or di↵erent from the choices in the 2013 and 2015 analyses.

6.1. Penalized likelihood

The underlying idea of the penalized likelihood approach is to
add a term to the log-likelihood that penalizes deviations from
a perfect power-law spectrum. We parameterize the power spec-
trum as

PR(k) = P0(k) exp
⇥
f (k)

⇤
, (52)

where P0(k) = As(k/k⇤)ns�1, and add the following term to
�2 lnL:

fT R(�,↵) f ⌘ �
Z max

min

d
 
@2 f ()
@2

!2

+ ↵

Z min

�1

f 2() + ↵
Z +1

max

f 2(), (53)

where  = ln k. The interval [min, max] is chosen to cover the
range over which the likelihood is able to constrain the data.
The two ↵ terms serve to pin the reconstruction to the simple

power law where the data have almost no constraining power.
One may imagine that ↵ > 0 should be infinite, but for numer-
ical reasons a large but finite value is used to simplify the nu-
merics. Numerically, for each � the dimension of f is chosen to
be so large that the continuum version of the penalty given in
Eq. (53) has been accurately approximated. For more details see
Gauthier & Bucher (2012) and the extensive references therein
to prior literature, as well as PCI13 and PCI15.

In Fig. 18 we show the results using Planck TT+lowE and in
Fig. 19 we show the results for Planck TT,TE,EE+lowE. In both
cases we have assumed the usual base-⇤CDM model specified
in PCP18, except that the power spectrum is now parameterized
by a set of spline points. In addition to these spline points, we
also maximize the likelihood with respect to the dimensionless
Hubble parameter, h, and the baryon, ⌦bh2, and CDM, ⌦ch2,
densities. All other cosmological and nuisance parameters are
the same as those quoted in PCP18.

For the TT-only case, the maximum deviations are 1.55�,
2.10�, 1.80�, and 1.65� for � = 103, 104, 105, and 106, re-
spectively, for which the probabilities to exceed are 13 %, 28 %,
31 %, and 23 % (where we have taken into account the look-
elsewhere e↵ect). Similarly, for the TT,TE,EE case, the maxi-
mum deviations are 2.07�, 1.77�, 1.77�, and 1.08� for � = 103,
104, 105, and 106, respectively, for which the probabilities to ex-
ceed are 29 %, 23 %, 32 %, and 25 %. We consequently find no
statistically significant evidence for a deviation from the simple
power-law hypothesis. This result is consistent with the results
previously reported for the Planck 2013 and 2015 releases using
essentially the same method. It is likewise consistent with the
results below in Sects. 6.2 and 6.3, which use di↵erent methods.

6.2. Bayesian reconstruction

To reconstruct the primordial power spectrum of curvature
perturbations, we follow the methodology of section 8.2 of
PCI15, using an N-point interpolating logarithmic spline with
the positions of the knots considered as free parameters in
the full posterior distribution. The positions of the points in
the (k,P) plane are treated as likelihood parameters with log-
uniform priors. Further, the k-positions are sorted a priori
such that k1 < k2 < · · · < kN , with k1 and kN fixed. We com-
pute posteriors and evidence values (conditioned on N) using
PolyChord (Handley et al. 2015a,b), also varying all cosmolog-
ical and nuisance parameters. We then use evidence values for
each model to correctly marginalize out the number of knots N.

To plot our reconstructions of P(k), we compute the
marginalized posterior distribution of lnP conditioned on k. The
iso-probability confidence intervals are then plotted in the (k,P)
plane (see, e.g., Fig. 20), using code recorded in Handley (2018).
To quantify the constraining power of a given experiment, we
use the conditional Kullback-Leibler (KL) divergence as exem-
plified by Hee et al. (2016). For two distributions P(✓) and Q(✓),
the KL divergence is defined as

DKL(P|Q) =
Z

ln
"

P(✓)
Q(✓)

#
P(✓)d✓, (54)

and may be interpreted as the information gain in moving from
a prior Q to a posterior P (Raveri et al. 2016). For our recon-
structions, we compute the KL divergence of each distribution
conditioned on k and N, and then marginalize over N using evi-
dence values to produce a k-dependent number which quantifies
the compression or information that each data set provides at
each value of k. Further plots and theoretical detail can be found
in Handley et al. (2018).
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Fig. 24. Reconstructed primordial scalar power spectrum de-
rived using Planck TT,TE,EE+lowE+lensing+BK14 data and 12
knots for the cubic spline interpolation (with positions marked
as � at the bottom of each panel). Mean (ensemble-averaged)
spectra are heavy lines, allowed ±1� and ±2� regions for tra-
jectories are the shaded regions, and the dashed lines denote se-
lected trajectories with parameters sampled within the ±1� pos-
terior. Below the scalar power is the tensor power reconstruction.
The addition of the BAO likelihood shown in the middle panel
makes almost no visual di↵erence to the reconstructions. In the
bottom panel, fixing the tensor-to-scalar ratio to r = 0.001 also
shows only small di↵erences in reconstruction. Knot positions
in k roughly translate to multipoles through kDrec, where Drec is
the comoving distance to recombination.
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Fig. 25. Reconstructed 12-knot power spectra. The robust-
ness of the reconstruction is apparent when sub-selections of
the Planck data are used: Planck TT+lowE+lensing+BK14
(top); Planck TE+lowE+lensing+BK14 (middle); and Planck
EE+lowE+lensing+BK14 (bottom).
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Cubic spline method
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How to reconstruct a potential?

Reconstruction
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How to reconstruct?
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- Reconstructing Hubble parameter from tensor spectrum
[Grishchuk, Solokhin, PRD (1991) 43, 2566]

- Reconstructing inflation potential, in principle and in practice
[Copeland, Kolb, Liddle, Lidsey, PRD (1993) 48, 2529]

The uncertainty in the integration constant can be eliminated
if we can measure the tensor spectrum at a single scale.

Reconstruction in Single Field Inflation with 
standard slow-roll

- Reconstructing inflationary potential in the slow-roll
[Hodges, Blumenthal, PRD (1990)]

[Copeland, Kolb, Liddle, Lidsey, PRL (1993) 71, 219]
[Lidsey, Liddle, Kolb, Copeland, RMP (1997) 69, 373]
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Reconstruction in Single Field Inflation with 
standard slow-roll

1. Using the slow-roll relation Hodges, Blumenthal, PRD (1990)

U ¼ 3H2 þ _H: ð15Þ

An accelerating expansion, inflation, occurs when the
following slow-roll parameter is smaller than unity:

ϵH ≡ − dH
dNe

¼ −
_H
H2

: ð16Þ

B. Fluctuations

Fluctuations in scalar modes around the homogeneous
background are described by the curvature perturbation ζ̂.
Its variance in fluctuations is measured by the matter power
spectrum: hζ̂ðkÞζ̂ðk0Þi ¼ ð2πÞ3δ3ðkþ k0Þð2π2=k3ÞPζðkÞ,
where

PζðkÞ ¼
2k3

8π2

!!!!
vk

a
ffiffiffiffiffiffi
ϵH

p
!!!!
2

: ð17Þ

Here k (≡jkj) is a comoving wave number of a Fourier
mode and vk is the mode function associated with the
Mukhanov-Sasaki (MS) variable. The mode function obeys
the MS equation [69,70],

d2vk
dη2

þ
#
k2 −

1

z
d2z
dη2

$
vk ¼ 0; ð18Þ

where z≡ a
ffiffiffiffiffiffi
ϵH

p
and η is conformal time (dη≡ dt=a). The

initial condition for the quantum state is taken to be the
standard Bunch-Davies vacuum, wherein

vk →
1ffiffiffiffiffi
2k

p e−ikη; as
k
aH

→ ∞: ð19Þ

For the purpose of numerical simulation, it is convenient to
rewrite the MS equation in terms of ζk ≡ vk=ða

ffiffiffiffiffiffiffiffi
2ϵH

p
Þ,

d2ζk
dη2

þ ð2þ ϵH2ÞaH
dζk
dη

þ k2ζk ¼ 0; ð20Þ

where

ϵH2 ≡ dϵH
dNe

¼
_ϵH
HϵH

: ð21Þ

An infinitesimal change of comoving wave number
between k and kþ dk that corresponds to the scale leaving
the horizon between time t and tþ dt can be written as

d ln k ¼ dðlnðaHÞÞ ≃ −dNe ¼ −Hdt; ð22Þ

where we use ϵH ≪ 1. This gives

lnðkend=kÞ ≃ Ne; ð23Þ

where kend is the scale that leaves the horizon at t ¼ tend.

C. Key approximation

Now our key simplifying approximation is to neglect ϵH2

in Eq. (20) when we compute the power. We see that this is
not precise in the nonslow-roll regime, where the potential
term in the background equation of motion U0ðϕÞ is
subdominant to the acceleration ϕ̈ and friction 3H _ϕ terms.
But in the regular slow-roll regime (where it is the
acceleration term ϕ̈ that is negligible), this assumption is
precise. In any case, we take the power spectrum of the
form

PζðkÞ ≃
H2

8π2ϵH
; ð24Þ

which comes from the solution of Eq. (20) with ϵH2

neglected. We use this formula to reconstruct the inflaton
potential. After the reconstruction, we numerically compare
to the exact result from solving the MS equations exactly,
finding that while there are corrections, it does not change
the result tremendously and certainly suffices to capture the
qualitative behavior.3

Note that we still use the full expression for ϵH ¼
− _H=H2, rather than the simple ϵ ¼ ðU0=UÞ2=2 that is
used in the usual slow-roll treatments. In particular, this
means we do not demand that the acceleration ϕ̈ is always
negligible to U0; this is important near a critical point in the
potential where U0 → 0. So we are still going beyond the
standard slow-roll regime and capturing, at least qualita-
tively, the nonslow-roll regime too. This “partial” slow-roll
approximation is useful to reconstruct the inflaton potential
and allows us to reproduce a discontinuity or small hill in
the potential as we see below.

D. Reconstruction

Now we derive formulas that allow us to calculate the
potential for a given PζðkÞ. The first one comes from
Eqs. (16), (24), and (22),

1

H4

dH2

d ln k
¼ 1

4π2Pζ
: ð25Þ

So we can integrate dH2 as

3If ϵ decreases faster than about a−3 during the nonslow-roll
regime, the so-called decaying mode of ζk grows faster on
superhorizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we see that neglecting the
decaying mode does not affect the qualitative behavior in the case
we are interested in.
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initial condition for the quantum state is taken to be the
standard Bunch-Davies vacuum, wherein

vk →
1ffiffiffiffiffi
2k

p e−ikη; as
k
aH

→ ∞: ð19Þ

For the purpose of numerical simulation, it is convenient to
rewrite the MS equation in terms of ζk ≡ vk=ða

ffiffiffiffiffiffiffiffi
2ϵH

p
Þ,

d2ζk
dη2

þ ð2þ ϵH2ÞaH
dζk
dη

þ k2ζk ¼ 0; ð20Þ

where

ϵH2 ≡ dϵH
dNe

¼
_ϵH
HϵH

: ð21Þ

An infinitesimal change of comoving wave number
between k and kþ dk that corresponds to the scale leaving
the horizon between time t and tþ dt can be written as

d ln k ¼ dðlnðaHÞÞ ≃ −dNe ¼ −Hdt; ð22Þ

where we use ϵH ≪ 1. This gives

lnðkend=kÞ ≃ Ne; ð23Þ

where kend is the scale that leaves the horizon at t ¼ tend.

C. Key approximation

Now our key simplifying approximation is to neglect ϵH2

in Eq. (20) when we compute the power. We see that this is
not precise in the nonslow-roll regime, where the potential
term in the background equation of motion U0ðϕÞ is
subdominant to the acceleration ϕ̈ and friction 3H _ϕ terms.
But in the regular slow-roll regime (where it is the
acceleration term ϕ̈ that is negligible), this assumption is
precise. In any case, we take the power spectrum of the
form

PζðkÞ ≃
H2

8π2ϵH
; ð24Þ

which comes from the solution of Eq. (20) with ϵH2

neglected. We use this formula to reconstruct the inflaton
potential. After the reconstruction, we numerically compare
to the exact result from solving the MS equations exactly,
finding that while there are corrections, it does not change
the result tremendously and certainly suffices to capture the
qualitative behavior.3

Note that we still use the full expression for ϵH ¼
− _H=H2, rather than the simple ϵ ¼ ðU0=UÞ2=2 that is
used in the usual slow-roll treatments. In particular, this
means we do not demand that the acceleration ϕ̈ is always
negligible to U0; this is important near a critical point in the
potential where U0 → 0. So we are still going beyond the
standard slow-roll regime and capturing, at least qualita-
tively, the nonslow-roll regime too. This “partial” slow-roll
approximation is useful to reconstruct the inflaton potential
and allows us to reproduce a discontinuity or small hill in
the potential as we see below.

D. Reconstruction

Now we derive formulas that allow us to calculate the
potential for a given PζðkÞ. The first one comes from
Eqs. (16), (24), and (22),

1

H4

dH2

d ln k
¼ 1

4π2Pζ
: ð25Þ

So we can integrate dH2 as

3If ϵ decreases faster than about a−3 during the nonslow-roll
regime, the so-called decaying mode of ζk grows faster on
superhorizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we see that neglecting the
decaying mode does not affect the qualitative behavior in the case
we are interested in.
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with a proper identification of the horizon exit (w/ Slow-Roll)

U ¼ 3H2 þ _H: ð15Þ

An accelerating expansion, inflation, occurs when the
following slow-roll parameter is smaller than unity:
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B. Fluctuations
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Here k (≡jkj) is a comoving wave number of a Fourier
mode and vk is the mode function associated with the
Mukhanov-Sasaki (MS) variable. The mode function obeys
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standard Bunch-Davies vacuum, wherein
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1ffiffiffiffiffi
2k

p e−ikη; as
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For the purpose of numerical simulation, it is convenient to
rewrite the MS equation in terms of ζk ≡ vk=ða
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þ k2ζk ¼ 0; ð20Þ

where

ϵH2 ≡ dϵH
dNe

¼
_ϵH
HϵH

: ð21Þ

An infinitesimal change of comoving wave number
between k and kþ dk that corresponds to the scale leaving
the horizon between time t and tþ dt can be written as

d ln k ¼ dðlnðaHÞÞ ≃ −dNe ¼ −Hdt; ð22Þ

where we use ϵH ≪ 1. This gives

lnðkend=kÞ ≃ Ne; ð23Þ

where kend is the scale that leaves the horizon at t ¼ tend.

C. Key approximation

Now our key simplifying approximation is to neglect ϵH2

in Eq. (20) when we compute the power. We see that this is
not precise in the nonslow-roll regime, where the potential
term in the background equation of motion U0ðϕÞ is
subdominant to the acceleration ϕ̈ and friction 3H _ϕ terms.
But in the regular slow-roll regime (where it is the
acceleration term ϕ̈ that is negligible), this assumption is
precise. In any case, we take the power spectrum of the
form

PζðkÞ ≃
H2

8π2ϵH
; ð24Þ

which comes from the solution of Eq. (20) with ϵH2

neglected. We use this formula to reconstruct the inflaton
potential. After the reconstruction, we numerically compare
to the exact result from solving the MS equations exactly,
finding that while there are corrections, it does not change
the result tremendously and certainly suffices to capture the
qualitative behavior.3

Note that we still use the full expression for ϵH ¼
− _H=H2, rather than the simple ϵ ¼ ðU0=UÞ2=2 that is
used in the usual slow-roll treatments. In particular, this
means we do not demand that the acceleration ϕ̈ is always
negligible to U0; this is important near a critical point in the
potential where U0 → 0. So we are still going beyond the
standard slow-roll regime and capturing, at least qualita-
tively, the nonslow-roll regime too. This “partial” slow-roll
approximation is useful to reconstruct the inflaton potential
and allows us to reproduce a discontinuity or small hill in
the potential as we see below.

D. Reconstruction

Now we derive formulas that allow us to calculate the
potential for a given PζðkÞ. The first one comes from
Eqs. (16), (24), and (22),

1

H4

dH2

d ln k
¼ 1

4π2Pζ
: ð25Þ

So we can integrate dH2 as

3If ϵ decreases faster than about a−3 during the nonslow-roll
regime, the so-called decaying mode of ζk grows faster on
superhorizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we see that neglecting the
decaying mode does not affect the qualitative behavior in the case
we are interested in.
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2. Solve the differential equation

1

H2ðkÞ
− 1

H2
#
¼ − 1

4π2

Z
k

k#

1

Pζðk0Þ
d ln k0: ð26Þ

Here we defined an arbitrary pivot scale k# and corre-
sponding Hubble parameter H#. The potential U as a
function of k can be calculated from Eq. (15) as

UðkÞ ¼ 3H2 −
H4

8π2PζðkÞ
: ð27Þ

Although the second term in the right-hand side is much
smaller than the first one in the regular slow-roll regime
ϵ ≪ 1, it is important in the nonslow-roll regime as we
explain below.
The potential can be implicitly determined by the

power spectrum, by obtaining the inverse function of
ϕ ¼ ϕðkÞ. This can be determined by first using
Eq. (14) to express _ϕ as

dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffi
dH2

d ln k

r
: ð28Þ

Then we use Eq. (25) to obtain

ϕðkÞ − ϕ# ¼ −
Z

k

k#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

4π2PR

s

d ln k0: ð29Þ

Note that we can always shift the field value such that
ϕ# ¼ 0. Thus there is only one unknown parameter H# in
the above formulas, which defines a height of the potential
at the pivot scale U#. By using Eq. (27) and an inverse
function of (29), we can calculate a one-parameter family
of potentials U that reproduces exactly the same spectrum.
The shape of the spectrum is conveniently specified by

the spectral index nsðkÞ as

nsðkÞ − 1≡ d lnPζ

d ln k
: ð30Þ

The spectral index can bewritten by slow-roll parameters as

nsðkÞ − 1 ¼ 2ϵHðkÞ þ ϵH2ðkÞ: ð31Þ

Note that in the regular slow-roll regime ϵH, ϵH2 ≪ 1,
the usual slow-roll parameters ϵ and η can be written as
ϵ ≃ ϵH, η ≃ ϵH2=2þ 4ϵH, which reproduces the familiar
ns ≃ 1–6ϵþ 2η. But in general and in the nonslow-roll
regime, when ϵH2 is not necessarily small, the more general
expression of (31) is required.
We can write the slow-roll parameters ϵH and ϵH2 in

terms of the spectrum Pζ and potential U as

ϵHðkÞ ¼
H2ðkÞ

8π2PζðkÞ
; ð32Þ

ϵH2ðkÞ ¼ −2ϵH2 þ
d lnPR

d ln k
: ð33Þ

This shows that ϵH2 ≳ 1 when d lnPR=d ln k≳ 1. Thus we
need to consider the nonslow-roll inflation to generate a
large amplitude of power spectrum at small scales [39].
Finally, we comment on the second term in Eq. (27). One

might think that the second term is negligible for ϵH ≪ 1.
However, the second term is relevant for the equation of
motion, in which the derivative of potential is important. To
see this, let us calculate

dU
dϕ

¼ dt
dϕ

d
dt

½ð3 − ϵHÞH2': ð34Þ

The derivatives are given by

3
d
dt

H2 ¼ −6ϵHH3; ð35Þ

H2 d
dt

ϵH ¼ ϵHϵH2H3; ð36Þ

which shows that the second term is as large as the first
term when ϵH2 is of order unity or larger, as it is in the
nonslow-roll inflation regime.

IV. EXAMPLES

In this section we carry out the above program of
reconstructing the inflaton potential from a given power
spectrum by using the above formulas derived. We also
solve the MS equation (20) numerically and check that the
power spectrum calculated from the reconstructed potential
is qualitatively in agreement with the original one.

A. Analytically tractable models

We first give two simple examples where calculations
can be done analytically, before moving to more compli-
cated examples that require numerics.

1. Flat power spectrum

Let us begin by considering the special case in which
the spectrum is perfectly flat, i.e., PζðkÞ ¼ A ¼ const.
From Eq. (26), we obtain

H2ðkÞ ¼
"
1

H2
#
−

1

4π2A
ln

k
k#

#−1
: ð37Þ

Inserting this into Eq. (29) and carrying out the integral we
obtain

ϕðkÞ ¼ ϕ# − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2A
H2

#
− ln

k
k#

s

þ 2

ffiffiffiffiffiffiffiffiffiffi
4π2A
H2

#

s

: ð38Þ
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1

H2ðkÞ
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H2
#
¼ − 1

4π2

Z
k

k#

1

Pζðk0Þ
d ln k0: ð26Þ

Here we defined an arbitrary pivot scale k# and corre-
sponding Hubble parameter H#. The potential U as a
function of k can be calculated from Eq. (15) as

UðkÞ ¼ 3H2 −
H4

8π2PζðkÞ
: ð27Þ

Although the second term in the right-hand side is much
smaller than the first one in the regular slow-roll regime
ϵ ≪ 1, it is important in the nonslow-roll regime as we
explain below.
The potential can be implicitly determined by the

power spectrum, by obtaining the inverse function of
ϕ ¼ ϕðkÞ. This can be determined by first using
Eq. (14) to express _ϕ as

dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffi
dH2

d ln k

r
: ð28Þ

Then we use Eq. (25) to obtain

ϕðkÞ − ϕ# ¼ −
Z

k

k#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

4π2PR

s

d ln k0: ð29Þ

Note that we can always shift the field value such that
ϕ# ¼ 0. Thus there is only one unknown parameter H# in
the above formulas, which defines a height of the potential
at the pivot scale U#. By using Eq. (27) and an inverse
function of (29), we can calculate a one-parameter family
of potentials U that reproduces exactly the same spectrum.
The shape of the spectrum is conveniently specified by

the spectral index nsðkÞ as

nsðkÞ − 1≡ d lnPζ

d ln k
: ð30Þ

The spectral index can bewritten by slow-roll parameters as

nsðkÞ − 1 ¼ 2ϵHðkÞ þ ϵH2ðkÞ: ð31Þ

Note that in the regular slow-roll regime ϵH, ϵH2 ≪ 1,
the usual slow-roll parameters ϵ and η can be written as
ϵ ≃ ϵH, η ≃ ϵH2=2þ 4ϵH, which reproduces the familiar
ns ≃ 1–6ϵþ 2η. But in general and in the nonslow-roll
regime, when ϵH2 is not necessarily small, the more general
expression of (31) is required.
We can write the slow-roll parameters ϵH and ϵH2 in

terms of the spectrum Pζ and potential U as

ϵHðkÞ ¼
H2ðkÞ

8π2PζðkÞ
; ð32Þ

ϵH2ðkÞ ¼ −2ϵH2 þ
d lnPR

d ln k
: ð33Þ

This shows that ϵH2 ≳ 1 when d lnPR=d ln k≳ 1. Thus we
need to consider the nonslow-roll inflation to generate a
large amplitude of power spectrum at small scales [39].
Finally, we comment on the second term in Eq. (27). One

might think that the second term is negligible for ϵH ≪ 1.
However, the second term is relevant for the equation of
motion, in which the derivative of potential is important. To
see this, let us calculate

dU
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d
dt

½ð3 − ϵHÞH2': ð34Þ

The derivatives are given by

3
d
dt

H2 ¼ −6ϵHH3; ð35Þ

H2 d
dt

ϵH ¼ ϵHϵH2H3; ð36Þ

which shows that the second term is as large as the first
term when ϵH2 is of order unity or larger, as it is in the
nonslow-roll inflation regime.

IV. EXAMPLES

In this section we carry out the above program of
reconstructing the inflaton potential from a given power
spectrum by using the above formulas derived. We also
solve the MS equation (20) numerically and check that the
power spectrum calculated from the reconstructed potential
is qualitatively in agreement with the original one.

A. Analytically tractable models

We first give two simple examples where calculations
can be done analytically, before moving to more compli-
cated examples that require numerics.

1. Flat power spectrum

Let us begin by considering the special case in which
the spectrum is perfectly flat, i.e., PζðkÞ ¼ A ¼ const.
From Eq. (26), we obtain

H2ðkÞ ¼
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1

H2
#
−

1

4π2A
ln

k
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#−1
: ð37Þ

Inserting this into Eq. (29) and carrying out the integral we
obtain

ϕðkÞ ¼ ϕ# − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: ð38Þ
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3. Find a potential in terms of k

U ¼ 3H2 þ _H: ð15Þ

An accelerating expansion, inflation, occurs when the
following slow-roll parameter is smaller than unity:

ϵH ≡ − dH
dNe

¼ −
_H
H2

: ð16Þ

B. Fluctuations

Fluctuations in scalar modes around the homogeneous
background are described by the curvature perturbation ζ̂.
Its variance in fluctuations is measured by the matter power
spectrum: hζ̂ðkÞζ̂ðk0Þi ¼ ð2πÞ3δ3ðkþ k0Þð2π2=k3ÞPζðkÞ,
where

PζðkÞ ¼
2k3

8π2

!!!!
vk

a
ffiffiffiffiffiffi
ϵH

p
!!!!
2

: ð17Þ

Here k (≡jkj) is a comoving wave number of a Fourier
mode and vk is the mode function associated with the
Mukhanov-Sasaki (MS) variable. The mode function obeys
the MS equation [69,70],

d2vk
dη2

þ
#
k2 −

1

z
d2z
dη2

$
vk ¼ 0; ð18Þ

where z≡ a
ffiffiffiffiffiffi
ϵH

p
and η is conformal time (dη≡ dt=a). The

initial condition for the quantum state is taken to be the
standard Bunch-Davies vacuum, wherein

vk →
1ffiffiffiffiffi
2k

p e−ikη; as
k
aH

→ ∞: ð19Þ

For the purpose of numerical simulation, it is convenient to
rewrite the MS equation in terms of ζk ≡ vk=ða

ffiffiffiffiffiffiffiffi
2ϵH

p
Þ,

d2ζk
dη2

þ ð2þ ϵH2ÞaH
dζk
dη

þ k2ζk ¼ 0; ð20Þ

where

ϵH2 ≡ dϵH
dNe

¼
_ϵH
HϵH

: ð21Þ

An infinitesimal change of comoving wave number
between k and kþ dk that corresponds to the scale leaving
the horizon between time t and tþ dt can be written as

d ln k ¼ dðlnðaHÞÞ ≃ −dNe ¼ −Hdt; ð22Þ

where we use ϵH ≪ 1. This gives

lnðkend=kÞ ≃ Ne; ð23Þ

where kend is the scale that leaves the horizon at t ¼ tend.

C. Key approximation

Now our key simplifying approximation is to neglect ϵH2

in Eq. (20) when we compute the power. We see that this is
not precise in the nonslow-roll regime, where the potential
term in the background equation of motion U0ðϕÞ is
subdominant to the acceleration ϕ̈ and friction 3H _ϕ terms.
But in the regular slow-roll regime (where it is the
acceleration term ϕ̈ that is negligible), this assumption is
precise. In any case, we take the power spectrum of the
form

PζðkÞ ≃
H2

8π2ϵH
; ð24Þ

which comes from the solution of Eq. (20) with ϵH2

neglected. We use this formula to reconstruct the inflaton
potential. After the reconstruction, we numerically compare
to the exact result from solving the MS equations exactly,
finding that while there are corrections, it does not change
the result tremendously and certainly suffices to capture the
qualitative behavior.3

Note that we still use the full expression for ϵH ¼
− _H=H2, rather than the simple ϵ ¼ ðU0=UÞ2=2 that is
used in the usual slow-roll treatments. In particular, this
means we do not demand that the acceleration ϕ̈ is always
negligible to U0; this is important near a critical point in the
potential where U0 → 0. So we are still going beyond the
standard slow-roll regime and capturing, at least qualita-
tively, the nonslow-roll regime too. This “partial” slow-roll
approximation is useful to reconstruct the inflaton potential
and allows us to reproduce a discontinuity or small hill in
the potential as we see below.

D. Reconstruction

Now we derive formulas that allow us to calculate the
potential for a given PζðkÞ. The first one comes from
Eqs. (16), (24), and (22),

1

H4

dH2

d ln k
¼ 1

4π2Pζ
: ð25Þ

So we can integrate dH2 as

3If ϵ decreases faster than about a−3 during the nonslow-roll
regime, the so-called decaying mode of ζk grows faster on
superhorizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we see that neglecting the
decaying mode does not affect the qualitative behavior in the case
we are interested in.
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Reconstruction of scalar potentials in two-field cosmological models were studied [19]
We shall assume that the functional form of the scalar power spectrum is known explicitly in

terms of the scale. Our aim is to develop a framework to determine the inflationary potential.

2 Evolution equations for the background and pertur-
bations

2.1 Background evolution

We consider two scalar fields � and  with canonical kinetic terms and potential W (�, ). The
action is given by

S = �
Z

d4
x
p
�g

"
1

2

X

I

@µ�I @
µ
�I +W (�I)

#
, (1)

where �I = {�, }. The equations of motion of the fields are

�̈I + 3H �̇I +W�I = 0, (2)

where H is the Hubble parameter and W�I = @W/@�I . The Hubble parameter satisfies the
Friedmann equation given by

H
2 =

1

3M2
P


1

2

⇣
�̇
2 +  ̇

2
⌘
+W (�, )

�
, (3a)

Ḣ = � 1

2M2
P

⇣
�̇
2 +  ̇

2
⌘
. (3b)

Combining both we can express the potential in terms of H and Ḣ as

W = 3M2
PH

2 +M
2
PḢ. (4)

In terms of the e-folding number, Nt ⌘ ln (a/ai), with a scale factor a at a time t and ai at
a suitably chosen initial time, the field equations are

d
2
�I

dN
2
t

+

✓
3 +

1

H

dH

dNt

◆
d�I

dNt

+
W�I

H2
= 0, (5)

We define the slow-roll parameter for each field by

✏�I ⌘
M

2
P

2

✓
W�I

W

◆2

, (6)

and the sum as ✏ ⌘ ✏� + ✏ . In the slow-roll limit, where ✏⌧ 1, we find that

d ln k = d(ln(a⇤H⇤)) ' H⇤dt⇤ = dNt. (7)

Therefore in this limit,

✏ ⌘ ✏� + ✏ ' ✏H ⌘ � Ḣ

H2
' � 1

2H2

dH
2

d ln k
. (8)

2
put constraints on smaller scales. We adopted those con-
straints from Ref. [21] and plot them as the purple line. On
smaller scales, the μ and y distortions are generated from
the Silk damping of the perturbations. The COBE/FIRAS
experiment puts the constraint on the amount of these
distortions as μ≲ 9 × 10−5 and y≲ 1.5 × 10−5 [62], which
can place an upper bound on the amplitude of power
spectrum [25]; we assume a delta-function power spectrum
to plot this constraint. If the scalar perturbations are quite
large, then second-order effects lead to the generation of
gravitational waves [33,34]. The constraint on the energy
density of gravitational waves by the pulsar-timing experi-
ment, such as EPTA [59], PPTA [60], and NANOGrav [61],
can be recast into that of the amplitude of scalar perturba-
tion. To plot the constraint, we adopt the calculation in
Ref. [26] assuming a delta-function power spectrum.
In Ref. [6], the authors claimed that the PBHs can be all

the dark matter for masses of order 1020 g. In this case, the
amplitude of power spectrum should be around 10−2 at
k ≃ 7 × 1012 Mpc−1. An example of such a power spec-
trum is shown in Fig. 1, where we assume Eq. (8) with
A ∼ 0.01 and k0 ∼ 7 × 1012 Mpc−1 (but with small devia-
tions from these values for later convenience). Note that
a relatively sharp peak in the power spectrum may be
possible at around k ∼ 105 Mpc−1. Interestingly, this cor-
responds to black holes within an order of magnitude of
M ∼ 30 M⊙, which is the range currently observed by
LIGO/Virgo. Some analyses suggest that this might not be

a significant fraction of the dark matter, though a small
fraction is possible.
In the next section, we outline a method to reconstruct

the inflaton potential from these types of power spectra. In
Sec. V, we provide a polynomial potential model that leads
to similar power spectra.

III. RECONSTRUCTION OF THE
INFLATON POTENTIAL

We study the standard two-derivative action for gravity
with a single scalar field ϕ. Without loss of generality,
one can perform field redefinitions to obtain the familiar
Einstein-Hilbert action, minimally coupled to ϕ,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
1

16πG
Rþ 1

2
∂μϕ∂μϕ − UðϕÞ

#
: ð10Þ

From here on we work in natural units ℏ ¼ c ¼ 8πG ¼ 1.
As we discussed in the previous section, we are

interested in the case where the power spectrum has a
peak at a cosmologically small scale. In this section, we
describe a method to reconstruct the inflaton potentialUðϕÞ
from a given power spectrum, assuming ϵ (≡ðU0=UÞ2=2)
≪ 1, but η (≡U00=UÞ can be larger than unity during
inflation.2

A. Background evolution

Let us first describe the evolution of the Friedmann-
Robertson-Walker homogeneous background, which we
take to be spatially flat. It is governed by the following
equations:

NeðtÞ ¼
Z

t

tend
HðtÞdt; ð11Þ

ϕ̈þ 3H _ϕþ dU
dϕ

¼ 0; ð12Þ

H2 ¼ 1

3

$
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2
_ϕ2 þ UðϕÞ

%
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where tend is the time at which inflation ends. Here and
hereafter, dots represent derivatives with respect to time.
The latter two equations can be rewritten exactly as

_H ¼ −
_ϕ2

2
; ð14Þ

FIG. 1. Example of a power spectrum (blue line) that is put in by
hand so that it produces a significant number of PBHs and is
consistent with present constraints (shaded region is allowed):
CMB and LSS survey (purple) [21–24], μ (yellow) and y
distortions (green) [25], pulsar timing (orange) [59–61], and
PBH constraints (black dashed). We take δc ¼ 0.3 as an example.
In Sec. IV B 2, we approximately reconstruct a potential from this
blue input power spectrum. To check the consistency of our
method, we take the approximate reconstructed potential and then
numerically compute the power spectrum (red line) from it exactly.

2Reconstruction of the full inflaton potential was discussed in
Ref. [63], where the authors assume the slow-roll approximation.
Their method was generalized in Ref. [64], which is similar to our
method. On the other hand, reconstruction of local inflaton
potential has been extensively studied, where some derivatives
or slow-roll parameters are reconstructed from the spectral index
and its derivatives. See, e.g., Refs. [65–68].
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put constraints on smaller scales. We adopted those con-
straints from Ref. [21] and plot them as the purple line. On
smaller scales, the μ and y distortions are generated from
the Silk damping of the perturbations. The COBE/FIRAS
experiment puts the constraint on the amount of these
distortions as μ≲ 9 × 10−5 and y≲ 1.5 × 10−5 [62], which
can place an upper bound on the amplitude of power
spectrum [25]; we assume a delta-function power spectrum
to plot this constraint. If the scalar perturbations are quite
large, then second-order effects lead to the generation of
gravitational waves [33,34]. The constraint on the energy
density of gravitational waves by the pulsar-timing experi-
ment, such as EPTA [59], PPTA [60], and NANOGrav [61],
can be recast into that of the amplitude of scalar perturba-
tion. To plot the constraint, we adopt the calculation in
Ref. [26] assuming a delta-function power spectrum.
In Ref. [6], the authors claimed that the PBHs can be all

the dark matter for masses of order 1020 g. In this case, the
amplitude of power spectrum should be around 10−2 at
k ≃ 7 × 1012 Mpc−1. An example of such a power spec-
trum is shown in Fig. 1, where we assume Eq. (8) with
A ∼ 0.01 and k0 ∼ 7 × 1012 Mpc−1 (but with small devia-
tions from these values for later convenience). Note that
a relatively sharp peak in the power spectrum may be
possible at around k ∼ 105 Mpc−1. Interestingly, this cor-
responds to black holes within an order of magnitude of
M ∼ 30 M⊙, which is the range currently observed by
LIGO/Virgo. Some analyses suggest that this might not be

a significant fraction of the dark matter, though a small
fraction is possible.
In the next section, we outline a method to reconstruct

the inflaton potential from these types of power spectra. In
Sec. V, we provide a polynomial potential model that leads
to similar power spectra.

III. RECONSTRUCTION OF THE
INFLATON POTENTIAL

We study the standard two-derivative action for gravity
with a single scalar field ϕ. Without loss of generality,
one can perform field redefinitions to obtain the familiar
Einstein-Hilbert action, minimally coupled to ϕ,

S ¼
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"
1

16πG
Rþ 1

2
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From here on we work in natural units ℏ ¼ c ¼ 8πG ¼ 1.
As we discussed in the previous section, we are

interested in the case where the power spectrum has a
peak at a cosmologically small scale. In this section, we
describe a method to reconstruct the inflaton potentialUðϕÞ
from a given power spectrum, assuming ϵ (≡ðU0=UÞ2=2)
≪ 1, but η (≡U00=UÞ can be larger than unity during
inflation.2

A. Background evolution

Let us first describe the evolution of the Friedmann-
Robertson-Walker homogeneous background, which we
take to be spatially flat. It is governed by the following
equations:

NeðtÞ ¼
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tend
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where tend is the time at which inflation ends. Here and
hereafter, dots represent derivatives with respect to time.
The latter two equations can be rewritten exactly as

_H ¼ −
_ϕ2

2
; ð14Þ

FIG. 1. Example of a power spectrum (blue line) that is put in by
hand so that it produces a significant number of PBHs and is
consistent with present constraints (shaded region is allowed):
CMB and LSS survey (purple) [21–24], μ (yellow) and y
distortions (green) [25], pulsar timing (orange) [59–61], and
PBH constraints (black dashed). We take δc ¼ 0.3 as an example.
In Sec. IV B 2, we approximately reconstruct a potential from this
blue input power spectrum. To check the consistency of our
method, we take the approximate reconstructed potential and then
numerically compute the power spectrum (red line) from it exactly.

2Reconstruction of the full inflaton potential was discussed in
Ref. [63], where the authors assume the slow-roll approximation.
Their method was generalized in Ref. [64], which is similar to our
method. On the other hand, reconstruction of local inflaton
potential has been extensively studied, where some derivatives
or slow-roll parameters are reconstructed from the spectral index
and its derivatives. See, e.g., Refs. [65–68].
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4. From equations,

put constraints on smaller scales. We adopted those con-
straints from Ref. [21] and plot them as the purple line. On
smaller scales, the μ and y distortions are generated from
the Silk damping of the perturbations. The COBE/FIRAS
experiment puts the constraint on the amount of these
distortions as μ≲ 9 × 10−5 and y≲ 1.5 × 10−5 [62], which
can place an upper bound on the amplitude of power
spectrum [25]; we assume a delta-function power spectrum
to plot this constraint. If the scalar perturbations are quite
large, then second-order effects lead to the generation of
gravitational waves [33,34]. The constraint on the energy
density of gravitational waves by the pulsar-timing experi-
ment, such as EPTA [59], PPTA [60], and NANOGrav [61],
can be recast into that of the amplitude of scalar perturba-
tion. To plot the constraint, we adopt the calculation in
Ref. [26] assuming a delta-function power spectrum.
In Ref. [6], the authors claimed that the PBHs can be all

the dark matter for masses of order 1020 g. In this case, the
amplitude of power spectrum should be around 10−2 at
k ≃ 7 × 1012 Mpc−1. An example of such a power spec-
trum is shown in Fig. 1, where we assume Eq. (8) with
A ∼ 0.01 and k0 ∼ 7 × 1012 Mpc−1 (but with small devia-
tions from these values for later convenience). Note that
a relatively sharp peak in the power spectrum may be
possible at around k ∼ 105 Mpc−1. Interestingly, this cor-
responds to black holes within an order of magnitude of
M ∼ 30 M⊙, which is the range currently observed by
LIGO/Virgo. Some analyses suggest that this might not be

a significant fraction of the dark matter, though a small
fraction is possible.
In the next section, we outline a method to reconstruct

the inflaton potential from these types of power spectra. In
Sec. V, we provide a polynomial potential model that leads
to similar power spectra.

III. RECONSTRUCTION OF THE
INFLATON POTENTIAL

We study the standard two-derivative action for gravity
with a single scalar field ϕ. Without loss of generality,
one can perform field redefinitions to obtain the familiar
Einstein-Hilbert action, minimally coupled to ϕ,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
1

16πG
Rþ 1

2
∂μϕ∂μϕ − UðϕÞ

#
: ð10Þ

From here on we work in natural units ℏ ¼ c ¼ 8πG ¼ 1.
As we discussed in the previous section, we are

interested in the case where the power spectrum has a
peak at a cosmologically small scale. In this section, we
describe a method to reconstruct the inflaton potentialUðϕÞ
from a given power spectrum, assuming ϵ (≡ðU0=UÞ2=2)
≪ 1, but η (≡U00=UÞ can be larger than unity during
inflation.2

A. Background evolution

Let us first describe the evolution of the Friedmann-
Robertson-Walker homogeneous background, which we
take to be spatially flat. It is governed by the following
equations:

NeðtÞ ¼
Z

t

tend
HðtÞdt; ð11Þ

ϕ̈þ 3H _ϕþ dU
dϕ

¼ 0; ð12Þ

H2 ¼ 1
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where tend is the time at which inflation ends. Here and
hereafter, dots represent derivatives with respect to time.
The latter two equations can be rewritten exactly as

_H ¼ −
_ϕ2

2
; ð14Þ

FIG. 1. Example of a power spectrum (blue line) that is put in by
hand so that it produces a significant number of PBHs and is
consistent with present constraints (shaded region is allowed):
CMB and LSS survey (purple) [21–24], μ (yellow) and y
distortions (green) [25], pulsar timing (orange) [59–61], and
PBH constraints (black dashed). We take δc ¼ 0.3 as an example.
In Sec. IV B 2, we approximately reconstruct a potential from this
blue input power spectrum. To check the consistency of our
method, we take the approximate reconstructed potential and then
numerically compute the power spectrum (red line) from it exactly.

2Reconstruction of the full inflaton potential was discussed in
Ref. [63], where the authors assume the slow-roll approximation.
Their method was generalized in Ref. [64], which is similar to our
method. On the other hand, reconstruction of local inflaton
potential has been extensively studied, where some derivatives
or slow-roll parameters are reconstructed from the spectral index
and its derivatives. See, e.g., Refs. [65–68].
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H2ðkÞ
− 1

H2
#
¼ − 1

4π2

Z
k

k#

1

Pζðk0Þ
d ln k0: ð26Þ

Here we defined an arbitrary pivot scale k# and corre-
sponding Hubble parameter H#. The potential U as a
function of k can be calculated from Eq. (15) as

UðkÞ ¼ 3H2 −
H4

8π2PζðkÞ
: ð27Þ

Although the second term in the right-hand side is much
smaller than the first one in the regular slow-roll regime
ϵ ≪ 1, it is important in the nonslow-roll regime as we
explain below.
The potential can be implicitly determined by the

power spectrum, by obtaining the inverse function of
ϕ ¼ ϕðkÞ. This can be determined by first using
Eq. (14) to express _ϕ as

dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffi
dH2

d ln k

r
: ð28Þ

Then we use Eq. (25) to obtain

ϕðkÞ − ϕ# ¼ −
Z

k

k#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

4π2PR

s

d ln k0: ð29Þ

Note that we can always shift the field value such that
ϕ# ¼ 0. Thus there is only one unknown parameter H# in
the above formulas, which defines a height of the potential
at the pivot scale U#. By using Eq. (27) and an inverse
function of (29), we can calculate a one-parameter family
of potentials U that reproduces exactly the same spectrum.
The shape of the spectrum is conveniently specified by

the spectral index nsðkÞ as

nsðkÞ − 1≡ d lnPζ

d ln k
: ð30Þ

The spectral index can bewritten by slow-roll parameters as

nsðkÞ − 1 ¼ 2ϵHðkÞ þ ϵH2ðkÞ: ð31Þ

Note that in the regular slow-roll regime ϵH, ϵH2 ≪ 1,
the usual slow-roll parameters ϵ and η can be written as
ϵ ≃ ϵH, η ≃ ϵH2=2þ 4ϵH, which reproduces the familiar
ns ≃ 1–6ϵþ 2η. But in general and in the nonslow-roll
regime, when ϵH2 is not necessarily small, the more general
expression of (31) is required.
We can write the slow-roll parameters ϵH and ϵH2 in

terms of the spectrum Pζ and potential U as

ϵHðkÞ ¼
H2ðkÞ

8π2PζðkÞ
; ð32Þ

ϵH2ðkÞ ¼ −2ϵH2 þ
d lnPR

d ln k
: ð33Þ

This shows that ϵH2 ≳ 1 when d lnPR=d ln k≳ 1. Thus we
need to consider the nonslow-roll inflation to generate a
large amplitude of power spectrum at small scales [39].
Finally, we comment on the second term in Eq. (27). One

might think that the second term is negligible for ϵH ≪ 1.
However, the second term is relevant for the equation of
motion, in which the derivative of potential is important. To
see this, let us calculate

dU
dϕ

¼ dt
dϕ

d
dt

½ð3 − ϵHÞH2': ð34Þ

The derivatives are given by

3
d
dt

H2 ¼ −6ϵHH3; ð35Þ

H2 d
dt

ϵH ¼ ϵHϵH2H3; ð36Þ

which shows that the second term is as large as the first
term when ϵH2 is of order unity or larger, as it is in the
nonslow-roll inflation regime.

IV. EXAMPLES

In this section we carry out the above program of
reconstructing the inflaton potential from a given power
spectrum by using the above formulas derived. We also
solve the MS equation (20) numerically and check that the
power spectrum calculated from the reconstructed potential
is qualitatively in agreement with the original one.

A. Analytically tractable models

We first give two simple examples where calculations
can be done analytically, before moving to more compli-
cated examples that require numerics.

1. Flat power spectrum

Let us begin by considering the special case in which
the spectrum is perfectly flat, i.e., PζðkÞ ¼ A ¼ const.
From Eq. (26), we obtain

H2ðkÞ ¼
"
1

H2
#
−

1

4π2A
ln

k
k#

#−1
: ð37Þ

Inserting this into Eq. (29) and carrying out the integral we
obtain

ϕðkÞ ¼ ϕ# − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2A
H2

#
− ln

k
k#

s

þ 2

ffiffiffiffiffiffiffiffiffiffi
4π2A
H2

#

s

: ð38Þ
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5. Put the inverse function into  U(k), to find U(�)
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put constraints on smaller scales. We adopted those con-
straints from Ref. [21] and plot them as the purple line. On
smaller scales, the μ and y distortions are generated from
the Silk damping of the perturbations. The COBE/FIRAS
experiment puts the constraint on the amount of these
distortions as μ≲ 9 × 10−5 and y≲ 1.5 × 10−5 [62], which
can place an upper bound on the amplitude of power
spectrum [25]; we assume a delta-function power spectrum
to plot this constraint. If the scalar perturbations are quite
large, then second-order effects lead to the generation of
gravitational waves [33,34]. The constraint on the energy
density of gravitational waves by the pulsar-timing experi-
ment, such as EPTA [59], PPTA [60], and NANOGrav [61],
can be recast into that of the amplitude of scalar perturba-
tion. To plot the constraint, we adopt the calculation in
Ref. [26] assuming a delta-function power spectrum.
In Ref. [6], the authors claimed that the PBHs can be all

the dark matter for masses of order 1020 g. In this case, the
amplitude of power spectrum should be around 10−2 at
k ≃ 7 × 1012 Mpc−1. An example of such a power spec-
trum is shown in Fig. 1, where we assume Eq. (8) with
A ∼ 0.01 and k0 ∼ 7 × 1012 Mpc−1 (but with small devia-
tions from these values for later convenience). Note that
a relatively sharp peak in the power spectrum may be
possible at around k ∼ 105 Mpc−1. Interestingly, this cor-
responds to black holes within an order of magnitude of
M ∼ 30 M⊙, which is the range currently observed by
LIGO/Virgo. Some analyses suggest that this might not be

a significant fraction of the dark matter, though a small
fraction is possible.
In the next section, we outline a method to reconstruct

the inflaton potential from these types of power spectra. In
Sec. V, we provide a polynomial potential model that leads
to similar power spectra.

III. RECONSTRUCTION OF THE
INFLATON POTENTIAL

We study the standard two-derivative action for gravity
with a single scalar field ϕ. Without loss of generality,
one can perform field redefinitions to obtain the familiar
Einstein-Hilbert action, minimally coupled to ϕ,

S ¼
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From here on we work in natural units ℏ ¼ c ¼ 8πG ¼ 1.
As we discussed in the previous section, we are

interested in the case where the power spectrum has a
peak at a cosmologically small scale. In this section, we
describe a method to reconstruct the inflaton potentialUðϕÞ
from a given power spectrum, assuming ϵ (≡ðU0=UÞ2=2)
≪ 1, but η (≡U00=UÞ can be larger than unity during
inflation.2

A. Background evolution

Let us first describe the evolution of the Friedmann-
Robertson-Walker homogeneous background, which we
take to be spatially flat. It is governed by the following
equations:

NeðtÞ ¼
Z

t

tend
HðtÞdt; ð11Þ

ϕ̈þ 3H _ϕþ dU
dϕ

¼ 0; ð12Þ

H2 ¼ 1

3
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2
_ϕ2 þ UðϕÞ

%
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where tend is the time at which inflation ends. Here and
hereafter, dots represent derivatives with respect to time.
The latter two equations can be rewritten exactly as

_H ¼ −
_ϕ2

2
; ð14Þ

FIG. 1. Example of a power spectrum (blue line) that is put in by
hand so that it produces a significant number of PBHs and is
consistent with present constraints (shaded region is allowed):
CMB and LSS survey (purple) [21–24], μ (yellow) and y
distortions (green) [25], pulsar timing (orange) [59–61], and
PBH constraints (black dashed). We take δc ¼ 0.3 as an example.
In Sec. IV B 2, we approximately reconstruct a potential from this
blue input power spectrum. To check the consistency of our
method, we take the approximate reconstructed potential and then
numerically compute the power spectrum (red line) from it exactly.

2Reconstruction of the full inflaton potential was discussed in
Ref. [63], where the authors assume the slow-roll approximation.
Their method was generalized in Ref. [64], which is similar to our
method. On the other hand, reconstruction of local inflaton
potential has been extensively studied, where some derivatives
or slow-roll parameters are reconstructed from the spectral index
and its derivatives. See, e.g., Refs. [65–68].
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Here we defined an arbitrary pivot scale k# and corre-
sponding Hubble parameter H#. The potential U as a
function of k can be calculated from Eq. (15) as

UðkÞ ¼ 3H2 −
H4

8π2PζðkÞ
: ð27Þ

Although the second term in the right-hand side is much
smaller than the first one in the regular slow-roll regime
ϵ ≪ 1, it is important in the nonslow-roll regime as we
explain below.
The potential can be implicitly determined by the

power spectrum, by obtaining the inverse function of
ϕ ¼ ϕðkÞ. This can be determined by first using
Eq. (14) to express _ϕ as
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dt

¼
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Then we use Eq. (25) to obtain

ϕðkÞ − ϕ# ¼ −
Z
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H2
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Note that we can always shift the field value such that
ϕ# ¼ 0. Thus there is only one unknown parameter H# in
the above formulas, which defines a height of the potential
at the pivot scale U#. By using Eq. (27) and an inverse
function of (29), we can calculate a one-parameter family
of potentials U that reproduces exactly the same spectrum.
The shape of the spectrum is conveniently specified by

the spectral index nsðkÞ as

nsðkÞ − 1≡ d lnPζ

d ln k
: ð30Þ

The spectral index can bewritten by slow-roll parameters as

nsðkÞ − 1 ¼ 2ϵHðkÞ þ ϵH2ðkÞ: ð31Þ

Note that in the regular slow-roll regime ϵH, ϵH2 ≪ 1,
the usual slow-roll parameters ϵ and η can be written as
ϵ ≃ ϵH, η ≃ ϵH2=2þ 4ϵH, which reproduces the familiar
ns ≃ 1–6ϵþ 2η. But in general and in the nonslow-roll
regime, when ϵH2 is not necessarily small, the more general
expression of (31) is required.
We can write the slow-roll parameters ϵH and ϵH2 in

terms of the spectrum Pζ and potential U as

ϵHðkÞ ¼
H2ðkÞ

8π2PζðkÞ
; ð32Þ

ϵH2ðkÞ ¼ −2ϵH2 þ
d lnPR

d ln k
: ð33Þ

This shows that ϵH2 ≳ 1 when d lnPR=d ln k≳ 1. Thus we
need to consider the nonslow-roll inflation to generate a
large amplitude of power spectrum at small scales [39].
Finally, we comment on the second term in Eq. (27). One

might think that the second term is negligible for ϵH ≪ 1.
However, the second term is relevant for the equation of
motion, in which the derivative of potential is important. To
see this, let us calculate

dU
dϕ

¼ dt
dϕ

d
dt

½ð3 − ϵHÞH2': ð34Þ

The derivatives are given by

3
d
dt

H2 ¼ −6ϵHH3; ð35Þ

H2 d
dt

ϵH ¼ ϵHϵH2H3; ð36Þ

which shows that the second term is as large as the first
term when ϵH2 is of order unity or larger, as it is in the
nonslow-roll inflation regime.

IV. EXAMPLES

In this section we carry out the above program of
reconstructing the inflaton potential from a given power
spectrum by using the above formulas derived. We also
solve the MS equation (20) numerically and check that the
power spectrum calculated from the reconstructed potential
is qualitatively in agreement with the original one.

A. Analytically tractable models

We first give two simple examples where calculations
can be done analytically, before moving to more compli-
cated examples that require numerics.

1. Flat power spectrum

Let us begin by considering the special case in which
the spectrum is perfectly flat, i.e., PζðkÞ ¼ A ¼ const.
From Eq. (26), we obtain

H2ðkÞ ¼
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1
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4π2A
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#−1
: ð37Þ

Inserting this into Eq. (29) and carrying out the integral we
obtain

ϕðkÞ ¼ ϕ# − 2
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4π2A
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or

solve it 

U ¼ 3H2 þ _H: ð15Þ

An accelerating expansion, inflation, occurs when the
following slow-roll parameter is smaller than unity:

ϵH ≡ − dH
dNe

¼ −
_H
H2

: ð16Þ

B. Fluctuations

Fluctuations in scalar modes around the homogeneous
background are described by the curvature perturbation ζ̂.
Its variance in fluctuations is measured by the matter power
spectrum: hζ̂ðkÞζ̂ðk0Þi ¼ ð2πÞ3δ3ðkþ k0Þð2π2=k3ÞPζðkÞ,
where

PζðkÞ ¼
2k3

8π2

!!!!
vk

a
ffiffiffiffiffiffi
ϵH

p
!!!!
2

: ð17Þ

Here k (≡jkj) is a comoving wave number of a Fourier
mode and vk is the mode function associated with the
Mukhanov-Sasaki (MS) variable. The mode function obeys
the MS equation [69,70],

d2vk
dη2

þ
#
k2 −

1

z
d2z
dη2

$
vk ¼ 0; ð18Þ

where z≡ a
ffiffiffiffiffiffi
ϵH

p
and η is conformal time (dη≡ dt=a). The

initial condition for the quantum state is taken to be the
standard Bunch-Davies vacuum, wherein

vk →
1ffiffiffiffiffi
2k

p e−ikη; as
k
aH

→ ∞: ð19Þ

For the purpose of numerical simulation, it is convenient to
rewrite the MS equation in terms of ζk ≡ vk=ða

ffiffiffiffiffiffiffiffi
2ϵH

p
Þ,

d2ζk
dη2

þ ð2þ ϵH2ÞaH
dζk
dη

þ k2ζk ¼ 0; ð20Þ

where

ϵH2 ≡ dϵH
dNe

¼
_ϵH
HϵH

: ð21Þ

An infinitesimal change of comoving wave number
between k and kþ dk that corresponds to the scale leaving
the horizon between time t and tþ dt can be written as

d ln k ¼ dðlnðaHÞÞ ≃ −dNe ¼ −Hdt; ð22Þ

where we use ϵH ≪ 1. This gives

lnðkend=kÞ ≃ Ne; ð23Þ

where kend is the scale that leaves the horizon at t ¼ tend.

C. Key approximation

Now our key simplifying approximation is to neglect ϵH2

in Eq. (20) when we compute the power. We see that this is
not precise in the nonslow-roll regime, where the potential
term in the background equation of motion U0ðϕÞ is
subdominant to the acceleration ϕ̈ and friction 3H _ϕ terms.
But in the regular slow-roll regime (where it is the
acceleration term ϕ̈ that is negligible), this assumption is
precise. In any case, we take the power spectrum of the
form

PζðkÞ ≃
H2

8π2ϵH
; ð24Þ

which comes from the solution of Eq. (20) with ϵH2

neglected. We use this formula to reconstruct the inflaton
potential. After the reconstruction, we numerically compare
to the exact result from solving the MS equations exactly,
finding that while there are corrections, it does not change
the result tremendously and certainly suffices to capture the
qualitative behavior.3

Note that we still use the full expression for ϵH ¼
− _H=H2, rather than the simple ϵ ¼ ðU0=UÞ2=2 that is
used in the usual slow-roll treatments. In particular, this
means we do not demand that the acceleration ϕ̈ is always
negligible to U0; this is important near a critical point in the
potential where U0 → 0. So we are still going beyond the
standard slow-roll regime and capturing, at least qualita-
tively, the nonslow-roll regime too. This “partial” slow-roll
approximation is useful to reconstruct the inflaton potential
and allows us to reproduce a discontinuity or small hill in
the potential as we see below.

D. Reconstruction

Now we derive formulas that allow us to calculate the
potential for a given PζðkÞ. The first one comes from
Eqs. (16), (24), and (22),

1

H4

dH2

d ln k
¼ 1

4π2Pζ
: ð25Þ

So we can integrate dH2 as

3If ϵ decreases faster than about a−3 during the nonslow-roll
regime, the so-called decaying mode of ζk grows faster on
superhorizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we see that neglecting the
decaying mode does not affect the qualitative behavior in the case
we are interested in.
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Hodges, Blumenthal, PRD (1990)

Power spectrum and reconstructed potential

different potential shapes for different integration constant
- the reconstructed potential is not just scaled one from each other

case for valley
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Limitation in the standard slow-roll

It assumes hierarchical standard slow-roll approximation

- Higher order of slow-roll parameters are not neglected
It cannot be applied to the case

U ¼ 3H2 þ _H: ð15Þ

An accelerating expansion, inflation, occurs when the
following slow-roll parameter is smaller than unity:

ϵH ≡ − dH
dNe

¼ −
_H
H2

: ð16Þ

B. Fluctuations

Fluctuations in scalar modes around the homogeneous
background are described by the curvature perturbation ζ̂.
Its variance in fluctuations is measured by the matter power
spectrum: hζ̂ðkÞζ̂ðk0Þi ¼ ð2πÞ3δ3ðkþ k0Þð2π2=k3ÞPζðkÞ,
where

PζðkÞ ¼
2k3

8π2

!!!!
vk

a
ffiffiffiffiffiffi
ϵH

p
!!!!
2

: ð17Þ

Here k (≡jkj) is a comoving wave number of a Fourier
mode and vk is the mode function associated with the
Mukhanov-Sasaki (MS) variable. The mode function obeys
the MS equation [69,70],

d2vk
dη2

þ
#
k2 −

1

z
d2z
dη2

$
vk ¼ 0; ð18Þ

where z≡ a
ffiffiffiffiffiffi
ϵH

p
and η is conformal time (dη≡ dt=a). The

initial condition for the quantum state is taken to be the
standard Bunch-Davies vacuum, wherein

vk →
1ffiffiffiffiffi
2k

p e−ikη; as
k
aH

→ ∞: ð19Þ

For the purpose of numerical simulation, it is convenient to
rewrite the MS equation in terms of ζk ≡ vk=ða

ffiffiffiffiffiffiffiffi
2ϵH

p
Þ,

d2ζk
dη2

þ ð2þ ϵH2ÞaH
dζk
dη

þ k2ζk ¼ 0; ð20Þ

where

ϵH2 ≡ dϵH
dNe

¼
_ϵH
HϵH

: ð21Þ

An infinitesimal change of comoving wave number
between k and kþ dk that corresponds to the scale leaving
the horizon between time t and tþ dt can be written as

d ln k ¼ dðlnðaHÞÞ ≃ −dNe ¼ −Hdt; ð22Þ

where we use ϵH ≪ 1. This gives

lnðkend=kÞ ≃ Ne; ð23Þ

where kend is the scale that leaves the horizon at t ¼ tend.

C. Key approximation

Now our key simplifying approximation is to neglect ϵH2

in Eq. (20) when we compute the power. We see that this is
not precise in the nonslow-roll regime, where the potential
term in the background equation of motion U0ðϕÞ is
subdominant to the acceleration ϕ̈ and friction 3H _ϕ terms.
But in the regular slow-roll regime (where it is the
acceleration term ϕ̈ that is negligible), this assumption is
precise. In any case, we take the power spectrum of the
form

PζðkÞ ≃
H2

8π2ϵH
; ð24Þ

which comes from the solution of Eq. (20) with ϵH2

neglected. We use this formula to reconstruct the inflaton
potential. After the reconstruction, we numerically compare
to the exact result from solving the MS equations exactly,
finding that while there are corrections, it does not change
the result tremendously and certainly suffices to capture the
qualitative behavior.3

Note that we still use the full expression for ϵH ¼
− _H=H2, rather than the simple ϵ ¼ ðU0=UÞ2=2 that is
used in the usual slow-roll treatments. In particular, this
means we do not demand that the acceleration ϕ̈ is always
negligible to U0; this is important near a critical point in the
potential where U0 → 0. So we are still going beyond the
standard slow-roll regime and capturing, at least qualita-
tively, the nonslow-roll regime too. This “partial” slow-roll
approximation is useful to reconstruct the inflaton potential
and allows us to reproduce a discontinuity or small hill in
the potential as we see below.

D. Reconstruction

Now we derive formulas that allow us to calculate the
potential for a given PζðkÞ. The first one comes from
Eqs. (16), (24), and (22),

1

H4

dH2

d ln k
¼ 1

4π2Pζ
: ð25Þ

So we can integrate dH2 as

3If ϵ decreases faster than about a−3 during the nonslow-roll
regime, the so-called decaying mode of ζk grows faster on
superhorizon scales than the constant mode that we used to derive
Eq. (24). Our exact result from solving the MS equations takes
into account both modes, so that we see that neglecting the
decaying mode does not affect the qualitative behavior in the case
we are interested in.
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inflation, the slow-roll parameters

‘ © ≠
Ḣ

H2
= ≠

d log H

d log a
, (2.1)

”1 ©
„̈

H„̇
= d log „̇

d log a
, (2.2)

are small, say, O(Á) for some small parameter Á. In the standard slow-roll approximation,
however, it is additionally assumed these parameters are also nearly scale-invariant so they
vary at O(Á2). In GSR, we abandon this extra assumption and consider all the deviations
from the perfect de Sitter expansion on equal footing.

For each Fourier mode of the comoving curvature perturbation R, defining

Ï © zR , (2.3)

z ©
a„̇

H
, (2.4)

then the following equation is satisfied:

d
2
Ï

d›2
+

3
k

2
≠

1
z

d
2
z

d›2

4
Ï = 0 . (2.5)

Here, we have defined the positive conformal time ›:

› © ≠

⁄
dt

a
= 1

aH

#
1 + O(‘)

$
. (2.6)

Now, we can rewrite eq. (2.5) so that the contribution for the exactly scale-invariant
power spectrum and that for the departure from such a spectrum are manifest. By defining
y ©

Ô
2kÏ and x © k› and rescaling z as

f(log ›) ©
2fix

k
z = 2fi›

a„̇

H
, (2.7)

eq. (2.5) becomes
d

2
y

dx2
+

3
1 ≠

2
x2

4
y = 1

x2
g(log ›)y , (2.8)

where
g ©

f
ÕÕ

≠ 3f
Õ

f
, (2.9)

with f
Õ

© df/d log ›. From eq. (2.6), we can note that f is to the zeroth order in slow-
roll the power spectrum, f ¥

Ô
PR (see below). Thus we can separate systematically the

contributions suppressed and not suppressed by the slow-roll parameters from the beginning.
In eq. (2.8), the left-hand side represents the mode function equation in the perfect de Sitter
background and the corresponding power spectrum of the solution, conveniently written as

PR(k) = lim
xæ0

----
xy

f

----
2

, (2.10)

is exactly scale-invariant. The function g on the right-hand side of eq. (2.8) represents, as
mentioned above, all the possible deviations from the scale-invariance of the power spectrum.
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Generalized Slow-Roll Approximation
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Generalized slow-roll approximation
[Dodelson, Stewart, PRD (2002)] [Stewart, PRD (2002)]

For each Fourier mode, the equation of the curvature perturbation
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Ḣ

H2
= ≠

d log H

d log a
, (2.1)

”1 ©
„̈

H„̇
= d log „̇

d log a
, (2.2)

are small, say, O(Á) for some small parameter Á. In the standard slow-roll approximation,
however, it is additionally assumed these parameters are also nearly scale-invariant so they
vary at O(Á2). In GSR, we abandon this extra assumption and consider all the deviations
from the perfect de Sitter expansion on equal footing.

For each Fourier mode of the comoving curvature perturbation R, defining

Ï © zR , (2.3)

z ©
a„̇

H
, (2.4)

then the following equation is satisfied:

d
2
Ï

d›2
+

3
k

2
≠

1
z

d
2
z

d›2

4
Ï = 0 . (2.5)

Here, we have defined the positive conformal time ›:

› © ≠

⁄
dt

a
= 1

aH

#
1 + O(‘)

$
. (2.6)

Now, we can rewrite eq. (2.5) so that the contribution for the exactly scale-invariant
power spectrum and that for the departure from such a spectrum are manifest. By defining
y ©

Ô
2kÏ and x © k› and rescaling z as

f(log ›) ©
2fix

k
z = 2fi›

a„̇

H
, (2.7)

eq. (2.5) becomes
d

2
y

dx2
+

3
1 ≠

2
x2

4
y = 1

x2
g(log ›)y , (2.8)

where
g ©

f
ÕÕ

≠ 3f
Õ

f
, (2.9)

with f
Õ

© df/d log ›. From eq. (2.6), we can note that f is to the zeroth order in slow-
roll the power spectrum, f ¥

Ô
PR (see below). Thus we can separate systematically the

contributions suppressed and not suppressed by the slow-roll parameters from the beginning.
In eq. (2.8), the left-hand side represents the mode function equation in the perfect de Sitter
background and the corresponding power spectrum of the solution, conveniently written as

PR(k) = lim
xæ0

----
xy

f

----
2

, (2.10)

is exactly scale-invariant. The function g on the right-hand side of eq. (2.8) represents, as
mentioned above, all the possible deviations from the scale-invariance of the power spectrum.

– 3 –

JCAP01(2022)012

inflation, the slow-roll parameters

‘ © ≠
Ḣ
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Now, we can rewrite eq. (2.5) so that the contribution for the exactly scale-invariant
power spectrum and that for the departure from such a spectrum are manifest. By defining
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roll the power spectrum, f ¥
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PR (see below). Thus we can separate systematically the

contributions suppressed and not suppressed by the slow-roll parameters from the beginning.
In eq. (2.8), the left-hand side represents the mode function equation in the perfect de Sitter
background and the corresponding power spectrum of the solution, conveniently written as
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----
2

, (2.10)

is exactly scale-invariant. The function g on the right-hand side of eq. (2.8) represents, as
mentioned above, all the possible deviations from the scale-invariance of the power spectrum.
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Generalized slow-roll approximation
[Dodelson, Stewart, PRD (2002)] [Stewart, PRD (2002)]

1 Introduction

It is believed that the power spectra of both the cosmic microwave background radiation and
the large scale structure of the observable universe have evolved from a common primordial
spectrum of curvature perturbations produced during inflation [1]. Through the observa-
tion of these spectra we can study the properties of inflation. For example, results from
the Wilkinson Microwave Anisotropy Probe [2] and Sloan Digital Sky Survey [3] provide a
remarkable set of data, which places strong restrictions on models of inflation [4].

There have been many studies on the accurate evaluation of the power spectrum, pro-
vided that the inflationary parameters are given. But practically we observe the power
spectrum first, and then seek an appropriate inflationary model from which the observed
spectrum could result [5]. In the context of the standard slow-roll approximation, such in-
version is straightforward [5]. However, the standard slow-roll approximation makes strong
assumptions about the properties of inflation, which have not yet been confirmed observa-
tionally. Thus we are lacking a model independent way of extracting useful information
about inflationary parameters from the power spectrum.

The general slow-roll approximation [6] was introduced to eliminate these unjustified as-
sumptions of standard slow-roll, instead essentially only relying on the observed approximate
scale invariance of the spectrum. See Refs. [7, 8] for some other alternatives to the standard
slow-roll approximation. The one limitation of general slow-roll is that it does not cover
cases where super-horizon effects are dominant [9]. Also, in this paper, we limit ourselves to
the case of single field models of inflation, though the single field general slow-roll formulae
can also be applied to some multi-field models of inflation [10]. These extensions will be
treated thoroughly in a separate publication [11].

In this paper, we invert the leading order single field general slow-roll formula for the
power spectrum [6] to obtain a formula, Eq. (7), for inflationary parameters in terms of the
primordial power spectrum. See Ref. [12] for an alternative method of inversion that also
does not rely on the standard slow-roll approximation. In Section 2 we give our inverse, in
Section 3 we give some examples which illustrate the use and properties of our inverse, and
in the Appendix we give some alternative forms for some of our formulae.

2 General slow-roll formulae

For single field inflationary models, it is convenient to express inflationary quantities in terms
of

f =
2πaξφ̇

H
, (1)

where ξ = −
∫

dt
a
= 1

aH

(

1− Ḣ
H2 + · · ·

)

is minus the conformal time [6, 13]. We think of f

as a function of ln ξ so that f ′ ≡ df/d ln ξ.
To leading order in the general slow-roll approximation, the spectrum can be expressed

as [6]

lnP(k) =

∫ ∞

0

dξ

ξ
[−kξW ′(kξ)]

[

ln

(

1

f 2

)

+
2

3

f ′

f

]

. (2)

1

There are a variety of other forms for this formula, some of which are given in the Appendix.
The window function −xW ′(x) is given by ‡

W (x) =
3 sin(2x)

2x3
−

3 cos(2x)

x2
−

3 sin(2x)

2x
− 1 . (3)

It has the asymptotic behavior

lim
x→0

W (x) =
2

5
x2 +O(x4) , (4)

the window property
∫ ∞

0

dx

x
[−xW ′(x)] = 1 , (5)

and the degeneracy
∫ ∞

0

dx

x
[−xW ′(x)]

1

x
= 0 . (6)

2.1 Inverse formula

Our inverse formula is

ln

(

1

f 2

)

=

∫ ∞

0

dk

k
m(kξ) lnP , (7)

where

m(x) =
2

π

[

1

x
−

cos(2x)

x
− sin(2x)

]

. (8)

It has the asymptotic behavior

lim
x→0

m(x) =
4

3π
x3 +O(x5) (9)

and the window property
∫ ∞

0

dx

x
m(x) = 1 . (10)

It is straightforward to derive Eq. (7) from Eq. (2) using the key identity

∫ ∞

0

dk

k
m(kζ)W (kξ) =

(

ζ3

ξ3
− 1

)

θ(ξ − ζ) , (11)

where θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0. An alternative form of the inverse formula
is given in the Appendix.

‡Note that we define W (x) with an extra −1 compared with our previous works [6].

2

where the window function

GSR can be used for the potential with sharp step, bump, or dip.

5 Integral Formulae for the Spectrum

In this section I will derive integral formulae for the spectrum, spectral index and running
of the spectral index equivalent to the series formulae of Section 4.

Eqs. (23) and (22) give

PRc
=

(

k

2π

)2

lim
x→0

1

f 2

∣

∣

∣

∣

1 +
1

2
x

∫ ∞

x

du

u2
g(lnu) y(u) [y∗0(u) y0(x)− y∗0(x) y0(u)]

∣

∣

∣

∣

2

(67)

=

(

k

2π

)2

lim
x→0

1

f 2

{

1 + Re

∫ ∞

x

du

u2
g(ln u)y0(u)x [y

∗
0(u)y0(x)− y∗0(x)y0(u)] +O

(

g2
)

}

(68)

Now from Eq. (21)

x y0(x) = i+
i

2
x2 − 1

3
x3 +O

(

ix4
)

(69)

|y0(u)|2 =
1

u2

(

1 + u2
)

(70)

and

−(y0(u))
2 =

1

u2

{[

cos(2u) + 2u sin(2u)− u2 cos(2u)
]

+ i
[

sin(2u)− 2u cos(2u)− u2 sin(2u)
]}

(71)
Therefore, assuming g(lnx) behaves like a function of ln x and not like a function of x,

lim
x→0

Re

[

x y0(x)

∫ ∞

x

du

u2
g(lnu) |y0(u)|2

]

= −1

3
lim
x→0

x3

∫ ∞

x

du

u4
g(lnu) +O

(

x2
)

(72)

and

lim
x→0

Re

[

−x y∗0(x)

∫ ∞

x

du

u2
g(lnu) (y0(u))

2

]

= −1

3
lim
x→0

x3

∫ ∞

x

du

u4
g(ln u)

+ lim
x→0

∫ ∞

x

du

u
g(ln u)

[

sin(2u)

u3
− 2 cos(2u)

u2
− sin(2u)

u

]

+O
(

x2
)

(73)

Therefore

PRc
=

(

k

2π

)2

lim
x→0

1

f 2

{

1− 2x3

3

∫ ∞

x

du

u4
g(lnu) +

2

3

∫ ∞

x

du

u
W (u) g(lnu) +O

(

g2
)

}

(74)

where

W (x) ≡ 3 sin(2x)

2x3
− 3 cos(2x)

x2
− 3 sin(2x)

2x
(75)

Note that
lim
x→0

W (x) = 1 +O
(

x2
)

(76)

Letting subscript " denote evaluation at some convenient time around horizon crossing,

1

f 2
=

1

f 2
!

exp

[

2 ln

(

f!
f

)]

=
1

f 2
!

[

1 + 2

∫ x!

x

du

u

f ′

f
+O

(

g2
)

]

(77)
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This relation is valid when g ⌧ 1
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with the relations to the slow-roll parameters

the only undetermined third order coefficient, we can use the known exact solutions [8] to
determine the complete third order standard slow-roll result.1 In fact, if we were sufficiently
motivated, we could apply the same method to determine the fourth order standard slow-roll
result from Eq. (45).

The simplest exact solution is inflation near a maximum, where the potential is

V (φ) = V0

(

1−
1

2
µ2φ2 + · · ·

)

. (51)

In this case

H =

√

V0

3
, x =

k

aH
(52)

and

f =
3πφ0

H2

(

√

1 +
4

3
µ2 − 1

)

(

x

x0

)− 3

2

(√
1+ 4

3
µ2−1

)

. (53)

Then, by comparing the exact solution [8] and Eq. (48), we obtain

A = −4α3
! + 16α! −

5

3
π2α! − 8 + 6ζ(3). (54)

We can check this result by using the exact solution for power law inflation, where

V (φ) = V0 exp

(

−
√

2

p
φ

)

, x =

(

p

p− 1

)(

k

aH

)

(55)

and

f =
2π

√
2p

(p− 1)H0

(

x

x0

)− 1

p−1

(56)

The slow-roll parameters are defined as

ε = −
Ḣ

H2
=

1

2

(

φ̇

H

)2

and δn =
1

Hnφ̇

dnφ̇

dtn
, (57)

where in standard slow-roll

ε = O(ξ) and δn = O(ξn) (58)

for some small parameter ξ. Then

1

f 2
=

(

H

2π

)2(H

φ̇

)2
[

1− 2ε− 3ε2 − 4εδ1 − 4εδ2 − 16ε3 − 28ε2δ1 − 4εδ21 +O(ξ4)
]

,

f ′

f
= −2ε− δ1 − 4ε2 − 3εδ1 − 2εδ2 − 18ε3 − 25ε2δ1 − 4εδ21 +O(ξ4),

f ′′

f
= δ2 + 8ε2 + 9εδ1 + 4εδ2 + 36ε3 + 50ε2δ1 + 8εδ21 +O(ξ4),

f ′′′

f
= −δ3 − 13εδ2 − 48ε3 − 85ε2δ1 − 18εδ21 +O(ξ4), (59)

1It was brought to our attention that the authors of Ref. [14] used these exact solutions to determine the
third order corrections valid under some special conditions. Note that we use them to help determine the
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k
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and
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(

√

1 +
4

3
µ2 − 1

)

(

x
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2

(√
1+ 4

3
µ2−1

)

. (53)
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5
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π2α! − 8 + 6ζ(3). (54)
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(
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=
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1It was brought to our attention that the authors of Ref. [14] used these exact solutions to determine the
third order corrections valid under some special conditions. Note that we use them to help determine the
completely general case.
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inflation, the slow-roll parameters

‘ © ≠
Ḣ

H2
= ≠

d log H

d log a
, (2.1)

”1 ©
„̈

H„̇
= d log „̇

d log a
, (2.2)

are small, say, O(Á) for some small parameter Á. In the standard slow-roll approximation,
however, it is additionally assumed these parameters are also nearly scale-invariant so they
vary at O(Á2). In GSR, we abandon this extra assumption and consider all the deviations
from the perfect de Sitter expansion on equal footing.

For each Fourier mode of the comoving curvature perturbation R, defining

Ï © zR , (2.3)

z ©
a„̇

H
, (2.4)

then the following equation is satisfied:

d
2
Ï

d›2
+

3
k

2
≠

1
z

d
2
z

d›2

4
Ï = 0 . (2.5)

Here, we have defined the positive conformal time ›:

› © ≠

⁄
dt

a
= 1

aH

#
1 + O(‘)

$
. (2.6)

Now, we can rewrite eq. (2.5) so that the contribution for the exactly scale-invariant
power spectrum and that for the departure from such a spectrum are manifest. By defining
y ©

Ô
2kÏ and x © k› and rescaling z as

f(log ›) ©
2fix

k
z = 2fi›

a„̇

H
, (2.7)

eq. (2.5) becomes
d

2
y

dx2
+

3
1 ≠

2
x2

4
y = 1

x2
g(log ›)y , (2.8)

where
g ©

f
ÕÕ

≠ 3f
Õ

f
, (2.9)

with f
Õ

© df/d log ›. From eq. (2.6), we can note that f is to the zeroth order in slow-
roll the power spectrum, f ¥

Ô
PR (see below). Thus we can separate systematically the

contributions suppressed and not suppressed by the slow-roll parameters from the beginning.
In eq. (2.8), the left-hand side represents the mode function equation in the perfect de Sitter
background and the corresponding power spectrum of the solution, conveniently written as

PR(k) = lim
xæ0

----
xy

f

----
2

, (2.10)

is exactly scale-invariant. The function g on the right-hand side of eq. (2.8) represents, as
mentioned above, all the possible deviations from the scale-invariance of the power spectrum.
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related to G but rather

2

3
g = G′ +

2

3

(

f ′

f

)2

, (27)

where

G′ =
dG

d ln η
=

2

3
(
f ′′

f
− 3

f ′

f
−

f ′2

f2
) . (28)

In GSRS, replacing g with 3G′/2 amounts to a second
order change in the source function. In fact even for
the ML step function this change is a small fractional
change of the source everywhere in ln η: it is small as the
inflaton rolls past the feature since |f ′′/f | " (f ′/f)2 and
it is small before and after this time since |f ′/f | # 1. In
terms of the slow-roll parameters, this replacement is a
good approximation if η2H ∼ O(1) only where |δ2| " 1
and g ≈ δ2 (see Eqs. (14) and (15)).

G′ =
2

3
g +

2

3
η2H + εHO(εH , ηH , δ2) (29)

Moreover G′ ≈ 2gV /3 and remains directly relatable to
the inflaton potential through Eq. (15). For comparison
we show all three versions of the GSR source function in
Fig. 3.
Nonetheless, the replacement can have a substantial

effect on the curvature once the source is integrated over
ln η because the difference is a positive definite term in
the integral. Moreover, this cumulative effect is exactly
what is needed to recover the required superhorizon be-
havior. Replacing 2g/3 → G′ in the power spectrum
expression, we obtain [13]

ln∆2
R(k) = G(ln ηmin) +

∫ ∞

ηmin

dη

η
W (kη)G′(ln η) , (30)

which we call the GSRL approximation. The field so-
lution corresponding to this approximation, valid for
x # 1, is given by

lim
x#1

|xy| = exp

[

1

3

f ′

f
+

1

2

∫ ∞

x

du

u
W (u)G′(lnu)

]

. (31)

Now any variation in f while the mode is outside the
horizon and W (kη) ≈ 1 integrates away and gives the
same result as if ln ηmin were set to be right after horizon
crossing for the mode in question. This can be seen more
clearly by integrating Eq. (30) by parts [13]

ln∆2
R(k) = −

∫ ∞

ηmin

dη

η
W ′(kη)G(ln η) . (32)

Since −
∫∞

0 d lnxW ′(x) = 1 and limx→0W ′(x) → 0, the
curvature spectrum does not depend on the evolution of
f outside the horizon. Moreover, the integral gets its
contribution near x ∼ 1 so for smooth functions G(ln η)
we recover the slow roll expectation that

ln∆2
R(k) ≈ G(ln η)

∣

∣

∣

kη≈1
. (33)

FIG. 7: GSRL approximation to the curvature power spec-
trum. Upper panel: approximation compared with the ex-
act solution (solid lines) for the maximum likelihood model.
Lower panel: fractional error between the approximation and
the exact solution.

If the slow-roll parameters are all small then the leading
order term in Eq. (33) returns the familiar expression
for the curvature spectrum ∆2

R ≈ f−2 ≈ H2/8π2εH at
kη ≈ 1. Choe et al. [15] showed that Eq. (32) is correct
up to second order in g for kη # 1. Here we show that it
is correct for arbitrary variations in f and g outside the
horizon.
The superhorizon curvature evolution for k = 10−4

Mpc−1 corresponding to the GSRL approximation is
shown in Fig. 6 (lower panel). In the x # 1 domain of
applicability of Eq. (31), the curvature is now appropri-
ately constant for both the ML and smooth models. The
net result is that the curvature power spectrum shown in
Fig. 7 is now a good match to the exact solution for low
k.

D. Power Spectrum Features

We now turn to issues related to the response of the
field and curvature for k modes that are inside the hori-
zon when the inflaton rolls across the feature. Fig. 7
shows that the GSRL approximation works remarkably
well for the ML model despite the fact that the power
spectrum changes by order unity there. The main prob-
lem is a ∼ 10− 20% deficit of power for a small range in
k near the sharp rise between the trough and the peak.
In Fig. 8, we show the deviation of the exact solution

y from the scale invariant y0 that is at the heart of the
GSR approximation. The three modes shown, kdip =
1.8 × 10−3 Mpc−1, knode = 2.5 × 10−3 Mpc−1, kbump =
3.2× 10−3 Mpc−1, correspond to the first dip, node and
bump in the power spectrum of the ML model.
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We develop a variant of the generalized slow roll approach for calculating the curvature power
spectrum that is well-suited for order unity deviations in power caused by sharp features in the
inflaton potential. As an example, we show that predictions for a step function potential, which has
been proposed to explain order unity glitches in the CMB temperature power spectrum at multipoles
! = 20− 40, are accurate at the percent level. Our analysis shows that to good approximation there
is a single source function that is responsible for observable features and that this function is simply
related to the local slope and curvature of the inflaton potential. These properties should make the
generalized slow roll approximation useful for inflation-model independent studies of features, both
large and small, in the observable power spectra.

I. INTRODUCTION

The ordinary slow roll approximation provides a
model-independent technique for computing the initial
curvature power spectrum for inflationary models where
the scalar field potential is sufficiently flat and slowly
varying. Such models lead to curvature power spectra
that are featureless and nearly scale invariant (e.g. [1]).

On the other hand, features in the inflaton potential
produce features in the power spectrum. Glitches in the
observed temperature power spectrum of the cosmic mi-
crowave background (CMB) [2] have led to recent interest
in exploring such models (e.g. [3, 4, 5, 6, 7, 8]). To ex-
plain the glitches as other than statistical flukes, these
models require order unity variations in the curvature
power spectrum across about an e-fold in wavenumber.

Such cases are typically handled by numerically solv-
ing the field equation on a case-by-case basis (e.g. [9]).
For model-independent constraints and model building
purposes it is desirable to have a simple but accurate pre-
scription that relates features in the inflaton potential to
features in the power spectrum (cf. [10, 11, 12, 13]).

The generalized slow roll (GSR) approximation was in-
troduced by Stewart [14] to overcome some of the prob-
lems of the ordinary slow roll approximation for poten-
tials with small but sharp features. In this approxima-
tion, the ordinary slow roll parameters are taken to be
small but not necessarily constant. In this paper we ex-
amine and extend the GSR approach for the case of large
features where the slow-roll parameters are also not nec-
essarily small.

In §II, we review the GSR approximation and develop
the variant for large power spectrum features. In the
Appendix, we compare this variant to other GSR ap-
proximations in the literature [13, 14, 15, 16, 17]. We
show that our variant provides both the most accurate
results and is the most simply related to the inflaton
potential. In §III, we show how this technique can be
used to develop alternate inflationary models to explain
a given observed feature. We discuss these results in §IV.

II. GENERALIZED SLOW ROLL

The GSR formalism was developed to calculate the
curvature power spectrum for inflation models in which
the usual slow roll parameters, defined in terms of time
derivatives of the inflaton field φ and the expansion rate
H ,

εH ≡
1

2

(

φ̇

H

)2

,

ηH ≡ −

(

φ̈

Hφ̇

)

, (1)

are small but ηH(= −δ1) is not necessarily constant. In
these models, the third slow-roll parameter

δ2 =

...
φ

H2φ̇
, (2)

can be large for a small number of e-folds [14, 15, 16].
Here and throughout we choose units where the reduced
Planck mass (8πG)−1/2 = 1.
We study here the more extreme case where ηH is also

allowed to become large for a fraction of an e-fold. These
models lead to order unity deviations in the curvature
power spectrum. As we shall see, different implementa-
tions of the GSR approximation perform very differently
for such models.
An example of such a case is a step in the inflaton

potential of the form V (φ) = m2
eff(φ)φ

2/2, where the
effective mass of the inflaton potential is given by [9]

m2
eff(φ) = m2

[

1 + c tanh

(

φ− b

d

)]

. (3)

This form for the potential has been shown to be a good
description of large features in the temperature power
spectrum at & ∼ 20 − 40 tentatively seen in the WMAP
data [4, 5]. The maximum likelihood (ML) parameters
values for WMAP5 are b = 14.668, c = 1.505 × 10−3,
d = 0.02705 and m = 7.126 × 10−6 [6]. The potential
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We develop a variant of the generalized slow roll approach for calculating the curvature power
spectrum that is well-suited for order unity deviations in power caused by sharp features in the
inflaton potential. As an example, we show that predictions for a step function potential, which has
been proposed to explain order unity glitches in the CMB temperature power spectrum at multipoles
! = 20− 40, are accurate at the percent level. Our analysis shows that to good approximation there
is a single source function that is responsible for observable features and that this function is simply
related to the local slope and curvature of the inflaton potential. These properties should make the
generalized slow roll approximation useful for inflation-model independent studies of features, both
large and small, in the observable power spectra.

I. INTRODUCTION

The ordinary slow roll approximation provides a
model-independent technique for computing the initial
curvature power spectrum for inflationary models where
the scalar field potential is sufficiently flat and slowly
varying. Such models lead to curvature power spectra
that are featureless and nearly scale invariant (e.g. [1]).

On the other hand, features in the inflaton potential
produce features in the power spectrum. Glitches in the
observed temperature power spectrum of the cosmic mi-
crowave background (CMB) [2] have led to recent interest
in exploring such models (e.g. [3, 4, 5, 6, 7, 8]). To ex-
plain the glitches as other than statistical flukes, these
models require order unity variations in the curvature
power spectrum across about an e-fold in wavenumber.

Such cases are typically handled by numerically solv-
ing the field equation on a case-by-case basis (e.g. [9]).
For model-independent constraints and model building
purposes it is desirable to have a simple but accurate pre-
scription that relates features in the inflaton potential to
features in the power spectrum (cf. [10, 11, 12, 13]).

The generalized slow roll (GSR) approximation was in-
troduced by Stewart [14] to overcome some of the prob-
lems of the ordinary slow roll approximation for poten-
tials with small but sharp features. In this approxima-
tion, the ordinary slow roll parameters are taken to be
small but not necessarily constant. In this paper we ex-
amine and extend the GSR approach for the case of large
features where the slow-roll parameters are also not nec-
essarily small.

In §II, we review the GSR approximation and develop
the variant for large power spectrum features. In the
Appendix, we compare this variant to other GSR ap-
proximations in the literature [13, 14, 15, 16, 17]. We
show that our variant provides both the most accurate
results and is the most simply related to the inflaton
potential. In §III, we show how this technique can be
used to develop alternate inflationary models to explain
a given observed feature. We discuss these results in §IV.

II. GENERALIZED SLOW ROLL

The GSR formalism was developed to calculate the
curvature power spectrum for inflation models in which
the usual slow roll parameters, defined in terms of time
derivatives of the inflaton field φ and the expansion rate
H ,

εH ≡
1

2

(

φ̇

H

)2

,

ηH ≡ −

(

φ̈

Hφ̇

)

, (1)

are small but ηH(= −δ1) is not necessarily constant. In
these models, the third slow-roll parameter

δ2 =

...
φ

H2φ̇
, (2)

can be large for a small number of e-folds [14, 15, 16].
Here and throughout we choose units where the reduced
Planck mass (8πG)−1/2 = 1.
We study here the more extreme case where ηH is also

allowed to become large for a fraction of an e-fold. These
models lead to order unity deviations in the curvature
power spectrum. As we shall see, different implementa-
tions of the GSR approximation perform very differently
for such models.
An example of such a case is a step in the inflaton

potential of the form V (φ) = m2
eff(φ)φ

2/2, where the
effective mass of the inflaton potential is given by [9]

m2
eff(φ) = m2

[

1 + c tanh

(

φ− b

d

)]

. (3)

This form for the potential has been shown to be a good
description of large features in the temperature power
spectrum at & ∼ 20 − 40 tentatively seen in the WMAP
data [4, 5]. The maximum likelihood (ML) parameters
values for WMAP5 are b = 14.668, c = 1.505 × 10−3,
d = 0.02705 and m = 7.126 × 10−6 [6]. The potential
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FIG. 1: Upper panel: inflationary potential with a step from
Eq. (3) with parameters that maximize the WMAP5 likeli-
hood (ML, black/solid) and an m2φ2 potential that matches
the WMAP5 normalization (smooth, red/dashed). Lower
panel: conformal time to the end of inflation as a function
of the value of the field.

for this choice of parameters is shown in Fig. 1 (upper
panel). For comparison we also show the best fit smooth
model (c = 0) with m = 7.12 × 10−6. Since it will be
convenient to express results in terms of physical scale
instead of field value, we also show in the lower panel the
relationship to the conformal time to the end of inflation
η =

∫ tend
t dt′/a. Note that η is defined to be positive

during inflation. The two models have comparable power
at wavenumbers k ∼ η−1 ∼ 0.02 Mpc−1.
The slow-roll parameters for these models as a function

of η are shown in Fig. 2. Notice that εH remains small
in the ML model though its value changes fractionally by
order unity. On the other hand, ηH is of order unity and
δ2 is greater than unity in amplitude in this model around
η ∼ 1 Gpc when the inflaton rolls across the feature.

A. Exact Relations

It is useful to begin by examining the exact equations
and solutions. The exact equation of motion of each k-
mode of the inflaton field is given by

d2uk

dη2
+ (k2 −

1

z

d2z

dη2
)uk = 0 , (4)

where

z =
f

2πη
, f = 2π

φ̇aη

H
. (5)

The field amplitude is related to the curvature power
spectrum by

∆2
R(k) =

k3

2π2
lim
kη→0

∣

∣

∣

uk

z

∣

∣

∣

2
. (6)

FIG. 2: Slow-roll parameters εH , ηH and δ2 for the two models
of Fig. 1: ML step model (black/solid) and smooth model
(red/dashed).

Following [14], we begin by transforming the field equa-
tion into dimensionless variables y =

√
2kuk, x = kη

d2y

dx2
+

(

1−
2

x2

)

y =
g(lnx)

x2
y , (7)

where

g =
f ′′ − 3f ′

f
. (8)

Primes here and throughout are derivatives with respect
to ln η.
The functions f and g carry information about devia-

tions from perfect slow roll εH = 0, ηH = 0 and δ2 = 0.
Specifically, without assuming that these three parame-
ters are small or slowly varying

f2 = 8π2 εH
H2

(aHη)2 ,

f ′

f
= −aHη(εH − ηH) + (1− aHη) ,

f ′′

f
= 3

f ′

f
+ 2[(aHη)2 − 1] (9)

+(aHη)2[2εH − 3ηH + 2ε2H − 4ηHεH + δ2] ,

and the dynamics of the slow-roll parameters themselves
are given by

dεH
d ln a

= 2εH(εH − ηH) , (10)

dηH
d ln a

= εHηH + η2H − δ2 . (11)

Moreover, these quantities are related to the inflaton po-
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spectrum that is well-suited for order unity deviations in power caused by sharp features in the
inflaton potential. As an example, we show that predictions for a step function potential, which has
been proposed to explain order unity glitches in the CMB temperature power spectrum at multipoles
! = 20− 40, are accurate at the percent level. Our analysis shows that to good approximation there
is a single source function that is responsible for observable features and that this function is simply
related to the local slope and curvature of the inflaton potential. These properties should make the
generalized slow roll approximation useful for inflation-model independent studies of features, both
large and small, in the observable power spectra.

I. INTRODUCTION

The ordinary slow roll approximation provides a
model-independent technique for computing the initial
curvature power spectrum for inflationary models where
the scalar field potential is sufficiently flat and slowly
varying. Such models lead to curvature power spectra
that are featureless and nearly scale invariant (e.g. [1]).

On the other hand, features in the inflaton potential
produce features in the power spectrum. Glitches in the
observed temperature power spectrum of the cosmic mi-
crowave background (CMB) [2] have led to recent interest
in exploring such models (e.g. [3, 4, 5, 6, 7, 8]). To ex-
plain the glitches as other than statistical flukes, these
models require order unity variations in the curvature
power spectrum across about an e-fold in wavenumber.

Such cases are typically handled by numerically solv-
ing the field equation on a case-by-case basis (e.g. [9]).
For model-independent constraints and model building
purposes it is desirable to have a simple but accurate pre-
scription that relates features in the inflaton potential to
features in the power spectrum (cf. [10, 11, 12, 13]).

The generalized slow roll (GSR) approximation was in-
troduced by Stewart [14] to overcome some of the prob-
lems of the ordinary slow roll approximation for poten-
tials with small but sharp features. In this approxima-
tion, the ordinary slow roll parameters are taken to be
small but not necessarily constant. In this paper we ex-
amine and extend the GSR approach for the case of large
features where the slow-roll parameters are also not nec-
essarily small.

In §II, we review the GSR approximation and develop
the variant for large power spectrum features. In the
Appendix, we compare this variant to other GSR ap-
proximations in the literature [13, 14, 15, 16, 17]. We
show that our variant provides both the most accurate
results and is the most simply related to the inflaton
potential. In §III, we show how this technique can be
used to develop alternate inflationary models to explain
a given observed feature. We discuss these results in §IV.

II. GENERALIZED SLOW ROLL

The GSR formalism was developed to calculate the
curvature power spectrum for inflation models in which
the usual slow roll parameters, defined in terms of time
derivatives of the inflaton field φ and the expansion rate
H ,

εH ≡
1

2

(

φ̇

H

)2

,

ηH ≡ −

(

φ̈

Hφ̇

)

, (1)

are small but ηH(= −δ1) is not necessarily constant. In
these models, the third slow-roll parameter

δ2 =

...
φ

H2φ̇
, (2)

can be large for a small number of e-folds [14, 15, 16].
Here and throughout we choose units where the reduced
Planck mass (8πG)−1/2 = 1.
We study here the more extreme case where ηH is also

allowed to become large for a fraction of an e-fold. These
models lead to order unity deviations in the curvature
power spectrum. As we shall see, different implementa-
tions of the GSR approximation perform very differently
for such models.
An example of such a case is a step in the inflaton

potential of the form V (φ) = m2
eff(φ)φ

2/2, where the
effective mass of the inflaton potential is given by [9]

m2
eff(φ) = m2

[

1 + c tanh

(

φ− b

d

)]

. (3)

This form for the potential has been shown to be a good
description of large features in the temperature power
spectrum at & ∼ 20 − 40 tentatively seen in the WMAP
data [4, 5]. The maximum likelihood (ML) parameters
values for WMAP5 are b = 14.668, c = 1.505 × 10−3,
d = 0.02705 and m = 7.126 × 10−6 [6]. The potential
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We develop a variant of the generalized slow roll approach for calculating the curvature power
spectrum that is well-suited for order unity deviations in power caused by sharp features in the
inflaton potential. As an example, we show that predictions for a step function potential, which has
been proposed to explain order unity glitches in the CMB temperature power spectrum at multipoles
! = 20− 40, are accurate at the percent level. Our analysis shows that to good approximation there
is a single source function that is responsible for observable features and that this function is simply
related to the local slope and curvature of the inflaton potential. These properties should make the
generalized slow roll approximation useful for inflation-model independent studies of features, both
large and small, in the observable power spectra.
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for such models.
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There are a variety of other forms for this formula, some of which are given in the Appendix.
The window function −xW ′(x) is given by ‡

W (x) =
3 sin(2x)

2x3
−

3 cos(2x)

x2
−

3 sin(2x)

2x
− 1 . (3)

It has the asymptotic behavior

lim
x→0

W (x) =
2

5
x2 +O(x4) , (4)

the window property
∫ ∞

0

dx

x
[−xW ′(x)] = 1 , (5)

and the degeneracy
∫ ∞

0

dx

x
[−xW ′(x)]

1

x
= 0 . (6)

2.1 Inverse formula

Our inverse formula is

ln

(

1

f 2

)

=

∫ ∞

0

dk

k
m(kξ) lnP , (7)

where

m(x) =
2

π

[

1

x
−

cos(2x)

x
− sin(2x)

]

. (8)

It has the asymptotic behavior

lim
x→0

m(x) =
4

3π
x3 +O(x5) (9)

and the window property
∫ ∞

0

dx

x
m(x) = 1 . (10)

It is straightforward to derive Eq. (7) from Eq. (2) using the key identity

∫ ∞

0

dk

k
m(kζ)W (kξ) =

(

ζ3

ξ3
− 1

)

θ(ξ − ζ) , (11)

where θ(x) = 0 for x < 0 and θ(x) = 1 for x > 0. An alternative form of the inverse formula
is given in the Appendix.

‡Note that we define W (x) with an extra −1 compared with our previous works [6].

2

1 Introduction

It is believed that the power spectra of both the cosmic microwave background radiation and
the large scale structure of the observable universe have evolved from a common primordial
spectrum of curvature perturbations produced during inflation [1]. Through the observa-
tion of these spectra we can study the properties of inflation. For example, results from
the Wilkinson Microwave Anisotropy Probe [2] and Sloan Digital Sky Survey [3] provide a
remarkable set of data, which places strong restrictions on models of inflation [4].

There have been many studies on the accurate evaluation of the power spectrum, pro-
vided that the inflationary parameters are given. But practically we observe the power
spectrum first, and then seek an appropriate inflationary model from which the observed
spectrum could result [5]. In the context of the standard slow-roll approximation, such in-
version is straightforward [5]. However, the standard slow-roll approximation makes strong
assumptions about the properties of inflation, which have not yet been confirmed observa-
tionally. Thus we are lacking a model independent way of extracting useful information
about inflationary parameters from the power spectrum.

The general slow-roll approximation [6] was introduced to eliminate these unjustified as-
sumptions of standard slow-roll, instead essentially only relying on the observed approximate
scale invariance of the spectrum. See Refs. [7, 8] for some other alternatives to the standard
slow-roll approximation. The one limitation of general slow-roll is that it does not cover
cases where super-horizon effects are dominant [9]. Also, in this paper, we limit ourselves to
the case of single field models of inflation, though the single field general slow-roll formulae
can also be applied to some multi-field models of inflation [10]. These extensions will be
treated thoroughly in a separate publication [11].

In this paper, we invert the leading order single field general slow-roll formula for the
power spectrum [6] to obtain a formula, Eq. (7), for inflationary parameters in terms of the
primordial power spectrum. See Ref. [12] for an alternative method of inversion that also
does not rely on the standard slow-roll approximation. In Section 2 we give our inverse, in
Section 3 we give some examples which illustrate the use and properties of our inverse, and
in the Appendix we give some alternative forms for some of our formulae.

2 General slow-roll formulae

For single field inflationary models, it is convenient to express inflationary quantities in terms
of

f =
2πaξφ̇

H
, (1)

where ξ = −
∫

dt
a
= 1

aH

(

1− Ḣ
H2 + · · ·

)

is minus the conformal time [6, 13]. We think of f

as a function of ln ξ so that f ′ ≡ df/d ln ξ.
To leading order in the general slow-roll approximation, the spectrum can be expressed

as [6]

lnP(k) =

∫ ∞

0

dξ

ξ
[−kξW ′(kξ)]

[

ln

(

1

f 2

)

+
2

3

f ′

f

]

. (2)

1

Inverse formula 3 Reconstruction of the potential with general slow-roll
condition

Following the paper of Gong et al. , we define

f(ln ⇠) =
2⇡a⇠�̇

H
, (7)

where

⇠ = �

Z
dt

a
'

1

aH
, (8)

where we used ✏ ⌧ 1 in the last equation. Note that

�
d

dt

✓
1

aH

◆
=

1

a
(1� ✏) '

1

a
. (9)

To leading order in the general slow-roll approximation, the power spectrum can be ex-
pressed as [2]

lnP(k) =

Z 1

0

d⇠

⇠
[�k⇠W

0(k⇠)]


ln

✓
1

f 2

◆
+

2

3

f
0

f

�
, (10)

where

W (x) =
3 sin(2x)

2x3
�

3 cos(2x)

x2
�

3 sin(2x)

2x
� 1. (11)

The inverse formula allows us to obtain f(ln ⇠) from the given input power spectrum as

ln

✓
1

f 2(ln ⇠)

◆
=

Z 1

0

dk

k
m(k⇠) lnP(k), (12)

where

m(x) =
2

⇡


1

x
�

cos(2x)

x
� sin(2x)

�
. (13)

More details are in the Refs.

The inverse formula can be used for the case 1) and 2)?
Using Eq. (1) and Eq. (8) in the limit of ✏ ⌧ 1, we find

H
�3dH

d⇠
=

1

2(2⇡)2M2
P

f
2(⇠)

⇠
, (14)

and the integration gives

1

H2(⇠)
=

1

H
2
i

�
1

(2⇡)2M2
P

Z ⇠

⇠i

f
2(⇠0)d ln ⇠0. (15)
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1 Introduction

GSR approximation[1] [2][4]
An inverse formula for the GSR [5]
Second order inverse formula for the general slow-roll [6]

Reconstruction of potential in the hybrid inflation [7]

2 Evolution equations for the background and pertur-
bations

For single field inflation

Ḣ = �
�̇
2

2M2
P

(1)

The slow-roll parameters are defined as

✏ ⌘ �
Ḣ

H2
=

1

2M2
P

 
�̇

H

!2

, ⌘ ⌘
✏̇

H✏
, �1 ⌘

�̈

H�̇
, (2)

and there is a relation between the slow-roll parameters

⌘ = 2(✏+ �1). (3)

Under the standard slow-roll condition, the power spectrum is given by

P(k) '
H

2

8⇡2✏
, (4)

and the spectral index of the power spectrum is

ns(k)� 1 ⌘
d lnP

d ln k
= 2✏+ ⌘. (5)

However the power spectrum Eq. (4) is not valid for the case

1) (Transient) Ultra slow-roll (✏ ⌧ 1, ⌘ ' 2�1 ' �6)

2) Violation of slow-roll (✏ ⌧ 1, ⌘ ' 2�1 ' O(1))
both are the same?

Since ⌘ is order of 1 in these cases, we need to keep ⌘ in the equation

d
2
⇣k

d⌘2
+ (2 + ⌘)aH

d⇣k

d⌘
+ k

2
⇣k = 0. (6)
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2with an integration constant
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To leading order in the general slow-roll approximation, the power spectrum can be ex-
pressed as [2]

lnP(k) =

Z 1

0

d⇠

⇠
[�k⇠W

0(k⇠)]


ln

✓
1

f 2

◆
+

2

3

f
0

f

�
, (10)

where

W (x) =
3 sin(2x)

2x3
�

3 cos(2x)

x2
�

3 sin(2x)

2x
� 1. (11)

The inverse formula allows us to obtain f(ln ⇠) from the given input power spectrum as
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More details are in the Refs.

The inverse formula can be used for the case 1) and 2)?
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Reconstructing potential using GSR

1 Introduction

It is believed that the power spectra of both the cosmic microwave background radiation and
the large scale structure of the observable universe have evolved from a common primordial
spectrum of curvature perturbations produced during inflation [1]. Through the observa-
tion of these spectra we can study the properties of inflation. For example, results from
the Wilkinson Microwave Anisotropy Probe [2] and Sloan Digital Sky Survey [3] provide a
remarkable set of data, which places strong restrictions on models of inflation [4].

There have been many studies on the accurate evaluation of the power spectrum, pro-
vided that the inflationary parameters are given. But practically we observe the power
spectrum first, and then seek an appropriate inflationary model from which the observed
spectrum could result [5]. In the context of the standard slow-roll approximation, such in-
version is straightforward [5]. However, the standard slow-roll approximation makes strong
assumptions about the properties of inflation, which have not yet been confirmed observa-
tionally. Thus we are lacking a model independent way of extracting useful information
about inflationary parameters from the power spectrum.

The general slow-roll approximation [6] was introduced to eliminate these unjustified as-
sumptions of standard slow-roll, instead essentially only relying on the observed approximate
scale invariance of the spectrum. See Refs. [7, 8] for some other alternatives to the standard
slow-roll approximation. The one limitation of general slow-roll is that it does not cover
cases where super-horizon effects are dominant [9]. Also, in this paper, we limit ourselves to
the case of single field models of inflation, though the single field general slow-roll formulae
can also be applied to some multi-field models of inflation [10]. These extensions will be
treated thoroughly in a separate publication [11].

In this paper, we invert the leading order single field general slow-roll formula for the
power spectrum [6] to obtain a formula, Eq. (7), for inflationary parameters in terms of the
primordial power spectrum. See Ref. [12] for an alternative method of inversion that also
does not rely on the standard slow-roll approximation. In Section 2 we give our inverse, in
Section 3 we give some examples which illustrate the use and properties of our inverse, and
in the Appendix we give some alternative forms for some of our formulae.

2 General slow-roll formulae

For single field inflationary models, it is convenient to express inflationary quantities in terms
of

f =
2πaξφ̇

H
, (1)

where ξ = −
∫

dt
a
= 1

aH

(

1− Ḣ
H2 + · · ·

)

is minus the conformal time [6, 13]. We think of f

as a function of ln ξ so that f ′ ≡ df/d ln ξ.
To leading order in the general slow-roll approximation, the spectrum can be expressed

as [6]
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From Eq. (7), we find,
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and then
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Here H(⇠) is given in Eq. (14).
From the Friedmann equation we obtain potential as
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By eliminating ⇠ from Eq. (16) and Eq. (17), we can find a potential V (�).

4 Examples

4.1 Scale-invariant power spectrum

As a simplest example, we assume P(k) = P0 is constant. Then we obtain

f
2 = P

�1
0 , (19)

where we used
Z 1

0

dk

k
m(k⇠) = 1. (20)

We will choose f = �1/
p
P0 in the below without loss of generality. Then
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ln(⇠/⇠i). (21)

Here the integration constant Hi is undetermined from only power spectrum. To determine
this, we need additional information about the absolute value of the Hubble parameter for a
specific scale. In the following, we will assume that the first term is dominant for approximation
when necessary.

Now we can find
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3

Field evolution

Potential
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4.2 Power-law power spectrum

Now we assume

P(k) = P0
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Then
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where ↵ = 2� ln 2� � ' 0.7296 with Euler-Mascheroni constant � ' 0.577215. In other way,
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with an integration constant Hi at a specific scale, and
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where we chose ’-’ sign of f and
The potential is
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Finally, V (�) becomes a quadratic function of �.

4.3 CMB power spectrum

Features in the power spectrum [8]. We construct a potential for the featured CMB power
spectrum [9].

Reconstructing the EFT of Inflation from Cosmological Data [10]

4
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Note that if the second term is small compared to the integration constant 1/H
2
i , we can

approximate H ¥ Hi to leading order in GSR. Meanwhile, from the Friedmann equation
with eq. (2.7), we can write easily the potential as a function of log ›:

V = 3m
2

PlH
2

≠
1
2 „̇

2 = 3m
2

PlH
2

5
1 ≠

f
2
H

2

6(2fi)2m
2

Pl

6
. (2.18)

Finally, from eq. (2.7) we find the di�erential equation for „:
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d log ›
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, (2.19)

and integrating this equation gives
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By eliminating › in eq. (2.18) using eq. (2.20), finally we can reconstruct the potential as a
function of the inflaton field, V („). This is the main result of this article.

It is worthwhile to mention that eqs. (2.15), (2.18) and (2.19) closely resemble the
Hamilton-Jacobi approach to the inflationary dynamics [28], in the sense that essentially H

is regarded as a function of the inflaton „, rather than time ›. The critical di�erence from the
standard Hamilton-Jacobi approach is that the time derivative of „ is not related to dH/d„

but to H itself, as given in eq. (2.19). This allows, for a monotonic evolution of „, an exact
one-to-one correspondence between › and „ directly given the fundamental GSR function
f(log ›) inferred from eq. (2.13).

3 Examples

3.1 Power-law spectrum
First, we consider a power-law spectrum given by

PR(k) = As
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Then eq. (2.13) gives
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where – © 2 ≠ log 2 ≠ “ ¥ 0.729637, with “ ¥ 0.577216 being the Euler-Mascheroni constant.
That is,
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where Hi is the value of the Hubble parameter at › = ›i, and — is a positive constant
defined by
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There are a variety of other forms for this formula, some of which are given in the Appendix.
The window function −xW ′(x) is given by ‡
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‡Note that we define W (x) with an extra −1 compared with our previous works [6].
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3 Reconstruction of the potential with general slow-roll
condition
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More details are in the Refs.
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Note that if the second term is small compared to the integration constant 1/H
2
i , we can

approximate H ¥ Hi to leading order in GSR. Meanwhile, from the Friedmann equation
with eq. (2.7), we can write easily the potential as a function of log ›:

V = 3m
2

PlH
2

≠
1
2 „̇

2 = 3m
2

PlH
2

5
1 ≠

f
2
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2

6(2fi)2m
2

Pl

6
. (2.18)

Finally, from eq. (2.7) we find the di�erential equation for „:
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2fi
, (2.19)

and integrating this equation gives
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›i

fH

2fi
d log › . (2.20)

By eliminating › in eq. (2.18) using eq. (2.20), finally we can reconstruct the potential as a
function of the inflaton field, V („). This is the main result of this article.

It is worthwhile to mention that eqs. (2.15), (2.18) and (2.19) closely resemble the
Hamilton-Jacobi approach to the inflationary dynamics [28], in the sense that essentially H

is regarded as a function of the inflaton „, rather than time ›. The critical di�erence from the
standard Hamilton-Jacobi approach is that the time derivative of „ is not related to dH/d„

but to H itself, as given in eq. (2.19). This allows, for a monotonic evolution of „, an exact
one-to-one correspondence between › and „ directly given the fundamental GSR function
f(log ›) inferred from eq. (2.13).
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From Eq. (7), we find,

d�

d ln ⇠
= �

fH

2⇡
, (16)

and then

�(⇠) = �i �

Z
fH(⇠)

2⇡
d ln ⇠. (17)

Here H(⇠) is given in Eq. (14).
From the Friedmann equation we obtain potential as

V (⇠) =3M2
PH

2
�

1

2
�̇
2

=3M2
PH

2(⇠)�
f
2
H

4(⇠)

2(2⇡)2

=3M2
PH

2(⇠)

✓
1�

f
2
H

2(⇠)

6(2⇡)2M2
P

◆
.

(18)

By eliminating ⇠ from Eq. (16) and Eq. (17), we can find a potential V (�).

4 Examples

4.1 Scale-invariant power spectrum

As a simplest example, we assume P(k) = P0 is constant. Then we obtain

f
2 = P

�1
0 , (19)

where we used
Z 1

0

dk

k
m(k⇠) = 1. (20)

We will choose f = �1/
p
P0 in the below without loss of generality. Then

1

H2(⇠)
=

1

H
2
i

�
1

(2⇡)2M2
PP0

ln(⇠/⇠i). (21)

Here the integration constant Hi is undetermined from only power spectrum. To determine
this, we need additional information about the absolute value of the Hubble parameter for a
specific scale. In the following, we will assume that the first term is dominant for approximation
when necessary.

Now we can find

�(⇠) =�i �
4⇡M2

P

p
P0

Hi

 s

1�
H

2
i

(2⇡)2M2
PP0

ln(⇠/⇠i)� 1

!
,

'�i +
Hi

2⇡
p
P0

ln(⇠/⇠i),

(22)
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Using H above along with f in eq. (2.20), we find

�„ © „ ≠ „i = ≠
2mPl

Ô
1 ≠ ns

sinh≠1

CÛ
(kú›Õ)ns≠1

— ≠ (kú›i)ns≠1

D-----

›Õ
=›

›Õ=›i

, (3.6)

where we have chosen the minus sign for f from eq. (3.3) to make the field decreasing as
inflation goes on. We can absorb the kú›i term into the constant „0 as

≠ sinh≠1

CÛ
(kú›)ns≠1

— ≠ (kú›i)ns≠1

D

= �„ + sinh≠1

CÛ
(kú›i)ns≠1

— ≠ (kú›i)ns≠1

D

© „ ≠ „0 . (3.7)

Finally, the potential can be written in terms of „ from eq. (2.18) as

V („) = 3m
2

Pl
H

2
i —

— ≠ (kú›i)ns≠1

1 ≠
1

6
(1 ≠ ns) tanh2
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1 ≠ ns

„≠„0
2mPl

È

1 + sinh2
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1 ≠ ns
„≠„0
2mPl

È . (3.8)

Note that if we assume Hi is the value of the Hubble parameter relevant for the CMB
scales, we find — ¥ 0.282195/r using the central value ns = 0.9656, where r is the tensor-to-
scalar ratio. Considering the current bound r < 0.056 [10], we find that — > (kú›i)ns≠1 for
kú›i > 3.82402 ◊ 10≠21. This includes practically all the observable scales, once ›i is chosen
not too far from the CMB scales.

Small-field potential. First we consider — ∫ (kú›i)ns≠1. In this case, eq. (3.6) is approxi-
mated as

�„ ¥ ≠
2mPl

Ô
1 ≠ ns

Û
(kú›)ns≠1

—
, (3.9)

and eq. (3.8) becomes the following simple form:

V („) ¥ 3m
2

PlH
2

i

5
1 ≠

1 ≠ ns

4 (�„)2

6
. (3.10)

This potential is vacuum-dominated, with small field variations. This is reasonable
as a small value of r indicates a small value of ‘, which corresponds to a small field
excursion.

Large-field potential. The opposite limit, — π (kú›i)ns≠1, is interesting — not consistent
with observations though, since this case corresponds to r & 0.32. Then, H

≠2
¥

H
≠2

i (kú›)ns≠1
/—, so that f

2
H

2
¥ Hi—e

–(1≠ns)
/As is constant. Thus the field variation

becomes
�„ ¥
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1 ≠ nsmPl log

3
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4
, (3.11)

so that we can absorb kú›i as follows:

log(kú›) = �„
Ô

1 ≠ nsmPl

+ log(kú›i) ©
„ ≠ „0

Ô
1 ≠ nsmPl

. (3.12)

Then, the reconstructed potential is obtained as an exponential function:

V („) = 3m
2

PlH
2

i — exp
3

Ô
1 ≠ ns

„ ≠ „0

mPl

4
. (3.13)
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Reconstructed inflationary potential from a power-law power spectrum

Two limits:
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Note that if we assume Hi is the value of the Hubble parameter relevant for the CMB
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as a small value of r indicates a small value of ‘, which corresponds to a small field
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it becomes small field and vacuum-dominated potential
JCAP01(2022)012

Using H above along with f in eq. (2.20), we find

�„ © „ ≠ „i = ≠
2mPl

Ô
1 ≠ ns

sinh≠1

CÛ
(kú›Õ)ns≠1

— ≠ (kú›i)ns≠1

D-----

›Õ
=›

›Õ=›i

, (3.6)

where we have chosen the minus sign for f from eq. (3.3) to make the field decreasing as
inflation goes on. We can absorb the kú›i term into the constant „0 as

≠ sinh≠1

CÛ
(kú›)ns≠1

— ≠ (kú›i)ns≠1

D

= �„ + sinh≠1

CÛ
(kú›i)ns≠1

— ≠ (kú›i)ns≠1

D

© „ ≠ „0 . (3.7)

Finally, the potential can be written in terms of „ from eq. (2.18) as

V („) = 3m
2

Pl
H

2
i —

— ≠ (kú›i)ns≠1

1 ≠
1

6
(1 ≠ ns) tanh2

ËÔ
1 ≠ ns

„≠„0
2mPl

È

1 + sinh2
ËÔ

1 ≠ ns
„≠„0
2mPl

È . (3.8)
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Note that if we assume Hi is the value of the Hubble parameter relevant for the CMB
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it becomes an exponential function, inconsistent with CMB
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Featured Power Spectrum
[JCAP (2022) Choi, Gong, Kang, Raveendran]

For a featured power spectrum,  as an example, we choose an
Power Spectrum with a localized oscillatory feature from Planck 2018 paper
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Figure 1. Left panel: reconstructed potential from the featured power spectrum (3.14) for r = 0.056
and „i = 0. The potential for the power-law power spectrum is shown with dashed line for comparison.
Right panel: power spectra calculated numerically from the reconstructed potential for di�erent values
of r as shown in the figure. The input power spectrum (solid line) is also shown for comparison.

3.3 Power spectrum with a peak
As the final example, we consider the following power spectrum:

PR(k) = P
0

R(k)
I

1 + Ap exp
C

≠

3 log10(k/kc)
�

42
D J

, (3.17)

where P
0

R is the power-law power spectrum eq. (3.1). Thus, this spectrum exhibits a Gaussian
peak of height Ap and width � centered at the scale k = kc. This spectrum may well lead
to the formation of PBHs if PR = O(0.01).

In the left panel of figure 2, we show the reconstructed potential from the given power
spectrum with di�erent values of Ap using the tensor-to-scalar ratio r = 10≠4. It can be
seen that a small plateau around „/mPl ≥ ≠0.04 is enough to produce a peak high enough
to give PR(kc) = O(0.01), which may lead to the production of PBHs at that scale. In the
right panel of figure 2, we have also computed numerically the power spectrum from the
reconstructed potential for each Ap (dashed lines). For comparison, we also show the input
power spectrum eq. (3.17) (solid line) as well as those calculated from the reconstructed
potential using the standard slow-roll approximation (dotted line).

As we may well have expected, we can reproduce the input power spectrum if the
height of the peak is not too large. It is notable that GSR works very reliably around O(10)
variation of the amplitude of PR. Meanwhile, as the height of the peak increases significantly,
our reconstruction programme works less e�ectively. This is evident from the right panel of
figure 2 where the power spectra with Ap = 103 and 106 deviate from the input. This is not
surprising as the GSR expansion parameter g, facing the features in the potential, becomes
very large: |g| = O(10) or even bigger. Still, it is very interesting to note that the height and
location of the peak are captured in the reconstructed spectra.

4 Conclusions

We have proposed a new method to reconstruct the inflaton potential within the picture of
canonical single field inflation, directly from the given primordial power spectrum which may
deviate significantly from near scale invariance. Our approach relies on a more generalized

– 8 –



Ki-Young Choi, Sungkyunkwan University, Korea29

The reconstructed potential is obtained numerically
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Figure 1. Left panel: reconstructed potential from the featured power spectrum (3.14) for r = 0.056
and „i = 0. The potential for the power-law power spectrum is shown with dashed line for comparison.
Right panel: power spectra calculated numerically from the reconstructed potential for di�erent values
of r as shown in the figure. The input power spectrum (solid line) is also shown for comparison.
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where P
0

R is the power-law power spectrum eq. (3.1). Thus, this spectrum exhibits a Gaussian
peak of height Ap and width � centered at the scale k = kc. This spectrum may well lead
to the formation of PBHs if PR = O(0.01).

In the left panel of figure 2, we show the reconstructed potential from the given power
spectrum with di�erent values of Ap using the tensor-to-scalar ratio r = 10≠4. It can be
seen that a small plateau around „/mPl ≥ ≠0.04 is enough to produce a peak high enough
to give PR(kc) = O(0.01), which may lead to the production of PBHs at that scale. In the
right panel of figure 2, we have also computed numerically the power spectrum from the
reconstructed potential for each Ap (dashed lines). For comparison, we also show the input
power spectrum eq. (3.17) (solid line) as well as those calculated from the reconstructed
potential using the standard slow-roll approximation (dotted line).

As we may well have expected, we can reproduce the input power spectrum if the
height of the peak is not too large. It is notable that GSR works very reliably around O(10)
variation of the amplitude of PR. Meanwhile, as the height of the peak increases significantly,
our reconstruction programme works less e�ectively. This is evident from the right panel of
figure 2 where the power spectra with Ap = 103 and 106 deviate from the input. This is not
surprising as the GSR expansion parameter g, facing the features in the potential, becomes
very large: |g| = O(10) or even bigger. Still, it is very interesting to note that the height and
location of the peak are captured in the reconstructed spectra.

4 Conclusions

We have proposed a new method to reconstruct the inflaton potential within the picture of
canonical single field inflation, directly from the given primordial power spectrum which may
deviate significantly from near scale invariance. Our approach relies on a more generalized
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Again calculate the power spectrum numerically from the reconstructed potential,
and compare with the input power spectrum

JCAP01(2022)012

10�5 10�3 10�1

k (Mpc�1)

1.8

2.0

2.2

2.4

2.6
2.8
3.0

P
R

(k
)

�10�9

r=10�4

r=10�3

r=10�2

r=0.056

Input

Figure 1. Left panel: reconstructed potential from the featured power spectrum (3.14) for r = 0.056
and „i = 0. The potential for the power-law power spectrum is shown with dashed line for comparison.
Right panel: power spectra calculated numerically from the reconstructed potential for di�erent values
of r as shown in the figure. The input power spectrum (solid line) is also shown for comparison.

3.3 Power spectrum with a peak
As the final example, we consider the following power spectrum:
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where P
0

R is the power-law power spectrum eq. (3.1). Thus, this spectrum exhibits a Gaussian
peak of height Ap and width � centered at the scale k = kc. This spectrum may well lead
to the formation of PBHs if PR = O(0.01).

In the left panel of figure 2, we show the reconstructed potential from the given power
spectrum with di�erent values of Ap using the tensor-to-scalar ratio r = 10≠4. It can be
seen that a small plateau around „/mPl ≥ ≠0.04 is enough to produce a peak high enough
to give PR(kc) = O(0.01), which may lead to the production of PBHs at that scale. In the
right panel of figure 2, we have also computed numerically the power spectrum from the
reconstructed potential for each Ap (dashed lines). For comparison, we also show the input
power spectrum eq. (3.17) (solid line) as well as those calculated from the reconstructed
potential using the standard slow-roll approximation (dotted line).

As we may well have expected, we can reproduce the input power spectrum if the
height of the peak is not too large. It is notable that GSR works very reliably around O(10)
variation of the amplitude of PR. Meanwhile, as the height of the peak increases significantly,
our reconstruction programme works less e�ectively. This is evident from the right panel of
figure 2 where the power spectra with Ap = 103 and 106 deviate from the input. This is not
surprising as the GSR expansion parameter g, facing the features in the potential, becomes
very large: |g| = O(10) or even bigger. Still, it is very interesting to note that the height and
location of the peak are captured in the reconstructed spectra.

4 Conclusions

We have proposed a new method to reconstruct the inflaton potential within the picture of
canonical single field inflation, directly from the given primordial power spectrum which may
deviate significantly from near scale invariance. Our approach relies on a more generalized
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Power Spectrum with a Peak on small scale

JCAP01(2022)012
Figure 1. Left panel: reconstructed potential from the featured power spectrum (3.14) for r = 0.056
and „i = 0. The potential for the power-law power spectrum is shown with dashed line for comparison.
Right panel: power spectra calculated numerically from the reconstructed potential for di�erent values
of r as shown in the figure. The input power spectrum (solid line) is also shown for comparison.

3.3 Power spectrum with a peak
As the final example, we consider the following power spectrum:
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where P
0

R is the power-law power spectrum eq. (3.1). Thus, this spectrum exhibits a Gaussian
peak of height Ap and width � centered at the scale k = kc. This spectrum may well lead
to the formation of PBHs if PR = O(0.01).

In the left panel of figure 2, we show the reconstructed potential from the given power
spectrum with di�erent values of Ap using the tensor-to-scalar ratio r = 10≠4. It can be
seen that a small plateau around „/mPl ≥ ≠0.04 is enough to produce a peak high enough
to give PR(kc) = O(0.01), which may lead to the production of PBHs at that scale. In the
right panel of figure 2, we have also computed numerically the power spectrum from the
reconstructed potential for each Ap (dashed lines). For comparison, we also show the input
power spectrum eq. (3.17) (solid line) as well as those calculated from the reconstructed
potential using the standard slow-roll approximation (dotted line).

As we may well have expected, we can reproduce the input power spectrum if the
height of the peak is not too large. It is notable that GSR works very reliably around O(10)
variation of the amplitude of PR. Meanwhile, as the height of the peak increases significantly,
our reconstruction programme works less e�ectively. This is evident from the right panel of
figure 2 where the power spectra with Ap = 103 and 106 deviate from the input. This is not
surprising as the GSR expansion parameter g, facing the features in the potential, becomes
very large: |g| = O(10) or even bigger. Still, it is very interesting to note that the height and
location of the peak are captured in the reconstructed spectra.

4 Conclusions

We have proposed a new method to reconstruct the inflaton potential within the picture of
canonical single field inflation, directly from the given primordial power spectrum which may
deviate significantly from near scale invariance. Our approach relies on a more generalized
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Figure 2. Left panel: reconstructed potential from the power spectrum with a peak given by eq. (3.17)
for di�erent values of Ap. Here we have used r = 10≠4. Right panel: power spectra calculated numer-
ically from the reconstructed potentials (dashed lines). For comparison, we also present the spectra
from the reconstructed potentials which are obtained using the standard slow-roll approximation (dot-
ted lines), as well as the input spectra (solid lines).

slow-roll approximation without assuming the constancy of the slow-roll parameters. There-
fore this method is valid for the potential with features where the spectral index of the power
spectrum may change with scales.

As a specific example other than featureless power-law spectrum, we have used the power
spectrum with features given analytically by eq. (3.14) to reconstruct the corresponding
potential with di�erent values of the tensor-to-scalar ratio. We have confirmed that the
reconstructed potential exhibits a smooth step, in agreement with the underlying model. As
a consistency check, we have calculated numerically from the reconstructed potential the
power spectrum, which shows a very good agreement with the input power spectrum as
shown in figure 1. If we can fix the large-scale primordial power spectrum with smaller error
in the near future [33, 34], our method presented in this article would provide a reliable
way of determining the inflaton potential directly from power spectrum. The observations
of the tensor power spectrum would eliminate the ambiguity in determining the integration
constant in our program.

We have also applied our method to the power spectrum with a high peak that may lead
to the formation of PBHs. If the peak is as high as 106, the validity of GSR is broken since
the expansion parameter of GSR becomes bigger than unity. In this case, the power spec-
trum calculated from the reconstructed potential deviates from the input power spectrum.
However, it is very interesting that still the reconstructed potential captures the qualitative
information about the height and location of the peak in the given power spectrum. Thus
our method can, within limited validity, be useful even for the power spectrum that leads to
the formation of PBHs.
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3.3 Power spectrum with a peak
As the final example, we consider the following power spectrum:

PR(k) = P
0

R(k)
I

1 + Ap exp
C

≠

3 log10(k/kc)
�

42
D J

, (3.17)

where P
0

R is the power-law power spectrum eq. (3.1). Thus, this spectrum exhibits a Gaussian
peak of height Ap and width � centered at the scale k = kc. This spectrum may well lead
to the formation of PBHs if PR = O(0.01).
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seen that a small plateau around „/mPl ≥ ≠0.04 is enough to produce a peak high enough
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right panel of figure 2, we have also computed numerically the power spectrum from the
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surprising as the GSR expansion parameter g, facing the features in the potential, becomes
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4 Conclusions

We have proposed a new method to reconstruct the inflaton potential within the picture of
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We proposed a new method to reconstruct an inflationary potential 
for a single scalar field.

- it uses the GSR (generalized slow-roll) approximation

- it can be applied to a power spectrum with a deviation from a 
scaler-invariance and oscillation

- it is valid for small value of a function
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inflation, the slow-roll parameters

‘ © ≠
Ḣ

H2
= ≠

d log H

d log a
, (2.1)

”1 ©
„̈

H„̇
= d log „̇

d log a
, (2.2)

are small, say, O(Á) for some small parameter Á. In the standard slow-roll approximation,
however, it is additionally assumed these parameters are also nearly scale-invariant so they
vary at O(Á2). In GSR, we abandon this extra assumption and consider all the deviations
from the perfect de Sitter expansion on equal footing.

For each Fourier mode of the comoving curvature perturbation R, defining

Ï © zR , (2.3)

z ©
a„̇

H
, (2.4)

then the following equation is satisfied:

d
2
Ï

d›2
+

3
k

2
≠

1
z

d
2
z

d›2

4
Ï = 0 . (2.5)

Here, we have defined the positive conformal time ›:

› © ≠

⁄
dt

a
= 1

aH

#
1 + O(‘)

$
. (2.6)

Now, we can rewrite eq. (2.5) so that the contribution for the exactly scale-invariant
power spectrum and that for the departure from such a spectrum are manifest. By defining
y ©

Ô
2kÏ and x © k› and rescaling z as

f(log ›) ©
2fix

k
z = 2fi›

a„̇

H
, (2.7)

eq. (2.5) becomes
d

2
y

dx2
+

3
1 ≠

2
x2

4
y = 1

x2
g(log ›)y , (2.8)

where
g ©

f
ÕÕ

≠ 3f
Õ

f
, (2.9)

with f
Õ

© df/d log ›. From eq. (2.6), we can note that f is to the zeroth order in slow-
roll the power spectrum, f ¥

Ô
PR (see below). Thus we can separate systematically the

contributions suppressed and not suppressed by the slow-roll parameters from the beginning.
In eq. (2.8), the left-hand side represents the mode function equation in the perfect de Sitter
background and the corresponding power spectrum of the solution, conveniently written as

PR(k) = lim
xæ0

----
xy

f

----
2

, (2.10)

is exactly scale-invariant. The function g on the right-hand side of eq. (2.8) represents, as
mentioned above, all the possible deviations from the scale-invariance of the power spectrum.

– 3 –

- We showed a few examples of the reconstructed potential and 
its validity by comparing with the input power spectrum
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