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AXION AND SUSY
Axion: a good solution to the strong CP problem

SUSY: a good solution to the gauge hierarchy problem
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AXINO
SUSY+Axion: another DM candidate
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Axino: fermion partner of axion
-  massive component due to SUSY breaking

(highly model-dependent)

-  inherits feeble couplings from the axion
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CLOCKWORK AXION
a chain of N+1 pNGBs
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AXINO DM IN CW MODEL
All gears become SUSY multiplets
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All multiplets have pNGBs, scalars, and fermions
with the clockwork structure
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CaY Y is a model-dependent constant of order unity. Af-
ter clockworking, the above terms lead to interactions
between all axions and the SM gauge bosons:

L =

[
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N
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One can easily see that the coupling of the zero mode
axion is exponentially suppressed compared to that from
the actual symmetry breaking scale f while the others
are scaled by only 1/N3/2 for large N . For q = 2 and
N = 20, the exponential factor is around 106, so one can
achieve a good QCD axion even from f = 1 TeV.

If the zero mode is the QCD axion, it finally becomes
massive by the chiral symmetry breaking in the strong
sector of the SM, but the mass is still tiny. As is well
known, the QCD axion has very long lifetime, so it could
be a dark matter component. On the other hand, massive
states are rather strongly coupled to the SM sector. One
can obtain decay widths of the massive modes to the
photon pair as

Γak→γγ =
C2

aγγα
2
em

256π3
N 2

k q
2 sin2
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N + 1

m3
ak

f2

∼(10−7 s)−1

(

20
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f

)2
( m

GeV

)3

(12)

where αem is the fine structure constant and Caγγ is
a constant determined by CaY Y and chiral symmetry
breaking effect (e.g., Caγγ $ −1.92 for Kim-Shifman-
Vainshtein-Zakharov (KSVZ) model [18]). These states
decay before the big bang nucleosynthesis (BBN) for
f = 10 TeV and m = 1 GeV. In most cases, therefore,
the massive states do not make significant impacts on the
evolution of the universe.

III. A SUPERSYMMETRIC EXTENSION

In this section, we consider a SUSY extension of the
clockwork axion model.

A. A model

Similar to a simple construction in Ref. [15], one can
consider a Kähler potential and a superpotential

K =
N
∑

j=0

(

X†
jXj + Y †

j Yj + Z†
jZj

)

, (13)

W =
N
∑

j=0

κZj

(

XjYj − v2
)

+
1

vq−1

N−1
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j=0

(

mXjY
q
j+1 +m′YjX

q
j+1

)

, (14)

where charge assignment of Zj , Xj , and Yj under U(1)j
is (0,+1,−1). The first term reflects the spontaneous
breaking of U(1) global symmetry near v while the second
term corresponds to a small explicit breaking effect for
m,m′ % v. We consider a generic case for m &= m′

leading to 〈Xj〉 &= 〈Yj〉 which is important for inter-dark-
sector couplings in Eq. (42). The fields are stabilized at

〈Zj〉 = −q + 1

κ

√
mm′, 〈Xj〉 = x, 〈Yj〉 = y (15)

where2

xy = v2, x =
(m

m′

)
1

2(q−1)
v. (16)

Below the spontaneous U(1) symmetry breaking scale,
this theory can be described by chiral superfields con-
taining pNGBs,

Φj =
1√
2
(σj + iφj) +

√
2θψj + θ2Fj , (17)

where σj and ψj are scalar and fermion partners of φj .
One can write

Xj = x eΦj/v0 , Yj = y e−Φj/v0 , (18)

where v0 =
√

x2 + y2. The effective Kähler potential
and superpotential become
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(
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2
0

N−1
∑

j=0

cosh

(

Φj − qΦj+1

v0

)

, (20)

2 Here we can take a field basis where all parameters are taken to
be real and positive except κ. In this basis, the supersymmetric
effective action for the axion supermultiplets does not involve
any complex parameter as we will see below.
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AXINO PRODUCTION
SUSY axion interaction (KSVZ-type model)
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Figure 1: Diagrams for the process g + g → g̃ + ã.
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Figure 2: Contributions to the 1PI axino-gluino-gluon amplitudes from the loops of Q,Qc.

and also in the underlying UV theory (2.11). This means that axino production by gauge

supermultiplets at p > MQ should be suppressed by some powers of MQ/p if one takes into

account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)

16π2
√
2vPQ

δ4(k + q + p)ū(k)σµνγ5v(q)ε
µpν, (2.30)

where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
gluino + axino (see Fig. 1), a simple dimensional analysis tells that the rate (per unit

volume) is given by

Γ(gg → g̃ã) = c2(xQ + xQc)2
ξg6sT

6

(16π2vPQ)2
, (2.31)

where ξ is a dimensionless coefficient which is independent of c. However this can not

be the correct answer as it depends on the field-basis parameter c, and there should be

additional contribution which removes the c-dependence of the result. Indeed, including

the contributions from the axino-gluon-gluino amplitude due to the loops of Q,Qc (see Fig.

2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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supermultiplets at p > MQ should be suppressed by some powers of MQ/p if one takes into

account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)
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√
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δ4(k + q + p)ū(k)σµνγ5v(q)ε
µpν, (2.30)

where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
gluino + axino (see Fig. 1), a simple dimensional analysis tells that the rate (per unit

volume) is given by

Γ(gg → g̃ã) = c2(xQ + xQc)2
ξg6sT

6

(16π2vPQ)2
, (2.31)

where ξ is a dimensionless coefficient which is independent of c. However this can not

be the correct answer as it depends on the field-basis parameter c, and there should be

additional contribution which removes the c-dependence of the result. Indeed, including

the contributions from the axino-gluon-gluino amplitude due to the loops of Q,Qc (see Fig.

2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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c(xQ + xQc) "∂
2vPQ

(a)

c(xQ + xQc) "∂
2vPQ

(b)

(1− c)(xQ + xQc) M
vPQ

(c)

(1− c)(xQ + xQc) M
vPQ

(d)

Figure 2: Contributions to the 1PI axino-gluino-gluon amplitudes from the loops of Q,Qc.

and also in the underlying UV theory (2.11). This means that axino production by gauge

supermultiplets at p > MQ should be suppressed by some powers of MQ/p if one takes into

account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)

16π2
√
2vPQ

δ4(k + q + p)ū(k)σµνγ5v(q)ε
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SUSY CW AXION MODEL
Kähler potential and superpotential

3

CaY Y is a model-dependent constant of order unity. Af-
ter clockworking, the above terms lead to interactions
between all axions and the SM gauge bosons:

L =

[

g2s
32π2

Gb
µνG̃

bµν +
g21CaY Y

16π2
BµνB̃

µν

]

× 1

f

(

N0

qN
a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
ak

)

. (11)

One can easily see that the coupling of the zero mode
axion is exponentially suppressed compared to that from
the actual symmetry breaking scale f while the others
are scaled by only 1/N3/2 for large N . For q = 2 and
N = 20, the exponential factor is around 106, so one can
achieve a good QCD axion even from f = 1 TeV.

If the zero mode is the QCD axion, it finally becomes
massive by the chiral symmetry breaking in the strong
sector of the SM, but the mass is still tiny. As is well
known, the QCD axion has very long lifetime, so it could
be a dark matter component. On the other hand, massive
states are rather strongly coupled to the SM sector. One
can obtain decay widths of the massive modes to the
photon pair as

Γak→γγ =
C2

aγγα
2
em

256π3
N 2

k q
2 sin2

kπ

N + 1

m3
ak

f2

∼(10−7 s)−1

(

20

N

)3(10 TeV

f

)2
( m

GeV

)3

(12)

where αem is the fine structure constant and Caγγ is
a constant determined by CaY Y and chiral symmetry
breaking effect (e.g., Caγγ $ −1.92 for Kim-Shifman-
Vainshtein-Zakharov (KSVZ) model [18]). These states
decay before the big bang nucleosynthesis (BBN) for
f = 10 TeV and m = 1 GeV. In most cases, therefore,
the massive states do not make significant impacts on the
evolution of the universe.

III. A SUPERSYMMETRIC EXTENSION

In this section, we consider a SUSY extension of the
clockwork axion model.

A. A model

Similar to a simple construction in Ref. [15], one can
consider a Kähler potential and a superpotential

K =
N
∑

j=0

(

X†
jXj + Y †

j Yj + Z†
jZj

)

, (13)

W =
N
∑

j=0

κZj

(

XjYj − v2
)

+
1

vq−1

N−1
∑

j=0

(

mXjY
q
j+1 +m′YjX

q
j+1

)

, (14)

where charge assignment of Zj , Xj , and Yj under U(1)j
is (0,+1,−1). The first term reflects the spontaneous
breaking of U(1) global symmetry near v while the second
term corresponds to a small explicit breaking effect for
m,m′ % v. We consider a generic case for m &= m′

leading to 〈Xj〉 &= 〈Yj〉 which is important for inter-dark-
sector couplings in Eq. (42). The fields are stabilized at

〈Zj〉 = −q + 1

κ

√
mm′, 〈Xj〉 = x, 〈Yj〉 = y (15)

where2

xy = v2, x =
(m

m′

)
1

2(q−1)
v. (16)

Below the spontaneous U(1) symmetry breaking scale,
this theory can be described by chiral superfields con-
taining pNGBs,

Φj =
1√
2
(σj + iφj) +

√
2θψj + θ2Fj , (17)

where σj and ψj are scalar and fermion partners of φj .
One can write

Xj = x eΦj/v0 , Yj = y e−Φj/v0 , (18)

where v0 =
√

x2 + y2. The effective Kähler potential
and superpotential become

Keff = v20

N
∑

j=0

[

cosh

(

Φj + Φ†
j

v0

)

+ξ sinh

(

Φj + Φ†
j

v0

)]

, (19)

Weff = mΦv
2
0

N−1
∑

j=0

cosh

(

Φj − qΦj+1

v0

)

, (20)

2 Here we can take a field basis where all parameters are taken to
be real and positive except κ. In this basis, the supersymmetric
effective action for the axion supermultiplets does not involve
any complex parameter as we will see below.
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where αem is the fine structure constant and Caγγ is
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photon pair as
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where αem is the fine structure constant and Caγγ is
a constant determined by CaY Y and chiral symmetry
breaking effect (e.g., Caγγ $ −1.92 for Kim-Shifman-
Vainshtein-Zakharov (KSVZ) model [18]). These states
decay before the big bang nucleosynthesis (BBN) for
f = 10 TeV and m = 1 GeV. In most cases, therefore,
the massive states do not make significant impacts on the
evolution of the universe.

III. A SUPERSYMMETRIC EXTENSION

In this section, we consider a SUSY extension of the
clockwork axion model.

A. A model

Similar to a simple construction in Ref. [15], one can
consider a Kähler potential and a superpotential
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where charge assignment of Zj , Xj , and Yj under U(1)j
is (0,+1,−1). The first term reflects the spontaneous
breaking of U(1) global symmetry near v while the second
term corresponds to a small explicit breaking effect for
m,m′ % v. We consider a generic case for m &= m′

leading to 〈Xj〉 &= 〈Yj〉 which is important for inter-dark-
sector couplings in Eq. (42). The fields are stabilized at
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mm′, 〈Xj〉 = x, 〈Yj〉 = y (15)

where2
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v. (16)

Below the spontaneous U(1) symmetry breaking scale,
this theory can be described by chiral superfields con-
taining pNGBs,

Φj =
1√
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(σj + iφj) +

√
2θψj + θ2Fj , (17)

where σj and ψj are scalar and fermion partners of φj .
One can write
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(

Φj − qΦj+1

v0

)

, (20)

2 Here we can take a field basis where all parameters are taken to
be real and positive except κ. In this basis, the supersymmetric
effective action for the axion supermultiplets does not involve
any complex parameter as we will see below.
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N U(1)'s are broken by m, m' > 0
One U(1) remains unbroken
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definition, m2
sb > −m2

Φ(q − 1)2 is required not to desta-
bilize axion directions. Once this condition is satisfied,
the mass difference δm2

ak
" m2

ak+1
−m2

ak
is given by

δm2
ak

> 2qm2
Φ

[

λk+1

(

1− cos
(k + 1)π

N + 1

)

−λk
(

1− cos
kπ

N + 1

)]

. (38)

Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK

ψ < 0, ã0 may not be the lightest

mode. In the case |mK
ψ | > mΦλN with negative mK

ψ , the
mass ordering of the axinos is inverted. The ordering may
be even not monotonic if |mK

ψ | < mΦλN . Nevertheless,
we consider the ‘normal’ hierarchy, i.e., m2

s0 < · · · < m2
sN

and mã0 < · · · < mãN
in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
Gb

µνG
bµν +

g21CaY Y

16π2
BµνB

µν

]

× 1√
2v0

(

N0

qN
s0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
sk

)

. (40)

We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(

N0

qN
¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
¯̃ak

)

×
(

g2sCaGG

32π2
Gb

µνσ
µνγ5g̃b +

g21CaY Y

16π2
Bµνσ

µνγ5B̃

)

,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑

j

OjnOjmOjl

× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)

+isn¯̃amγ
µ∂µãl − (∂µan)¯̃amγ

5γµãl
]

. (42)

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.

Clockwork structure 
appears
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where ξ = (x2 − y2)/v20 and

mΦ ≡ 2
√
mm′

(

v

v0

)2

. (21)

In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as

L =− g2s
32π2

CaGG

f0

∫

d2θA0WbαWb
α + h.c.

− g21
16π2

CaY Y

f0

∫

d2θA0WαWα + h.c., (24)

where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L =

∫

dθ2(1 +msθ
2)W + h.c.

→ V = −mΦ|ms|v20

×
N−1
∑

j=0

[

e(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

+ δs

)

+e−(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

− δs

)]

,

(25)

where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately

Vσ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cosh

(

σj − qσj+1√
2v0

)

,(26)

Vφ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cos

(

φj − qφj+1√
2v0

)

(27)

along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by

m2
sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3

Mass spectra for the pNGBs, scalars and fermions are
summarized as

M
2
φ = m2

ΦM
2
CW +m2

sbMCW, (29)

M
2
σ = m2

ΦM
2
CW −m2

sbMCW +
(

mK
σ

)2
I, (30)

Mψ = mΦMCW +mK
ψ I. (31)

The (N+1)×(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)

σj = Ojksk, (33)

ψj = Ojkãk, (34)

with mass eigenvalues

m2
ak

= m2
Φλ

2
k +m2

sbλk, (35)

m2
sk = m2

Φλ
2
k −m2

sbλk + (mK
σ )2, (36)

mãk
= mΦλk +mK

ψ (37)

and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.
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ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.



SUSY CW AXION MODEL

<latexit sha1_base64="c3DVJU0BhnGm9ukKlXA+//FQNiA="></latexit>

We↵ =
1

2
m�MCWij�i�j + · · ·

2

axino states produced from thermal bath contribute to
dark matter number density.
In this paper, we consider a simple model of the super-

symmetric clockwork axion, which consists of (N+1) chi-
ral superfields containing axions, axinos and also saxions
(scalar partners of axions). In the SUSY preserving limit,
all three components have the same clockwork structure
for masses and couplings. Once the SUSY is broken,
all three components receive SUSY breaking masses and
thus masses of saxions and axinos deviate from the axion
masses, while the couplings remain the same clockwork
structure. In a mass spectrum in which the axinos are
much lighter than the saxions and axions (except the
zero mode axion), the axinos are domaninatly produced
via the gluon scattering mediated by gluinos. The heavy
axinos eventually decay into the lightest axino which is
the dark matter in this model. Furthermore, due to the
clockwork structure, the axino DM number density is de-
termined by much more enhanced strengths than its ac-
tual interactions with the SM sector but is independent
of details of the clockwork gears (clockwork parameter
and number of gears).
This paper is organized as follows. In Sec. II, we briefly

review a clockwork axion model to show essential ele-
ments of the theory. In Sec. III, we consider a SUSY
extension and the mass spectrum for axions, saxions and
axinos. In Sec. IV, we present a complete list of processes
for axino production and the axino abundance in a sim-
ple spectrum. In Sec. V, we discuss some cosmological
issues related to the model. In Sec. VI, we conclude this
paper.

II. REVIEW OF CLOCKWORK AXION

In this section, we briefly review a clockwork axion
model to elucidate essential features of the clockwork
theory. In the next section, we will supersymmetrize the
clockwork axion and see what appears in the model. We
follow a simple formulation shown in Refs. [15, 16], but
the basic structure is the same as another formulations
in Refs. [13, 14, 17].
Let us consider N + 1 pNGBs originating from a bro-

ken global U(1)N+1 symmetry. Below the energy scale f
where all N + 1 U(1) symmetries are broken, Goldstone
fields are expressed by

Uj = feiφj/(
√
2f). (1)

The Lagrangian is given by

L =f2
N
∑

j=0

∂µUj∂
µUj +m2f2

N−1
∑

j=0

(

U †
jU

q
j+1 + h.c.

)

+ · · ·

=
1

2

N
∑

j=0

∂µφj∂
µφj − V (φj), (2)

where the ellipsis denotes higher order terms. The po-
tential of φ fields are given up to the quadratic order

by

V (φj) =−m2f2
N−1
∑

j=0

e−i(φj−qφj+1)/
√
2f + h.c.

=
1

2
m2

N−1
∑

j=0

(φj − qφj+1)
2 + · · · ,

=
1

2
m2

N
∑

i,j=0

MCWijφiφj + · · · , (3)

where a matrix MCW which we call here the clockwork
matrix is given by

MCW =

















1 −q 0 · · · 0
−q 1 + q2 −q · · · 0
0 −q 1 + q2 · · · 0
...

...
...

. . .
...

1 + q2 −q
0 0 0 · · · −q q2

















. (4)

The matrix is real and symmetric, and thus is diagonal-
ized by an orthogonal matrix O. Hence the mass eigen-
states aj satisfies the relation

φj = Ojkak (5)

with mass eigenvalues given by

O
T
MCWO = diag(λ0, · · · ,λk). (6)

The eigenvalues and mixing matrix components are given
by

λ0 = 0, λk = q2 + 1− 2q cos

(

kπ

N + 1

)

, (7)

Oj0 = N0
qj ,Ojk = Nk

[

q sin
jkπ

N + 1
− sin

(j + 1)kπ

N + 1

]

,(8)

for j = 0, · · · , N ; k = 1, · · · , N ,

where

N0 =

√

q2 − 1

q2 − q−2N
, Nk =

√

2

(N + 1)λk
. (9)

The axion masses are thus given by m2
aj

= m2λj . One
can see that one degree remains massless and it corre-
sponds to the U(1) not broken by mass terms in Eq. (2).
Suppose that the N -th field couples to the SM sector

via topological terms, i.e.,

L =

[

g2s
32π2

Gb
µνG̃

bµν +
g21CaY Y

16π2
BµνB̃

µν

]

φN
f

, (10)

where gs and g1 are SU(3)c and U(1)Y gauge coupling
constants, Gb

µν , Bµν , G̃b
µν and B̃µν are corresponding

gauge field strengths and their duals, respectively, and
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where ξ = (x2 − y2)/v20 and

mΦ ≡ 2
√
mm′

(

v

v0

)2

. (21)

In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as

L =− g2s
32π2

CaGG

f0

∫

d2θA0WbαWb
α + h.c.

− g21
16π2

CaY Y

f0

∫

d2θA0WαWα + h.c., (24)

where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L =

∫

dθ2(1 +msθ
2)W + h.c.

→ V = −mΦ|ms|v20

×
N−1
∑

j=0

[

e(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

+ δs

)

+e−(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

− δs

)]

,

(25)

where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately

Vσ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cosh

(

σj − qσj+1√
2v0

)

,(26)

Vφ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cos

(

φj − qφj+1√
2v0

)

(27)

along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by

m2
sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3

Mass spectra for the pNGBs, scalars and fermions are
summarized as

M
2
φ = m2

ΦM
2
CW +m2

sbMCW, (29)

M
2
σ = m2

ΦM
2
CW −m2

sbMCW +
(

mK
σ

)2
I, (30)

Mψ = mΦMCW +mK
ψ I. (31)

The (N+1)×(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)

σj = Ojksk, (33)

ψj = Ojkãk, (34)

with mass eigenvalues

m2
ak

= m2
Φλ

2
k +m2

sbλk, (35)

m2
sk = m2

Φλ
2
k −m2

sbλk + (mK
σ )2, (36)

mãk
= mΦλk +mK

ψ (37)

and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.
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where ξ = (x2 − y2)/v20 and

mΦ ≡ 2
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In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as

L =− g2s
32π2

CaGG

f0

∫

d2θA0WbαWb
α + h.c.

− g21
16π2

CaY Y

f0

∫

d2θA0WαWα + h.c., (24)

where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L =

∫

dθ2(1 +msθ
2)W + h.c.

→ V = −mΦ|ms|v20

×
N−1
∑

j=0

[

e(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

+ δs

)

+e−(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

− δs

)]

,

(25)

where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately

Vσ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cosh

(

σj − qσj+1√
2v0

)

,(26)

Vφ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cos

(

φj − qφj+1√
2v0

)

(27)

along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by

m2
sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3

Mass spectra for the pNGBs, scalars and fermions are
summarized as

M
2
φ = m2

ΦM
2
CW +m2

sbMCW, (29)
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2
σ = m2

ΦM
2
CW −m2

sbMCW +
(

mK
σ

)2
I, (30)

Mψ = mΦMCW +mK
ψ I. (31)

The (N+1)×(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)

σj = Ojksk, (33)

ψj = Ojkãk, (34)

with mass eigenvalues

m2
ak

= m2
Φλ

2
k +m2

sbλk, (35)

m2
sk = m2

Φλ
2
k −m2

sbλk + (mK
σ )2, (36)

mãk
= mΦλk +mK

ψ (37)

and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.
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where ξ = (x2 − y2)/v20 and

mΦ ≡ 2
√
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In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as

L =− g2s
32π2

CaGG

f0

∫

d2θA0WbαWb
α + h.c.

− g21
16π2

CaY Y

f0

∫

d2θA0WαWα + h.c., (24)

where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L =

∫

dθ2(1 +msθ
2)W + h.c.

→ V = −mΦ|ms|v20

×
N−1
∑

j=0

[

e(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

+ δs

)

+e−(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

− δs

)]

,

(25)

where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately

Vσ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cosh

(

σj − qσj+1√
2v0

)

,(26)

Vφ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cos

(

φj − qφj+1√
2v0

)

(27)

along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by

m2
sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3

Mass spectra for the pNGBs, scalars and fermions are
summarized as
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2
φ = m2

ΦM
2
CW +m2

sbMCW, (29)

M
2
σ = m2

ΦM
2
CW −m2

sbMCW +
(

mK
σ

)2
I, (30)

Mψ = mΦMCW +mK
ψ I. (31)

The (N+1)×(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)

σj = Ojksk, (33)

ψj = Ojkãk, (34)

with mass eigenvalues

m2
ak

= m2
Φλ

2
k +m2

sbλk, (35)

m2
sk = m2

Φλ
2
k −m2

sbλk + (mK
σ )2, (36)

mãk
= mΦλk +mK

ψ (37)

and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.
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where ξ = (x2 − y2)/v20 and
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In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as

L =− g2s
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CaGG
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d2θA0WbαWb
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− g21
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CaY Y

f0

∫
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where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
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L =
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×
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where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately
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along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by
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tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3
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summarized as
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In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as
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CaGG
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∫

d2θA0WbαWb
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− g21
16π2
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∫
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where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L =

∫

dθ2(1 +msθ
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×
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∑
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where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately
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∑
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along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by

m2
sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3

Mass spectra for the pNGBs, scalars and fermions are
summarized as
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2
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2
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sbMCW, (29)

M
2
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σ
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I, (30)

Mψ = mΦMCW +mK
ψ I. (31)

The (N+1)×(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)

σj = Ojksk, (33)

ψj = Ojkãk, (34)

with mass eigenvalues
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ak

= m2
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2
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sbλk, (35)

m2
sk = m2

Φλ
2
k −m2

sbλk + (mK
σ )2, (36)

mãk
= mΦλk +mK

ψ (37)

and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
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In the Kähler potential, we have omitted Z†Z since it
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where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
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B. SUSY breaking effects and mass spectrum
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〈Φj − qΦj+1〉 = 0. Near the point, the above potential
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along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by
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sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK
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ψ in generic cases, it is

possible to have mK
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the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)
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and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2
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will focus on parameter space where vacuum field con-
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along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by
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sb ≡ mΦ|ms| cos δs. (28)
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tial in Eq. (19), scalars and fermions acquire additional
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fields. We write mK
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and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
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it is expected to have mK
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ψ in generic cases, it is

possible to have mK
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and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2
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3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.

simultaneously diagonalized by

2

axino states produced from thermal bath contribute to
dark matter number density.
In this paper, we consider a simple model of the super-

symmetric clockwork axion, which consists of (N+1) chi-
ral superfields containing axions, axinos and also saxions
(scalar partners of axions). In the SUSY preserving limit,
all three components have the same clockwork structure
for masses and couplings. Once the SUSY is broken,
all three components receive SUSY breaking masses and
thus masses of saxions and axinos deviate from the axion
masses, while the couplings remain the same clockwork
structure. In a mass spectrum in which the axinos are
much lighter than the saxions and axions (except the
zero mode axion), the axinos are domaninatly produced
via the gluon scattering mediated by gluinos. The heavy
axinos eventually decay into the lightest axino which is
the dark matter in this model. Furthermore, due to the
clockwork structure, the axino DM number density is de-
termined by much more enhanced strengths than its ac-
tual interactions with the SM sector but is independent
of details of the clockwork gears (clockwork parameter
and number of gears).
This paper is organized as follows. In Sec. II, we briefly

review a clockwork axion model to show essential ele-
ments of the theory. In Sec. III, we consider a SUSY
extension and the mass spectrum for axions, saxions and
axinos. In Sec. IV, we present a complete list of processes
for axino production and the axino abundance in a sim-
ple spectrum. In Sec. V, we discuss some cosmological
issues related to the model. In Sec. VI, we conclude this
paper.

II. REVIEW OF CLOCKWORK AXION

In this section, we briefly review a clockwork axion
model to elucidate essential features of the clockwork
theory. In the next section, we will supersymmetrize the
clockwork axion and see what appears in the model. We
follow a simple formulation shown in Refs. [15, 16], but
the basic structure is the same as another formulations
in Refs. [13, 14, 17].
Let us consider N + 1 pNGBs originating from a bro-

ken global U(1)N+1 symmetry. Below the energy scale f
where all N + 1 U(1) symmetries are broken, Goldstone
fields are expressed by

Uj = feiφj/(
√
2f). (1)

The Lagrangian is given by

L =f2
N
∑

j=0

∂µUj∂
µUj +m2f2

N−1
∑

j=0

(

U †
jU

q
j+1 + h.c.

)

+ · · ·

=
1

2

N
∑

j=0

∂µφj∂
µφj − V (φj), (2)

where the ellipsis denotes higher order terms. The po-
tential of φ fields are given up to the quadratic order

by

V (φj) =−m2f2
N−1
∑

j=0

e−i(φj−qφj+1)/
√
2f + h.c.

=
1

2
m2

N−1
∑

j=0

(φj − qφj+1)
2 + · · · ,

=
1

2
m2

N
∑

i,j=0

MCWijφiφj + · · · , (3)

where a matrix MCW which we call here the clockwork
matrix is given by

MCW =

















1 −q 0 · · · 0
−q 1 + q2 −q · · · 0
0 −q 1 + q2 · · · 0
...

...
...

. . .
...

1 + q2 −q
0 0 0 · · · −q q2

















. (4)

The matrix is real and symmetric, and thus is diagonal-
ized by an orthogonal matrix O. Hence the mass eigen-
states aj satisfies the relation

φj = Ojkak (5)

with mass eigenvalues given by

O
T
MCWO = diag(λ0, · · · ,λk). (6)

The eigenvalues and mixing matrix components are given
by

λ0 = 0, λk = q2 + 1− 2q cos

(

kπ

N + 1

)

, (7)

Oj0 = N0
qj ,Ojk = Nk

[

q sin
jkπ

N + 1
− sin

(j + 1)kπ

N + 1

]

,(8)

for j = 0, · · · , N ; k = 1, · · · , N ,

where

N0 =

√

q2 − 1

q2 − q−2N
, Nk =

√

2

(N + 1)λk
. (9)

The axion masses are thus given by m2
aj

= m2λj . One
can see that one degree remains massless and it corre-
sponds to the U(1) not broken by mass terms in Eq. (2).
Suppose that the N -th field couples to the SM sector

via topological terms, i.e.,

L =

[

g2s
32π2

Gb
µνG̃

bµν +
g21CaY Y

16π2
BµνB̃

µν

]

φN
f

, (10)

where gs and g1 are SU(3)c and U(1)Y gauge coupling
constants, Gb

µν , Bµν , G̃b
µν and B̃µν are corresponding

gauge field strengths and their duals, respectively, and
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axino states produced from thermal bath contribute to
dark matter number density.
In this paper, we consider a simple model of the super-

symmetric clockwork axion, which consists of (N+1) chi-
ral superfields containing axions, axinos and also saxions
(scalar partners of axions). In the SUSY preserving limit,
all three components have the same clockwork structure
for masses and couplings. Once the SUSY is broken,
all three components receive SUSY breaking masses and
thus masses of saxions and axinos deviate from the axion
masses, while the couplings remain the same clockwork
structure. In a mass spectrum in which the axinos are
much lighter than the saxions and axions (except the
zero mode axion), the axinos are domaninatly produced
via the gluon scattering mediated by gluinos. The heavy
axinos eventually decay into the lightest axino which is
the dark matter in this model. Furthermore, due to the
clockwork structure, the axino DM number density is de-
termined by much more enhanced strengths than its ac-
tual interactions with the SM sector but is independent
of details of the clockwork gears (clockwork parameter
and number of gears).
This paper is organized as follows. In Sec. II, we briefly

review a clockwork axion model to show essential ele-
ments of the theory. In Sec. III, we consider a SUSY
extension and the mass spectrum for axions, saxions and
axinos. In Sec. IV, we present a complete list of processes
for axino production and the axino abundance in a sim-
ple spectrum. In Sec. V, we discuss some cosmological
issues related to the model. In Sec. VI, we conclude this
paper.

II. REVIEW OF CLOCKWORK AXION

In this section, we briefly review a clockwork axion
model to elucidate essential features of the clockwork
theory. In the next section, we will supersymmetrize the
clockwork axion and see what appears in the model. We
follow a simple formulation shown in Refs. [15, 16], but
the basic structure is the same as another formulations
in Refs. [13, 14, 17].
Let us consider N + 1 pNGBs originating from a bro-

ken global U(1)N+1 symmetry. Below the energy scale f
where all N + 1 U(1) symmetries are broken, Goldstone
fields are expressed by

Uj = feiφj/(
√
2f). (1)

The Lagrangian is given by

L =f2
N
∑

j=0

∂µUj∂
µUj +m2f2

N−1
∑

j=0

(

U †
jU

q
j+1 + h.c.

)

+ · · ·

=
1

2

N
∑

j=0

∂µφj∂
µφj − V (φj), (2)

where the ellipsis denotes higher order terms. The po-
tential of φ fields are given up to the quadratic order

by

V (φj) =−m2f2
N−1
∑

j=0

e−i(φj−qφj+1)/
√
2f + h.c.

=
1

2
m2

N−1
∑

j=0

(φj − qφj+1)
2 + · · · ,

=
1

2
m2

N
∑

i,j=0

MCWijφiφj + · · · , (3)

where a matrix MCW which we call here the clockwork
matrix is given by

MCW =

















1 −q 0 · · · 0
−q 1 + q2 −q · · · 0
0 −q 1 + q2 · · · 0
...

...
...

. . .
...

1 + q2 −q
0 0 0 · · · −q q2

















. (4)

The matrix is real and symmetric, and thus is diagonal-
ized by an orthogonal matrix O. Hence the mass eigen-
states aj satisfies the relation

φj = Ojkak (5)

with mass eigenvalues given by

O
T
MCWO = diag(λ0, · · · ,λk). (6)

The eigenvalues and mixing matrix components are given
by

λ0 = 0, λk = q2 + 1− 2q cos

(

kπ

N + 1

)

, (7)

Oj0 = N0
qj ,Ojk = Nk

[

q sin
jkπ

N + 1
− sin

(j + 1)kπ

N + 1

]

,(8)

for j = 0, · · · , N ; k = 1, · · · , N ,

where

N0 =

√

q2 − 1

q2 − q−2N
, Nk =

√

2

(N + 1)λk
. (9)

The axion masses are thus given by m2
aj

= m2λj . One
can see that one degree remains massless and it corre-
sponds to the U(1) not broken by mass terms in Eq. (2).
Suppose that the N -th field couples to the SM sector
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L =
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g2s
32π2

Gb
µνG̃

bµν +
g21CaY Y

16π2
BµνB̃

µν

]

φN
f

, (10)

where gs and g1 are SU(3)c and U(1)Y gauge coupling
constants, Gb

µν , Bµν , G̃b
µν and B̃µν are corresponding

gauge field strengths and their duals, respectively, and
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where ξ = (x2 − y2)/v20 and

mΦ ≡ 2
√
mm′

(

v

v0

)2

. (21)

In the Kähler potential, we have omitted Z†Z since it
is irrelevant in the low energy dynamics. The above su-
perpotential shows that the supersymmetric minimum is
achieved for 〈Φj − qΦj+1〉 = 0 and the supersymmetric
mass term indeed has the clockwork structure propor-
tional to an overall mass scale mΦ. One can obtain su-
perfields in the eigenbasis with mixing matrix in Eq. (8):

Φi = OijAj . (22)

Hence one supermultiplet remains massless after clock-
working.
Similarly to the clockwork axion model, one can intro-

duce couplings of the N -th superfield to the SM gauge
fields as

L =− g2s
32π2

CaGG

v0

∫

d2θΦNWbαWb
α + h.c.

− g21
16π2

CaY Y

v0

∫

d2θΦNWαWα + h.c., (23)

where Wb is the gluon superfield, W is the hypercharge
superfield, and CaGG and CaY Y are model-dependent co-
efficients of the order of unity. After clockworking, the
zero mode superfield has exponentially suppressed inter-
actions as

L =− g2s
32π2

CaGG

f0

∫

d2θA0WbαWb
α + h.c.

− g21
16π2

CaY Y

f0

∫

d2θA0WαWα + h.c., (24)

where f0 = qNv0.

B. SUSY breaking effects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. The pNGBs and scalar partners would
receive mass contributions from SUSY breaking in the
superpotential as

L =

∫

dθ2(1 +msθ
2)W + h.c.

→ V = −mΦ|ms|v20

×
N−1
∑

j=0

[

e(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

+ δs

)

+e−(σj−qσj+1)/
√
2v0 cos

(

φj − qφj+1√
2v0

− δs

)]

,

(25)

where δs is the complex phase of ms. For simplicity, we
will focus on parameter space where vacuum field con-
figuration is close to the supersymmetric minimum point

〈Φj − qΦj+1〉 = 0. Near the point, the above potential
becomes approximately

Vσ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cosh

(

σj − qσj+1√
2v0

)

,(26)

Vφ ( −2mΦ|ms|v20 cos δs
N−1
∑

j=0

cos

(

φj − qφj+1√
2v0

)

(27)

along the scalar and pNGB directions, respectively. It
contributes to squared masses with the clockwork struc-
ture for the pNGBs and their scalar partners. The mass
scale for this contribution is determined by

m2
sb ≡ mΦ|ms| cos δs. (28)

If SUSY breaking effects also arise in the Kähler poten-
tial in Eq. (19), scalars and fermions acquire additional
masses which are diagonal in the basis of chiral super-
fields. We write mK

σ and mK
ψ , repectively, for the scalars

and fermions. We further assume these terms are the
same for all j’s, and thus the mass matrices from this con-
tribution are proportional to the identity matrix. While
it is expected to have mK

σ ∼ mK
ψ in generic cases, it is

possible to have mK
σ * mK

ψ in some cases.3

Mass spectra for the pNGBs, scalars and fermions are
summarized as

M
2
φ = m2

ΦM
2
CW +m2

sbMCW, (29)

M
2
σ = m2

ΦM
2
CW −m2

sbMCW +
(

mK
σ

)2
I, (30)

Mψ = mΦMCW +mK
ψ I. (31)

The (N+1)×(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by
the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

φj = Ojkak, (32)

σj = Ojksk, (33)

ψj = Ojkãk, (34)

with mass eigenvalues

m2
ak

= m2
Φλ

2
k +m2

sbλk, (35)

m2
sk = m2

Φλ
2
k −m2

sbλk + (mK
σ )2, (36)

mãk
= mΦλk +mK

ψ (37)

and call these states axions, saxions and axinos, respec-
tively. While the zero mode axion, a0 is massless in that
the mass term is determined only by λ0, both s0 and
ã0 become massive due to the SUSY breaking effect in
the Kähler potential. While m2

Φ is always positive by

3 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with m

K
σ !

m
K
ψ
.

axions
saxions
axinos

KJB, Im
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definition, m2
sb > −m2

Φ(q − 1)2 is required not to desta-
bilize axion directions. Once this condition is satisfied,
the mass difference δm2

ak
" m2

ak+1
−m2

ak
is given by

δm2
ak

> 2qm2
Φ

[

λk+1

(

1− cos
(k + 1)π

N + 1

)

−λk
(

1− cos
kπ

N + 1

)]

. (38)

Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK

ψ < 0, ã0 may not be the lightest

mode. In the case |mK
ψ | > mΦλN with negative mK

ψ , the
mass ordering of the axinos is inverted. The ordering may
be even not monotonic if |mK

ψ | < mΦλN . Nevertheless,
we consider the ‘normal’ hierarchy, i.e., m2

s0 < · · · < m2
sN

and mã0 < · · · < mãN
in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
Gb

µνG
bµν +

g21CaY Y

16π2
BµνB

µν

]

× 1√
2v0

(

N0

qN
s0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
sk

)

. (40)

We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(

N0

qN
¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
¯̃ak

)

×
(

g2sCaGG

32π2
Gb

µνσ
µνγ5g̃b +

g21CaY Y

16π2
Bµνσ

µνγ5B̃

)

,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑

j

OjnOjmOjl

× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)

+isn¯̃amγ
µ∂µãl − (∂µan)¯̃amγ

5γµãl
]

. (42)

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.
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[
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(
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(

1− cos
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Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK
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mode. In the case |mK
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ψ , the
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ψ | < mΦλN . Nevertheless,
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in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by
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(
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We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:
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where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:
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From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.

1) gluon-gluino-axino vertices

2) axion-axino-axino vertices
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with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
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tion remains. On the other hand, the SUSY breaking in
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interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(

N0

qN
¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
¯̃ak

)

×
(

g2sCaGG

32π2
Gb

µνσ
µνγ5g̃b +

g21CaY Y

16π2
Bµνσ

µνγ5B̃

)

,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑

j

OjnOjmOjl

× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)

+isn¯̃amγ
µ∂µãl − (∂µan)¯̃amγ

5γµãl
]

. (42)

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.

5

definition, m2
sb > −m2

Φ(q − 1)2 is required not to desta-
bilize axion directions. Once this condition is satisfied,
the mass difference δm2

ak
" m2

ak+1
−m2

ak
is given by

δm2
ak

> 2qm2
Φ

[

λk+1

(

1− cos
(k + 1)π

N + 1

)

−λk
(

1− cos
kπ

N + 1

)]

. (38)

Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK

ψ < 0, ã0 may not be the lightest

mode. In the case |mK
ψ | > mΦλN with negative mK

ψ , the
mass ordering of the axinos is inverted. The ordering may
be even not monotonic if |mK

ψ | < mΦλN . Nevertheless,
we consider the ‘normal’ hierarchy, i.e., m2

s0 < · · · < m2
sN

and mã0 < · · · < mãN
in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
Gb

µνG
bµν +

g21CaY Y

16π2
BµνB

µν

]

× 1√
2v0

(

N0

qN
s0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
sk

)

. (40)

We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0
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N0
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¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
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,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:
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From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.
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one flat direction while the others become massive. It
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with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
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superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
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metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
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ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by
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(
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∑
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We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:
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where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
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From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.
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does not change under

Φj → Φj + q−jα (39)
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tion remains. On the other hand, the SUSY breaking in
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effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
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preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
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µνG
bµν +
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16π2
BµνB
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]

× 1√
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(
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We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(
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×
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where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑
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× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)
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]
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From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.

responsible for axino production

responsible for axino decay

<latexit sha1_base64="ci9TsXcz6XTUFhOVBQ0MQsLrSAg="></latexit>

↵s

8v0

Z
d2✓�NW bW b

KJB, Im



OUTLINE

1. Introduction

2. Axino production

3. Clockwork axion model

4. Axino dark matter in clockwork 

axion model

5. Conclusion



SECLUDED SPECTRUM
Assumption

<latexit sha1_base64="9/XlTg6mrav3tMsZR09e7iABNCE="></latexit>

mg̃ � TR � ms,a � mã
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IV. THERMAL PRODUCTION OF AXINOS

In this section, we discuss thermal production of axinos
in the early Universe. Since the whole dark sector (i.e.,
axion supermultiplets) communicates with the SM sector
via the interactions in Eq. (23) and clockworking, all the
axions, saxions and axinos are produced from thermal
plasma after the primordial inflation. In a SUSY exten-
sion, the axinos are odd while the saxions and axions are
even under the R-parity if it is preserved. Therefore the
lightest axino can be a dark matter candidate if it is the
lightest R-parity odd particle. The saxions and axions
except a0, however, would normally disappear by decay-
ing into another light species such as gluons and photons.
In this respect, axino production is more prominent than
the others for dark matter physics. We focus on how
axinos are produced.
The axino production consists of the following chan-

nels: 1) gluino-mediated process, 2) saxion/axion-
mediated process, and 3) production from saxion/axino
decay. In particular, we will consider a relatively low
reheat temperature TR below the SUSY breaking scale
so that axino production is mainly from the SM thermal
bath. The reason is that the thermal yield of the lightest
axino can easily saturate the DM abundance enhanced
by a certain power of the clockwork factor qN compared
to the conventional scenarios as we will see.

A. Gluino-mediated process

From the interactions with gauge bosons in Eq. (41),
axinos can be produced from the thermal plasma. If the
temperature is larger than masses of the SUSY particles
in the SM sector, the single-axino production is the dom-
inant process which includes the other SUSY particles in
either the initial or final state. This scenario has been in-
tensively studied both for the KSVZ-type model [25–28]
and for the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)-
type model [29–31]. If the temperature is smaller than
masses of the SUSY particles in the SM sector but still
larger than the axino mass, e.g., mã ! T ! mg̃ ∼ mq̃,
the single-axino production is Boltzmann-suppressed. In-
stead, the axino pair production becomes more impor-
tant [32]. By integrating out the gluino field in Eq. (41),
one can obtain an effective Lagrangian for the axino pair
production, i.e., gg → ãnãm:

Lggãã =− α2
sC

2
aGG

1024π2v20mg̃
ONnONm

×¯̃an[γ
µ, γν ][γρ, γσ]ãmGb

µνG
b
ρσ . (43)

The squared amplitude for this process is given by

|Mg̃
nm|2 =

α4
sC

4
aGG

16π4v40m
2
g̃

|ONnONm|2 s3(1 + cos θ)2, (44)

where s is the square of the center of mass energy and
θ is the angle between the incoming gluon and outgoing

axino. Here we have summed over all possible degrees of
freedom for both the initial and final states.

B. Saxion/axion-mediated process

Another channel for the axino pair production is re-
alized by the saxion- or axion-mediated processes. The
interactions in Eqs. (40) and (42) lead to a scattering pro-
cess gg → (s∗l or a∗l ) → ãnãm, and its squared amplitude
is given by

∣

∣

∣
Ms/a

nm

∣

∣

∣

2
=
ξ2α2

sC
2
aGG

2π2v40

∣

∣

∣

∣

∣

∣

∑

l,j

ONlOjlOjnOjm

(

1

s−m2
l

)

∣

∣

∣

∣

∣

∣

2

×(mãn
+mãm

)2s3, (45)

where ml is a mass of sl or al. If s & m2
l , the squared

amplitude is further simplified, so one can find
∣

∣

∣
Ms/a

nm

∣

∣

∣

2
'ξ

2α2
sC

2
aGG

2π2v40
|ONnONm|2

×(mãn
+mãm

)2s, (46)

where we have used an identity
∑

l,j

ONlOjlOjnOjm = ONnONm. (47)

If s ! m2
l , the squared amplitude is approximately given

by
∣

∣

∣
Ms/a

nm

∣

∣

∣

2
' ξ2α2

sC
2
aGG

2π2v40m
4
s/a

|ONnONm|2

×(mãn
+mãm

)2s3 (48)

where we have assumed ml ∼ ms/a for all l, i.e., all
masses are of the same order. In this argument, we have
also neglected the zero mode axion contribution since its
coupling is exponentially suppressed.

C. Production from saxion/axion decay

Because of the interactions in Eq. (42), saxions and
axions can decay into axino pairs. One can easily find
their partial decay widths:

Γ(sl/al → ãnãm) =
ξ2ml

16πv20
(mãn

+mãm
)2

×

∣

∣

∣

∣

∣

∣

∑

j

OjlOjmOjn

∣

∣

∣

∣

∣

∣

2

∆nm, (49)

where ∆nm = 1 (1/2) for n (= m (n = m). Meanwhile,
saxions and axions can also decay into gluon pairs with
the partial decay widths

Γ(sl/al → gg) =
α2
sC

2
aGGm

3
l

64π3v20
|ONl|2. (50)

For mãn
+ mãm

! ml, saxions and axions decay domi-
nantly into gluons.
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in the early Universe. Since the whole dark sector (i.e.,
axion supermultiplets) communicates with the SM sector
via the interactions in Eq. (23) and clockworking, all the
axions, saxions and axinos are produced from thermal
plasma after the primordial inflation. In a SUSY exten-
sion, the axinos are odd while the saxions and axions are
even under the R-parity if it is preserved. Therefore the
lightest axino can be a dark matter candidate if it is the
lightest R-parity odd particle. The saxions and axions
except a0, however, would normally disappear by decay-
ing into another light species such as gluons and photons.
In this respect, axino production is more prominent than
the others for dark matter physics. We focus on how
axinos are produced.
The axino production consists of the following chan-

nels: 1) gluino-mediated process, 2) saxion/axion-
mediated process, and 3) production from saxion/axino
decay. In particular, we will consider a relatively low
reheat temperature TR below the SUSY breaking scale
so that axino production is mainly from the SM thermal
bath. The reason is that the thermal yield of the lightest
axino can easily saturate the DM abundance enhanced
by a certain power of the clockwork factor qN compared
to the conventional scenarios as we will see.

A. Gluino-mediated process

From the interactions with gauge bosons in Eq. (41),
axinos can be produced from the thermal plasma. If the
temperature is larger than masses of the SUSY particles
in the SM sector, the single-axino production is the dom-
inant process which includes the other SUSY particles in
either the initial or final state. This scenario has been in-
tensively studied both for the KSVZ-type model [25–28]
and for the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)-
type model [29–31]. If the temperature is smaller than
masses of the SUSY particles in the SM sector but still
larger than the axino mass, e.g., mã ! T ! mg̃ ∼ mq̃,
the single-axino production is Boltzmann-suppressed. In-
stead, the axino pair production becomes more impor-
tant [32]. By integrating out the gluino field in Eq. (41),
one can obtain an effective Lagrangian for the axino pair
production, i.e., gg → ãnãm:

Lggãã =− α2
sC

2
aGG

1024π2v20mg̃
ONnONm

×¯̃an[γ
µ, γν ][γρ, γσ]ãmGb

µνG
b
ρσ . (43)

The squared amplitude for this process is given by

|Mg̃
nm|2 =

α4
sC

4
aGG

16π4v40m
2
g̃

|ONnONm|2 s3(1 + cos θ)2, (44)

where s is the square of the center of mass energy and
θ is the angle between the incoming gluon and outgoing

axino. Here we have summed over all possible degrees of
freedom for both the initial and final states.

B. Saxion/axion-mediated process

Another channel for the axino pair production is re-
alized by the saxion- or axion-mediated processes. The
interactions in Eqs. (40) and (42) lead to a scattering pro-
cess gg → (s∗l or a∗l ) → ãnãm, and its squared amplitude
is given by
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where ml is a mass of sl or al. If s & m2
l , the squared

amplitude is further simplified, so one can find
∣
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+mãm
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where we have used an identity
∑

l,j

ONlOjlOjnOjm = ONnONm. (47)

If s ! m2
l , the squared amplitude is approximately given
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where we have assumed ml ∼ ms/a for all l, i.e., all
masses are of the same order. In this argument, we have
also neglected the zero mode axion contribution since its
coupling is exponentially suppressed.

C. Production from saxion/axion decay

Because of the interactions in Eq. (42), saxions and
axions can decay into axino pairs. One can easily find
their partial decay widths:
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where ∆nm = 1 (1/2) for n (= m (n = m). Meanwhile,
saxions and axions can also decay into gluon pairs with
the partial decay widths

Γ(sl/al → gg) =
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For mãn
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! ml, saxions and axions decay domi-
nantly into gluons.
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and also in the underlying UV theory (2.11). This means that axino production by gauge

supermultiplets at p > MQ should be suppressed by some powers of MQ/p if one takes into

account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)

16π2
√
2vPQ

δ4(k + q + p)ū(k)σµνγ5v(q)ε
µpν, (2.30)

where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
gluino + axino (see Fig. 1), a simple dimensional analysis tells that the rate (per unit

volume) is given by

Γ(gg → g̃ã) = c2(xQ + xQc)2
ξg6sT

6

(16π2vPQ)2
, (2.31)

where ξ is a dimensionless coefficient which is independent of c. However this can not

be the correct answer as it depends on the field-basis parameter c, and there should be

additional contribution which removes the c-dependence of the result. Indeed, including

the contributions from the axino-gluon-gluino amplitude due to the loops of Q,Qc (see Fig.

2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
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where ξ is a dimensionless coefficient which is independent of c. However this can not

be the correct answer as it depends on the field-basis parameter c, and there should be

additional contribution which removes the c-dependence of the result. Indeed, including

the contributions from the axino-gluon-gluino amplitude due to the loops of Q,Qc (see Fig.

2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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ã

(b)

ga

gb

g̃b

g̃c

ã
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where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
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where ξ is a dimensionless coefficient which is independent of c. However this can not
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2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
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2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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c(xQ + xQc) "∂
2vPQ

(a)

c(xQ + xQc) "∂
2vPQ

(b)

(1− c)(xQ + xQc) M
vPQ

(c)

(1− c)(xQ + xQc) M
vPQ

(d)

Figure 2: Contributions to the 1PI axino-gluino-gluon amplitudes from the loops of Q,Qc.

and also in the underlying UV theory (2.11). This means that axino production by gauge

supermultiplets at p > MQ should be suppressed by some powers of MQ/p if one takes into

account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)

16π2
√
2vPQ

δ4(k + q + p)ū(k)σµνγ5v(q)ε
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component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
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be the correct answer as it depends on the field-basis parameter c, and there should be
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2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
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2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)

16π2√
2vPQ

δ
4
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where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
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2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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5

definition, m2
sb > −m2

Φ(q − 1)2 is required not to desta-
bilize axion directions. Once this condition is satisfied,
the mass difference δm2

ak
" m2

ak+1
−m2

ak
is given by

δm2
ak

> 2qm2
Φ

[

λk+1

(

1− cos
(k + 1)π

N + 1

)

−λk
(

1− cos
kπ

N + 1

)]

. (38)

Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK

ψ < 0, ã0 may not be the lightest

mode. In the case |mK
ψ | > mΦλN with negative mK

ψ , the
mass ordering of the axinos is inverted. The ordering may
be even not monotonic if |mK

ψ | < mΦλN . Nevertheless,
we consider the ‘normal’ hierarchy, i.e., m2

s0 < · · · < m2
sN

and mã0 < · · · < mãN
in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
Gb

µνG
bµν +

g21CaY Y

16π2
BµνB

µν

]

× 1√
2v0

(

N0

qN
s0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
sk

)

. (40)

We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(

N0

qN
¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
¯̃ak

)

×
(

g2sCaGG

32π2
Gb

µνσ
µνγ5g̃b +

g21CaY Y

16π2
Bµνσ

µνγ5B̃

)

,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑

j

OjnOjmOjl

× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)

+isn¯̃amγ
µ∂µãl − (∂µan)¯̃amγ

5γµãl
]

. (42)

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.

5

definition, m2
sb > −m2

Φ(q − 1)2 is required not to desta-
bilize axion directions. Once this condition is satisfied,
the mass difference δm2

ak
" m2

ak+1
−m2

ak
is given by

δm2
ak

> 2qm2
Φ

[

λk+1

(

1− cos
(k + 1)π

N + 1

)

−λk
(

1− cos
kπ

N + 1

)]

. (38)

Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK

ψ < 0, ã0 may not be the lightest

mode. In the case |mK
ψ | > mΦλN with negative mK

ψ , the
mass ordering of the axinos is inverted. The ordering may
be even not monotonic if |mK

ψ | < mΦλN . Nevertheless,
we consider the ‘normal’ hierarchy, i.e., m2

s0 < · · · < m2
sN

and mã0 < · · · < mãN
in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
Gb

µνG
bµν +

g21CaY Y

16π2
BµνB

µν

]

× 1√
2v0

(

N0

qN
s0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
sk

)

. (40)

We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(

N0

qN
¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
¯̃ak

)

×
(
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32π2
Gb
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µνγ5g̃b +
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16π2
Bµνσ

µνγ5B̃

)

,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑

j

OjnOjmOjl

× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)

+isn¯̃amγ
µ∂µãl − (∂µan)¯̃amγ

5γµãl
]

. (42)

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.
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Since λk+1 > λk and the cosine is monotonically decreas-
ing, δm2

ak
is always positive. Thus the ordering of axion

mass eigenvalues is the same as that in Eq. (6), although
mass differences alter. On the other hand, the ordering
of eigenvalues can be different for the saxions and axinos.
If m2

sb # m2
Φ (i.e. |ms| cos δs # mΦ), the λk-dependent

part becomes negative so as to destabilize the supersym-
metric vacuum. Yet if (mK

σ )2 is large enough, the super-
symmetric vacuum can be maintained. In this case, the
largest eigenvalue is m2

s0 while the smallest one is m2
sN .

The mass ordering of the saxions is inverted when being
compared to that of the axions. The same thing happens
for the axinos. If mK

ψ < 0, ã0 may not be the lightest

mode. In the case |mK
ψ | > mΦλN with negative mK

ψ , the
mass ordering of the axinos is inverted. The ordering may
be even not monotonic if |mK

ψ | < mΦλN . Nevertheless,
we consider the ‘normal’ hierarchy, i.e., m2

s0 < · · · < m2
sN

and mã0 < · · · < mãN
in later discussion.

Some comments are in order about conditions to get
the clockwork mixing pattern in Eqs. (32)-(34), which is
crucial for exponential coupling hierarchy. In the limit of
m,m′ → 0, the global U(1)N+1 symmetry is preserved
and thus there exist N + 1 chiral superfields, Φj , corre-
sponding toN+1 flat directions, XjYj = v2. Oncem and
m′ are turned on, the global U(1)N+1 symmetry is bro-
ken down to U(1). The remaining U(1) symmetry leaves
one flat direction while the others become massive. It
can be explicitly seen by the fact that the superpotential
does not change under

Φj → Φj + q−jα (39)

with a constant α. This ensures the superfield corre-
sponding to the remaining flat direction to have expo-
nentially small couplings. The SUSY breaking in the
superpotential (25) also respects it, so the flat direc-
tion remains. On the other hand, the SUSY breaking in
the Kähler potential develops masses of the scalars and
fermions, while the masses do not respect the above sym-
metry. This means that except the axion, the saxion and
axino may not get small couplings if the SUSY breaking
effect in the Kähler potential is significant. More quan-
titatively those SUSY breaking contributions for their
mass matrices (mK

σ )ij and (mK
ψ )ij have to be sufficiently

small compared to mΦ or msb, or closely proportional to
the identity matrix as in Eqs. (30) and (31) in order to
preserve the clockwork coupling hierarchy. The hierarchy
would be spoiled if departure from being proportional to
the identity matrix is of the order of mΦ or msb. This

argument is valid even when the supersymmetric parame-
ters κ, v,m,m′ in (14) and the SUSY breaking parameter
ms in (25) are dependent on sites j. Such dependency
makes a difference only on mass eigenvalues in Eqs. (35)
- (37) without qualitatively changing our results.
Let us finally make a remark for a benchmark spec-

trum. If we want to identify the zero mode axion a0 as
QCD axion with an intermediate scale decay constant,
v0 can be as low as O(1) TeV for N ! 20. Effective de-
scriptions in Eqs. (19), (20), and (25) are valid only for
m,m′,ms % v0. Hence all states are expected to be near
or below the weak scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in
Eq. (23). The saxion-gauge boson interactions are given
by

Lsax =

[

g2sCaGG

32π2
Gb

µνG
bµν +

g21CaY Y

16π2
BµνB

µν

]

× 1√
2v0

(

N0

qN
s0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
sk

)

. (40)

We neglect axion-gluino, saxion-gluino and saxion-squark
interactions derived from Eq. (23) since they are irrele-
vant in the later discussion. The axino interactions are
derived in the same way:

Laxn=
1√
2v0

(

N0

qN
¯̃a0 −

N
∑

k=1

(−1)kNkq sin
kπ

N + 1
¯̃ak

)

×
(

g2sCaGG

32π2
Gb

µνσ
µνγ5g̃b +

g21CaY Y

16π2
Bµνσ

µνγ5B̃

)

,

(41)

where σµν ≡ i
2 [γ

µ, γν ]. The gluino and bino are denoted

by g̃ and B̃. It is noteworthy that we use Majorana
spinors for axinos and gauginos in Eq. (41) and the later
discussion.
In addition, the Kähler potential in Eq. (19) generates

qubic (and also higher-order) interactions between the
axions, saxions and axinos:

K ⊃ ξ

3!
v20

N
∑

j=0

(

Φj + Φ†
j

v0

)3

→ Lnml =
ξ√
2v0

N
∑

j

OjnOjmOjl

× [sn(∂µam)(∂µal) + sn(∂µsm)(∂µsl)

+isn¯̃amγ
µ∂µãl − (∂µan)¯̃amγ

5γµãl
]

. (42)

From this Lagrangian, one can easily read off all trilinear
interactions which mediates inter-dark-sector transitions.
Here we assume Fj = 0 for all j’s.
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Figure 1: Diagrams for the process g + g → g̃ + ã.
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Figure 2: Contributions to the 1PI axino-gluino-gluon amplitudes from the loops of Q,Qc.

and also in the underlying UV theory (2.11). This means that axino production by gauge

supermultiplets at p > MQ should be suppressed by some powers of MQ/p if one takes into

account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon

amplitude

AW (k, q, p) = −
g2c(xQ + xQc)

16π2
√
2vPQ

δ4(k + q + p)ū(k)σµνγ5v(q)ε
µpν, (2.30)

where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
gluino + axino (see Fig. 1), a simple dimensional analysis tells that the rate (per unit

volume) is given by

Γ(gg → g̃ã) = c2(xQ + xQc)2
ξg6sT

6

(16π2vPQ)2
, (2.31)

where ξ is a dimensionless coefficient which is independent of c. However this can not

be the correct answer as it depends on the field-basis parameter c, and there should be

additional contribution which removes the c-dependence of the result. Indeed, including

the contributions from the axino-gluon-gluino amplitude due to the loops of Q,Qc (see Fig.

2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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account the interactions (2.27) − (2.29) altogether to get a correct c-independent result.

On the other hand, the interaction (2.27) by itself does not involve any suppression by

MQ/p, and therefore the analysis using (2.27) alone gives a highly overestimated result in

the limit p $ MQ.

More explicitly, the effective interaction (2.27) gives the Wilsonian axino-gluino-gluon
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where pµ and εµ are the gluon momentum and polarization, and u(k) and v(q) are the 4-

component Majorana spinor wavefunction of the axino and gluino, respectively. If one uses

this amplitude alone to compute the axino production rate in the process gluon+gluon →
gluino + axino (see Fig. 1), a simple dimensional analysis tells that the rate (per unit

volume) is given by

Γ(gg → g̃ã) = c
2
(xQ + xQc)2 ξg6
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(16π2vPQ)2 , (2.31)

where ξ is a dimensionless coefficient which is independent of c. However this can not

be the correct answer as it depends on the field-basis parameter c, and there should be

additional contribution which removes the c-dependence of the result. Indeed, including

the contributions from the axino-gluon-gluino amplitude due to the loops of Q,Qc (see Fig.

2), which involve the c-dependent axino-matter couplings in (2.28) and (2.29), we find that
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D. Secluded spectrum

Comparing the gluino-mediated and saxion/axion-
mediated processes, the relative ratio between squared
amplitudes is given by

R ≡ |Mg̃
nm|2

|Ms/a
nm|2

∼ α2
sC

2
aGG

8π2ξ2
s2

m2
g̃(mãn

+mãm
)2

(51)

for s # m2
s/a, or

R ∼ α2
sC

2
aGG

8π2ξ2
m4

s/a

m2
g̃(mãn

+mãm
)2

(52)

for s $ m2
s/a. Thus, for ms/a #

√

mg̃(mãn
+mãm

),
the gluino-mediated process dominates over the
saxion/axion-mediated process if the reheat temperature
TR is smaller than mg̃. In this respect, we consider a
simple particle mass spectrum with mãn

$ ms/a $ mg̃

and ms/a #
√

mg̃(mãn
+mãm

). In this spectrum,
moreover, the branching fraction of s/a → ãnãm is
highly suppressed by small axino masses compared to
saxion and axion masses. Because of the supersymmetry,
saxions, axions and axinos are produced with the similar
amount in the large TR limit, so the amount of axinos
from saxion and axion decays is negligible in this case.
Hence axinos are predominantly produced in pairs via
the gluino-dominated process. We call this a ‘secluded’
spectrum.

E. Thermal yield of axinos

One can obtain the thermal-averaged axino produc-
tion cross section from the squared amplitude. For a
ãnãm pair production, the thermal-averaged cross sec-
tion is given by

〈σv〉nm ( 6α4
sC

4
aGGT

4

π5[ζ(3)]2v40m
2
g̃

|ONnONm|2 ∆nm, (53)

where T is the plasma temperature and ζ is the zeta func-
tion. The yield of ãn state, Yãn

≡ nãn
/s (nãn

: number
density of ãn, s: entropy density) is then given by

Yãn
(
(

3
√
10

[g(TR)]3/2

)

243α4
sC

4
aGGMPT 5

R

16π12v40m
2
g̃

|ONn|2 , (54)

where g(TR) is the effective degrees of freedom at TR and
MP is the reduced Planck mass. Here we have used an
identity

∑

m

|ONm|2 = 1 (55)

It is noteworthy that we have included the correction
from the continuous reheating process [33].
In the secluded spectrum, the heavier axinos eventually

decay into the lightest axino, so the final yield of axino

dark matter is determined by the sum of all the axino
yields:

Y DM
ã =

∑

n

Yãn

(
(

3
√
10

[g(TR)]3/2

)

243α4
sC

4
aGGMPT 5

R

16π12v40m
2
g̃

, (56)

where we have used the identity in Eq. (55). The axino
DM abundance is thus given by

Ωãh
2 ( 2.8× 105 × Y DM

ã

( mã

MeV

)

( 0.13×
(

CaGG

1

)4(TeV

v0

)4(10 TeV

mg̃

)2

×
(

TR

40 GeV

)5
( mã

10 keV

)

, (57)

where we have used αs ( 0.1 and mã denotes the lightest
axino mass.
In the normal hierarchy, ã0 is the lightest axino state

and thus dark matter. Its interaction to the SM sector
is highly suppressed by 1/qN , so most of the DM axi-
nos are produced via decays of the heavier axinos which
have interactions being mildly scaled by ∼ 1/N3/2. In
other words, the clockwork mechanism realizes largely
enhanced axino production in spite of the feebly interact-
ing nature of DM species. Compared to the conventional
non-clockwork scenarios of the same axino coupling to
the SM, the DM abundance is enhanced by the factor
(f0/v0)4 = q4N .

V. COSMOLOGICAL ISSUES

A. Heavy axino decays

As discussed in Sec. IV, most of the DM axinos are pro-
duced via decays of the heavier axinos. In the secluded
spectrum, an axino can decay into a lighter axino plus
the zero mode axion, i.e., ãn → ãm + a0, n > m due to
the interaction in Eq. (42). The decay width is given by

Γ(ãn → ãm + a0) =
1

16π

ξ2

v20

∣

∣

∣

∣

∣

∣

N
∑

j=0

Oj0OjnOjm

∣

∣

∣

∣

∣

∣

2

×m3
ãn

(

1−
m2

ãm

m2
ãn

)3

, (58)

While the DM axino yield is independent of the decay
path, the phase space distribution of the DM axinos
is highly dependent on the decay path, lifetimes and
mass differences. Depending on the model parameters
N , q, mΦ and mK

ψ , the resulting phase space distribution
can deviate from the conventional thermal distribution.
Hence, it may impact on the structure formation [34].

6

IV. THERMAL PRODUCTION OF AXINOS

In this section, we discuss thermal production of axinos
in the early Universe. Since the whole dark sector (i.e.,
axion supermultiplets) communicates with the SM sector
via the interactions in Eq. (23) and clockworking, all the
axions, saxions and axinos are produced from thermal
plasma after the primordial inflation. In a SUSY exten-
sion, the axinos are odd while the saxions and axions are
even under the R-parity if it is preserved. Therefore the
lightest axino can be a dark matter candidate if it is the
lightest R-parity odd particle. The saxions and axions
except a0, however, would normally disappear by decay-
ing into another light species such as gluons and photons.
In this respect, axino production is more prominent than
the others for dark matter physics. We focus on how
axinos are produced.
The axino production consists of the following chan-

nels: 1) gluino-mediated process, 2) saxion/axion-
mediated process, and 3) production from saxion/axino
decay. In particular, we will consider a relatively low
reheat temperature TR below the SUSY breaking scale
so that axino production is mainly from the SM thermal
bath. The reason is that the thermal yield of the lightest
axino can easily saturate the DM abundance enhanced
by a certain power of the clockwork factor qN compared
to the conventional scenarios as we will see.

A. Gluino-mediated process

From the interactions with gauge bosons in Eq. (41),
axinos can be produced from the thermal plasma. If the
temperature is larger than masses of the SUSY particles
in the SM sector, the single-axino production is the dom-
inant process which includes the other SUSY particles in
either the initial or final state. This scenario has been in-
tensively studied both for the KSVZ-type model [25–28]
and for the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)-
type model [29–31]. If the temperature is smaller than
masses of the SUSY particles in the SM sector but still
larger than the axino mass, e.g., mã ! T ! mg̃ ∼ mq̃,
the single-axino production is Boltzmann-suppressed. In-
stead, the axino pair production becomes more impor-
tant [32]. By integrating out the gluino field in Eq. (41),
one can obtain an effective Lagrangian for the axino pair
production, i.e., gg → ãnãm:

Lggãã =− α2
sC

2
aGG

1024π2v20mg̃
ONnONm

×¯̃an[γ
µ, γν ][γρ, γσ]ãmGb

µνG
b
ρσ . (43)

The squared amplitude for this process is given by

|Mg̃
nm|2 =

α4
sC

4
aGG

16π4v40m
2
g̃

|ONnONm|2 s3(1 + cos θ)2, (44)

where s is the square of the center of mass energy and
θ is the angle between the incoming gluon and outgoing

axino. Here we have summed over all possible degrees of
freedom for both the initial and final states.

B. Saxion/axion-mediated process

Another channel for the axino pair production is re-
alized by the saxion- or axion-mediated processes. The
interactions in Eqs. (40) and (42) lead to a scattering pro-
cess gg → (s∗l or a∗l ) → ãnãm, and its squared amplitude
is given by
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∣
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∣
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∣
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(
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s−m2
l

)

∣

∣

∣

∣

∣

∣

2

×(mãn
+mãm

)2s3, (45)

where ml is a mass of sl or al. If s & m2
l , the squared

amplitude is further simplified, so one can find
∣

∣

∣
Ms/a

nm

∣

∣

∣

2
'ξ

2α2
sC

2
aGG

2π2v40
|ONnONm|2

×(mãn
+mãm

)2s, (46)

where we have used an identity
∑

l,j

ONlOjlOjnOjm = ONnONm. (47)

If s ! m2
l , the squared amplitude is approximately given

by
∣

∣

∣
Ms/a

nm

∣

∣

∣

2
' ξ2α2

sC
2
aGG

2π2v40m
4
s/a

|ONnONm|2

×(mãn
+mãm

)2s3 (48)

where we have assumed ml ∼ ms/a for all l, i.e., all
masses are of the same order. In this argument, we have
also neglected the zero mode axion contribution since its
coupling is exponentially suppressed.

C. Production from saxion/axion decay

Because of the interactions in Eq. (42), saxions and
axions can decay into axino pairs. One can easily find
their partial decay widths:

Γ(sl/al → ãnãm) =
ξ2ml

16πv20
(mãn

+mãm
)2

×

∣

∣

∣

∣

∣

∣

∑

j

OjlOjmOjn

∣

∣

∣

∣

∣

∣

2

∆nm, (49)

where ∆nm = 1 (1/2) for n (= m (n = m). Meanwhile,
saxions and axions can also decay into gluon pairs with
the partial decay widths

Γ(sl/al → gg) =
α2
sC

2
aGGm

3
l

64π3v20
|ONl|2. (50)

For mãn
+ mãm

! ml, saxions and axions decay domi-
nantly into gluons.

All heavy axinos eventually decay into the lightest axino
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THERMAL PRODUCTION
Total yield

<latexit sha1_base64="jXqn9e12Li5hnq0D30gZ6hRsxUA="></latexit>

Yã /
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amplitudes is given by

R ⌘ |Mg̃
nm|2

|Ms/a
nm|2

⇠ ↵
2
sC

2
aGG

8⇡2⇠2

s
2

m2
g̃(mãn +mãm)2

(51)

for s � m
2
s/a, or

R ⇠ ↵
2
sC

2
aGG

8⇡2⇠2

m
4
s/a

m2
g̃(mãn +mãm)2

(52)

for s ⌧ m
2
s/a. Thus, for ms/a �

p
mg̃(mãn +mãm),

the gluino-mediated process dominates over the
saxion/axion-mediated process if the reheat temperature
TR is smaller than mg̃. In this respect, we consider a
simple particle mass spectrum with mãn ⌧ ms/a ⌧ mg̃

and ms/a �
p

mg̃(mãn +mãm). In this spectrum,
moreover, the branching fraction of s/a ! ãnãm is
highly suppressed by small axino masses compared to
saxion and axion masses. Due to the supersymmetry,
saxions, axions and axinos are produced with the similar
amount in the large TR limit, so the amount of axinos
from saxion and axion decays is negligible in this case.
Hence axinos are predominantly produced in pair via
the gluino-dominanted process. We call this a ‘secluded’
spectrum.

E. Thermal yield of axinos

One can obtain the thermal-averaged axino produc-
tion cross section from the squared amplitude. For a
ãnãm pair production, the thermal-averaged cross sec-
tion is given by

h�vinm ' 6↵4
sC

4
aGGT

4

⇡5[⇣(3)]2v40m
2
g̃

|ONnONm|2 �nm, (53)

where T is the plasma temperature and ⇣ is the zeta func-
tion. The yield of ãn state, Yãn ⌘ nãn/s (nãn : number
density of ãn, s: entropy desity) is then given by

Yãn '
 

3
p
10

[g(TR)]3/2

!
243↵4

sC
4
aGGMPT

5
R

16⇡12v40m
2
g̃

|ONn|2 , (54)

where g(TR) is the e↵ective degrees of freedom at TR and
MP is the reduced Planck mass. Here we have used an
identity

X

m

|ONm|2 = 1 (55)

It is noteworthy that we have included the correction
from the continuous reheating process [33].
In the secluded spectrum, the heavier axinos eventually

decay into the lightest axino, so the final yield of axino
dark matter is determined by the sum of all the axino
yields:

Y
DM
ã =

X

n

Yãn

'
 

3
p
10

[g(TR)]3/2

!
243↵4

sC
4
aGGMPT

5
R

16⇡12v40m
2
g̃

, (56)

where we have used the identity in Eq. (55). The axino
DM abundance is thus given by

⌦ãh
2 ' 2.8⇥ 105 ⇥ Y

DM
ã

⇣
mã

MeV

⌘

' 0.13⇥
✓
CaGG

1

◆4✓TeV

v0

◆4✓10 TeV

mg̃

◆2

⇥
✓

TR

40 GeV

◆5 ⇣
mã

10 keV

⌘
, (57)

where we have used ↵s ' 0.1 and mã denotes the lightest
axino mass.

In the normal hierarchy, ã0 is the lightest axino state
and thus dark matter. Its interactions to the SM sector
is highly suppressed by 1/qN , so most of the DM axi-
nos are produced via decays of the heavier axinos which
have the interactions being mildly scaled by ⇠ 1/N3/2.
In other words, the clockwork mechanism realizes largely
enhanced axino production in spite of the feebly interact-
ing nature of DM species. Compared to the conventional
non-clockwork scenarios of the same axino coupling to
the SM, the DM abundance is enhanced by the factor
(f0/v0)4 = q

4N .

V. COSMOLOGICAL ISSUES

A. Heavy axino decays

As discussed in Sec. IV, most of the DM axinos are pro-
duced via decays of the heavier axinos. In the secluded
spectrum, an axino can decay into a lighter axino plus
the zero mode axion, i.e., ãn ! ãm + a0, n > m due to
the interaction in Eq. (42). The decay width is given by

�(ãn ! ãm + a0) =
1

16⇡

⇠
2

v20

������

NX

j=0

Oj0OjnOjm

������

2

⇥m
3
ãn

✓
1�

m
2
ãm

m2
ãn

◆3

, (58)

While the DM axino yield is independent of the decay
path, the phase space distribution of the DM axinos
is highly dependent on the decay path, lifetimes and
mass di↵erences. Depending on the model parameters
N , q, m� and m

K
 , the resulting phase space distribution

can deviate from the conventional thermal distribution.
Hence, it may impact on the structure formation [34].

B. Axion string-wall network

Since the clockwork axions and saxions have short
lifetimes, their cosmological population from initial mis-
alignment quickly decays without leaving substantial im-
pacts. However a network of axion strings and domain
walls formed by the global U(1)N+1 symmetry break-
ing can sizably contribute to the dark radiation [35] and

⌦h2 ⇠ 10�25
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PHASE SPACE DISTRIBUTION
Normal mass ordering of axinos
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INELASTIC DM

. . .

"inverted" ordering
feebly interacting

weakly interacting

lightest state: dominantly thermal production & distribution
small mass gap ==> inelastic scattering off the nuclei/electron

4

where Wb is the gluon superfield, W is the hypercharge
superfield, CaGG and CaY Y are model-dependent coe�-
cients of order unity. After clockworking, the zero mode
superfield has exponentially suppressed interactions as

L =� g
2
s

32⇡2

CaGG

f0

Z
d
2
✓A0Wb↵Wb

↵ + h.c.

� g
2
1

16⇡2

CaY Y

f0

Z
d
2
✓A0W↵W↵ + h.c., (23)

where f0 = q
N
v0.

B. SUSY breaking e↵ects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. PNGBs and scalar partners would re-
ceive mass contributions from SUSY breaking in the su-
perpotential as

L =

Z
d✓

2(1 +ms✓
2)W + h.c.

�! V = 4
p
mm0v2ms

⇥
N�1X

j=0

cosh

✓
�j � q�j+1p

2v0

◆
cos

✓
�j � q�j+1p

2v0

◆
.

(24)

It contributes to squared masses with the clockwork
structure for the pNGBs and their scalar partners as ex-
panded around the vacuum. The mass scale for this con-
tribution is m

2
sb = 2

p
mm0|ms|(v/v0)2. If SUSY break-

ing e↵ects also arise in the Kähler potential in Eq. (19),
scalars and fermions acquire additional masses which are
diagonal in the basis of chiral superfields. We write m

K
�

and m
K
 , repectively, for the scalars and fermions. We

further assume these terms are the same for all j’s, and
thus the mass matrices from this contribution are pro-
portional to the identity matrix. While it is expected to
have m

K
� ⇠ m

K
 in generic cases, it is possible to have

m
K
� � m

K
 in some cases.2

Mass spectra for the pNGBs, scalars and fermions are
summarized as

M
2
� = m

2
�M

2
CW +m

2
sbMCW, (25)

M
2
� = m

2
�M

2
CW �m

2
sbMCW +

�
m

K
�

�2
I, (26)

M = m�MCW +m
K
 I. (27)

The (N+1)⇥(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by

2 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with mK

� �
mK
 .

the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

�j = Ojkak, (28)

�j = Ojksk, (29)

 j = Ojkãk, (30)

with mass eigenvalues

m
2
ak

= m
2
��

2
k +m

2
sb�k, (31)

m
2
sk = m

2
��

2
k �m

2
sb�k + (mK

� )2, (32)

mãk = m��k +m
K
 (33)

and call these states axions, saxions and axinos, re-
spectively. While the zero mode axion, a0 is mass-
less in that the mass term is determined only by �0,
both s0 and ã0 become massive due to the SUSY break-
ing e↵ect in the Kähler potential. The mass di↵erence
�m

2
ak

' m
2
ak+1

�m
2
ak

is given by

�m
2
ak

> 2qm2
�


�k+1

✓
1� cos

(k + 1)⇡

N + 1

◆

��k
✓
1� cos

k⇡

N + 1

◆�
. (34)

Since �k+1 > �k and cosine is monotonically decreasing,
�m

2
ak

is always positive. Thus the ordering of eigenvalues
are the same as the non-SUSY case in Eq. (6), although
mass di↵erences di↵er. On the other hand, the ordering
of eigenvalues can be di↵erent for the saxions and axinos.
If m2

sb � m
2
�, the �k-dependent part becomes negative

so that (mK
� )2 must be large enough not to destabilize

the saxion directions. In this case, the largest eigenvalue
is m2

s0 while the smallest one is m2
sN . The mass ordering

of the saxions is inverted when being compared to that
of the axions. The same thing can happen also for the
axinos. If m

K
 < 0 (assuming m� > 0), ã0 may not

be the lightest mode. For example, If |m | � m� and
negative, the mass ordering of the axinos is also inverted.
The axino case can be even more complex if |mK

 | <

m��N . Nevertheless, we consider the ‘normal’ hierarchy,
i.e., m2

s0 < · · · < m
2
sN and mã0 < · · · < mãN in later

discussion.
It is worth mentioning a remark in the above mass

spectrum. We consider a SUSY extension of the clock-
work axion which generates an intermediate scale decay
constant of the QCD axion. For N ⇠ 20, it is plausi-
ble to introduce v ⇠ O(1) TeV. E↵ective descriptions in
Eqs. (20), (24) and (19) are valid only for m,m

0
,ms ⌧ v.

Hence all states are expected to be near or below the weak
scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in

4

where Wb is the gluon superfield, W is the hypercharge
superfield, CaGG and CaY Y are model-dependent coe�-
cients of order unity. After clockworking, the zero mode
superfield has exponentially suppressed interactions as
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where f0 = q
N
v0.

B. SUSY breaking e↵ects and mass spectrum

Once the SUSY is broken, the mass spectrum for each
component alters. PNGBs and scalar partners would re-
ceive mass contributions from SUSY breaking in the su-
perpotential as
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It contributes to squared masses with the clockwork
structure for the pNGBs and their scalar partners as ex-
panded around the vacuum. The mass scale for this con-
tribution is m

2
sb = 2

p
mm0|ms|(v/v0)2. If SUSY break-

ing e↵ects also arise in the Kähler potential in Eq. (19),
scalars and fermions acquire additional masses which are
diagonal in the basis of chiral superfields. We write m

K
�

and m
K
 , repectively, for the scalars and fermions. We

further assume these terms are the same for all j’s, and
thus the mass matrices from this contribution are pro-
portional to the identity matrix. While it is expected to
have m

K
� ⇠ m

K
 in generic cases, it is possible to have

m
K
� � m

K
 in some cases.2

Mass spectra for the pNGBs, scalars and fermions are
summarized as
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The (N+1)⇥(N+1) identity matrix is denoted by I. We
emphasize that all the mass matrices are diagonalized by

2 We refer readers to Ref. [19–22] for general discussion for the
mass generation and Ref. [23, 24] for explicit models with mK
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the same mixing matrix in Eq. (8). Hence we write mass
eigenstates

�j = Ojkak, (28)

�j = Ojksk, (29)

 j = Ojkãk, (30)

with mass eigenvalues

m
2
ak

= m
2
��

2
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m
2
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2
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2
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and call these states axions, saxions and axinos, re-
spectively. While the zero mode axion, a0 is mass-
less in that the mass term is determined only by �0,
both s0 and ã0 become massive due to the SUSY break-
ing e↵ect in the Kähler potential. The mass di↵erence
�m

2
ak

' m
2
ak+1

�m
2
ak

is given by

�m
2
ak

> 2qm2
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Since �k+1 > �k and cosine is monotonically decreasing,
�m

2
ak

is always positive. Thus the ordering of eigenvalues
are the same as the non-SUSY case in Eq. (6), although
mass di↵erences di↵er. On the other hand, the ordering
of eigenvalues can be di↵erent for the saxions and axinos.
If m2

sb � m
2
�, the �k-dependent part becomes negative

so that (mK
� )2 must be large enough not to destabilize

the saxion directions. In this case, the largest eigenvalue
is m2

s0 while the smallest one is m2
sN . The mass ordering

of the saxions is inverted when being compared to that
of the axions. The same thing can happen also for the
axinos. If m

K
 < 0 (assuming m� > 0), ã0 may not

be the lightest mode. For example, If |m | � m� and
negative, the mass ordering of the axinos is also inverted.
The axino case can be even more complex if |mK

 | <

m��N . Nevertheless, we consider the ‘normal’ hierarchy,
i.e., m2

s0 < · · · < m
2
sN and mã0 < · · · < mãN in later

discussion.
It is worth mentioning a remark in the above mass

spectrum. We consider a SUSY extension of the clock-
work axion which generates an intermediate scale decay
constant of the QCD axion. For N ⇠ 20, it is plausi-
ble to introduce v ⇠ O(1) TeV. E↵ective descriptions in
Eqs. (20), (24) and (19) are valid only for m,m

0
,ms ⌧ v.

Hence all states are expected to be near or below the weak
scale.

C. Interactions

The axions have the same interactions as in the case
of the non-SUSY model in Eq. (11). The saxions also
have similar interactions from the SUSY coupling term in

opposite sign
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SUMMARY
• Axino is a feebly-interacting DM candidate in SUSY axion model.

• Feeble interaction may originate from clockwork mechanism
- a tower of axino states with CW structure
- one feebly-interacting (the lightest axino), 
  N weakly-interacting (heavy axinos)

• Heavy axinos are abundantly produced, then decay to the lightest 
one.

• Axino DM abundance is enhanced and independent of the details of 
the CW gears and decay paths.


