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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

Anomalous magnetic moments of electrons and muons

» All massive particles with spin are known to have a magnetic
dipole moment:

» The magnetic moment is an intrinsic quantity of particles. Its
agreement between theory and experiment has been a real
triumph of QFT, since Schwinger calculated it in 1951.

» For electrons it is measured at ppb level (Haneke et. al 2008):
a®P = 1159652180.73(28) x 10712
The discrepancy is about 2.40 (Parker et. al 2018):
Na, = a®P — a3 = (—87 +36) x 107
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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

Anomalous magnetic moments of electrons and muons

> |t served to test the consistency of GSW model of electroweak
theory during its establishement. (Fujikawa-Lee-Sanda 1972)

» Currently it provides a test and also a hint for new physics
beyond standard model.

» For muons it is measured at ppm level (FNAL 2021):
a7 = 116592061(41) x 10~

with 4.20 deviation, Aa, = (251 +59) x 10711,
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1. Introduction

Motivation
Measurement of Magnetic Moments
The magnetic field effect

Measurements of a. - Improved Penning Trap: Harvard

G. Gabrielse et al.(2004)
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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

Measurements of a, (Fermi Lab 2021, BNL 2006)

» Muons are unstable. It decays into electron 100% with
lifetime of about 2.2us.

> The key observation is that the difference between the spin
precession frequency and the (relativistic) cyclotron frequency
is given as
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Measurements of a, (Fermi Lab 2021, BNL 2006)

Fermi Lab Muon Storage Ring, slide from O. Kim (IBS)
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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

Measurements of a, (Fermi Lab 2021, BNL 2006)

» Because EW interaction is chiral, the electrons decay mostly
along the muon spin direction with an angle 0y = w,t + ¢:
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Measurement of Magnetic Moments

The magnetic field effect

Measurements of a, (Fermi Lab 2021, BNL 2006)
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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

Measurements of a, (Fermi Lab 2021, BNL 2006)

» The count of positrons (electrons) at the detector as a
function of time:

N(t) = Noe™ /T [1 + A(E.) sin (wat + ¢)] (1)
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Measurement of Magnetic Moments
The magnetic field effect

The magnetic field effect

» The operational definition of magnetic dipole moment is

. ¢S 9E(B)
fi=g-—=—-—3 : (2)
2m 0B B=0
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The magnetic field effect

» The operational definition of magnetic dipole moment is
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» But in practice the magnetic fields never vanish. In fact one
often needs strong magnetic fields, B > 10kG.
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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

The magnetic field effect

» The operational definition of magnetic dipole moment is

. ¢S 9E(B)
fi=g-—=—-—3 : (2)
2m 0B B=0

» But in practice the magnetic fields never vanish. In fact one
often needs strong magnetic fields, B > 10kG.

» In view of current accuracy, the effect of magnetic field may
not be negligible.
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Measurement of Magnetic Moments
The magnetic field effect

The magnetic field effect

» On dimensional grounds one expects the magnetic effect to be

a eB _ B 0.51 MeV \ 2
g —=2)~ o5 =3x10 13( >< ) :

10kG m
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The magnetic field effect

» On dimensional grounds one expects the magnetic effect to be
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» The magpnetic effect may be compatible with experimental
uncertainty for electrons, Jag® ~ 2.8 x 10713 while way small
for muons daj;” ~ 54 x 1011
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1. Introduction Motivation

Measurement of Magnetic Moments
The magnetic field effect

The magnetic field effect

» On dimensional grounds one expects the magnetic effect to be

a eB B 0.51 MeV \ 2
S(g—2)~ 7 —5=3x10""1 :
(g =2~ or o =310 <10kG>< m )

» The magpnetic effect may be compatible with experimental
uncertainty for electrons, Jag® ~ 2.8 x 10713 while way small
for muons daj;” ~ 54 x 1011

» However, since we are detecting positrons (electrons) in muon
g — 2 experiment, the magpnetic field might be relevant!
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2. Field-dependent magnetic moment QED contributions
QCD contributions

Field-dependent magnetic moment

> If B < m?/e, one can expand the magnetic moment g factor
in powers of magnetic field:

g(8) =28 _ o)+ Z (" (eB )

1eB
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2. Field-dependent magnetic moment QED contributions
QCD contributions

QED contributions

» From the exact electron propagator to the order o under a
constant magnetic the shift in the ground state energy is at

one-loop :
eB n eB\? n eB\3 n
— — a [ES— a —_— DY
om2 2\ m2 3\ m2 ’

2 2
where a, = <%In2’Z—B - %) a = (14| 2eE — 32 In2+ %).
» The anomalous magnetic moment at one-loop in QED is
therefore given as

1 . a |1 eB eB\?
58 =2)qen” = — [2 F a <m2) —a <m2> +o

AQEDB:g
E5(B) =5 _m
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2. Field-dependent magnetic moment QED contributions
QCD contributions

QED contributions

» The leading correction, linear in B, depends on the spin
direction, which is coming from the (eB)? contribution to the
ground state energy.

16/27



2. Field-dependent magnetic moment QED contributions
QCD contributions

QED contributions

» The leading correction, linear in B, depends on the spin
direction, which is coming from the (eB)? contribution to the
ground state energy.

» Since the (eB)? in the energy is independent of B field
direction, it contributes equally to both spin up and down.

16/27



2. Field-dependent magnetic moment QED contributions
QCD contributions

QED contributions

» The leading correction, linear in B, depends on the spin
direction, which is coming from the (eB)? contribution to the
ground state energy.

» Since the (eB)? in the energy is independent of B field
direction, it contributes equally to both spin up and down.

» Therefore, the leading correction to the anomalous magnetic
moment is not measurable at the current Penning trap
experiment for the electron magnetic anomaly.
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2. Field-dependent magnetic moment

QCD contributions up to B?
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2. Field-dependent magnetic moment QED contributions
QCD contributions

QCD contributions

» The QCD corrections to the ground state energy are :

2 3
Qop(gy _ _ ()2 m eBY - (BN, o (B, .
AE (B) (ﬂ) > [C1(m2)+C2 <m2 + C3 = +

» The QCD corrections to magnetic moments are then
1 5 2
2(g )QCD = (;)

CliCQ(eB>+E3<eBz> ] .
m? m
» From fig. (d) and (e)

1 m* m? m?
=2 oz (gom(m) +19> [1+(’)<m72r)] |

1 m* m? m?
=7 oz <12|n <m> +17) [1+(’)<m72r>] .

«
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2. Field-dependent magnetic moment QED contributions
QCD contributions

Direct measurements of magnetic moments

» In the current experiments of magnetic moments, the
contribution linear in B is not directly measurable.

19/27



2. Field-dependent magnetic moment QED contributions
QCD contributions

Direct measurements of magnetic moments

» In the current experiments of magnetic moments, the
contribution linear in B is not directly measurable.

» The measurable effect is hence at B2 order:

20 o _ eB\?2 _
5g/(B) ~ —? [33 — %C3} . (m2> ~1.3x10 20,

(B = 10kG and m = 0.51 MeV)
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» The spin precession and cyclotron frequencies are proportional
to the anomalous magnetic moment (Bargamann et al. 1959)

eB
Wa = Ws —We =3a,— .
m

» The number of electrons N(t) detected at the electromagnetic
calorimeter is then

N(t) = Noe™ /T [1 + Asin (wat + ¢)] .
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Refraction under magnetic field

3. Refraction

Refraction under magnetic field

Muon decay point

B=Bj+0

2 |Boundary of Magnetic Field

g B=0

Detector

> When electrons exit the magnetic field, they are refracted,
following Maupertuis' principle:

x=a N Q
5/ (pld/+A.dF)+5/ padl = 0.
P x=a
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» The momentum satisfies
p? +m? = (£ — AE(B))? .

> The refracted angle @ is related to the incident angle
fp = wat + ¢ as

om
tand — tan g :fy*tanﬁo-sec290 —
m

where v, = m€/p3 ~ m/p, and dm = AE(B).
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» When tan 6y is small, the increment in the refraction angle

B om _16 (1 GeV B
(59——7*mtan00 10 < > ><1OkG>tan90.
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» When tan 6y is small, the increment in the refraction angle

B om _16 (1 GeV B
(59——7*mtan00 10 < > ><1OkG>tan90.

» For a generic angle 8y, we find
sin g (cos? 6 + ~«dm/m)

sinf = .
\/cos6 0o + sin® By (cos? B + y,dm/m)?
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Refraction under magnetic field

3. Refraction

Refraction under magnetic field

» The shape of the electron distribution changes due to the
refraction by the magnetic field, 6" = /2 — (7.dm/m)":

N()

o K cos by
| D (sing) /
P A
§1/4 §1/3 §1/2 /2
g ¢ (0)
(a) [(sin0) — cos | < (y.6m/m)'/? ~ 1078

|sin @ — sin | < (v.0m/m) ~ 10716
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» Due to the refraction, the oscillatory part of the shape of
positron count changes:

om L 19-16.

0 <|sinf —sinfg| < vu—
m
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» Due to the refraction, the oscillatory part of the shape of
positron count changes:

5
0 <|sinf —sinfg| < fy*—m ~1071°,
m
» Near the peak (valley) the new shape is very flat for the range
of angles Ay ~ (3y.6m/m)Y/* ~ 10~*. Two slopes differ by
(7«6m/m)}/2 ~ 1078 in this region.
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3. Refraction Refraction under magnetic field

Refraction under magnetic field

» Due to the refraction, the oscillatory part of the shape of
positron count changes:

0
0 <|sinf —sinfg| < fy*—m ~1071°,
m
» Near the peak (valley) the new shape is very flat for the range
of angles Ay ~ (3y.6m/m)Y/* ~ 10~*. Two slopes differ by
(7«6m/m)}/2 ~ 1078 in this region.
» Since each run subset 10° positrons are detected at Fermi lab
experiment, one should detect 10° positrons in Afp, which is

sufficient to distinguish two distributions.
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4. Conclusion

Conclusion

> We have calculated the effect of magnetic fields on the
anomalous magnetic moment up to B2, both QED and QCD.
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4. Conclusion

Conclusion

> We have calculated the effect of magnetic fields on the
anomalous magnetic moment up to B2, both QED and QCD.

P> The accuracy of experiments for magnetic moments is now
high enough, ppb level, to be sensitive to magnetic fields.

» Currently only the quadratic effect is measurable:

2 B\?
oge(B) = ER %53} : (e 2) ~13x 102,

e
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4. Conclusion

Conclusion

» In the muon experiments the distribution of electron count is
modified, linearly in B due to refraction.

om

0 < |sin® —sinfo| < 7. 10710,

—_—
m
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m "

» The slope of the shape changes significantly near the peak
(valley), |7/2 — 0] < (3v.dm/m)L/* ~ 1074,

» By measuring this change, especially the slope difference,

(7.6m/m)}/2 ~ 1078, one could measure the refraction due
to the magnetic field.
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4. Conclusion

Conclusion

» In the muon experiments the distribution of electron count is
modified, linearly in B due to refraction.

om

0 < |sin® —sinfo| < 7. 10710,

m "

» The slope of the shape changes significantly near the peak
(valley), |7/2 — 0] < (3v.dm/m)L/* ~ 1074,

» By measuring this change, especially the slope difference,
(7.6m/m)}/2 ~ 1078, one could measure the refraction due
to the magnetic field.

» Furthermore to improve the experimental uncertainties, one
should consider this effect, since w, = aueB/m is determined
by fitting the distribution shape of detected positrons.
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