
13/10/2022 13/10/2022
Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Space-Borne Accelerators

Quinn Marksteiner1, Bruce Carlsten1, Patrick Colestock2, Gian Luca 
Delzanno1, Seth Dorfman2, Leanne Duffy1, Michael Holloway1, John 
W. Lewellen3, Dinh Nguyen3, Geoffrey D. Reeves1, Vadim 
Roytershteyn2, Nikolai Yampolsky1, Haoran Xu1

03/03/2022
LA-UR-22-21894

1. Los Alamos National Laboratory
2. Space Science Institute
3. SLAC National Accelerator Laboratory



23/10/2022

Compact Accelerators in Space Using HEMTs
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HEMT RF Sources for Compact Acceleration

• High Electron Mobility Transistors (HEMTs) used to drive small C-band (5 GHz) 
cavities.

• The HEMTs are compact, solid state devices that can generate up to 500 W of RF 
power.

• These allow for compact acceleration of electrons without relying on bulky devices 
such as Klystrons.
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Frequency Chosen to Optimize Available Power

• At low frequencies, HEMTs produce high power, but cavity resistive loss is high 
so there is not much power left.

• At high frequencies, cavity loss is low but HEMT power is also low.
• Around 5 GHz, HEMT power is higher than cavity loss, leaving a large amount 

of power to accelerate beam.
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Experimental Demonstration of HEMT Acceleration

• Use a dipole spectrometer to measure energy gain from a single cavity driven 
by a HEMT.
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Experimental Demonstration of HEMT Acceleration (2)

• Left is without cavity RF power, right is with.  Change in location can be used 
to measure energy gain.
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Experimental Demonstration of HEMT Acceleration (3)

0

5

10

15

20

25

0 50 100 150 200 250 300

Me
as

ur
ed

 an
d C

alc
ula

ted
 en

er
gy

 ga
in/

ca
vit

y (
ke

V)

Cavity Power (W)



83/10/2022

Plasma Contactor
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Plasma Contactor to Mitigate Spacecraft Charging

• In the magnetosphere, the plasma is 
too low density to recharge 
spacecraft after electrons (or ions) 
are emitted away.

• A 1 mA beam could charge up 
spacecraft to 100 kV, which could 
damage the spacecraft.

• Use a plasma contactor to eliminate 
this problem.

• Simulations show this can reduce 
spacecraft charging to below 1 kV.



103/10/2022

Validation of Spacecraft Charging Model

• Experiments at U. Mich’s Large Vacuum Test Facility validate models of 
spacecraft charging.
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Radiation Belt Remediation
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A HANE could destroy most LEO satellites

• In 1962, the Starfish Prime high 
altitude nuclear test produced an 
artificial HANE belt of high energy 
electrons.

• These “killer electrons” destroyed a 
third of all LEO satellites deployed at 
the time.

• In modern times, we have many 
more LEO satellites, which would be 
threatened by a rogue nation 
performing a HANE test.

• A method is needed to quickly 
reduce the number of energetic 
electrons trapped in the artificial belt.
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Use Artificial Waves to Precipitate Electrons into the 
Atmosphere

• Directly inject whistler waves into HANE belt using either an antenna or an 
electron beam.

• These waves cause diffusion in the trapped electrons’ trajectories, which 
causes them to align with the loss cone and travel into the atmosphere.
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Exploring 3 different methods of wave generation

Dipole Antenna
• Most studied, both 

theoretically and 
experimentally

• Likely not very 
efficient at generating 
whistler waves.

Loop Antenna
• Not very well 

studied – some 
theory and lab 
experiments, no 
space experiment.

• Much more efficient 
than dipole.

Modulated electron Beam
• Planned BeamPIE

experiment 1st for wave 
gen.

• LANL studies show 
promise.
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Linear Theory Calculates Wave Generation for Beams

• Can model finite beam length and beams 
that are not aligned with B-field.

• Find lots of power in complicated thermal 
mode, showing need for SPS simulations.
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LANL (T-5) developed code SPS used to model an ideal 
electron pulse

• SPS used to model waves generated from ideal electron beam.
• Currently comparing these results to linear theory predictions.
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Lab validation experiment at LAPD

• A validation experiment is taking place at 
the Large Area Plasma Device (LAPD) at 
UCLA (Gekelman 2016).

• For this experiment, a 20 keV electron 
beam was injected into the plasma, and 
the resulting plasma waves were 
measured.

• These results are being compared to 
analytical theory and first principles 
modeling based on the CPIC code.
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Our model suggests RBR concept is feasible

• We have done S2E models, 
including the generation and 
propagation of waves, as well 
as the interaction of the waves 
with MeV electrons.

• Our models suggest that an 
electron beam can remediate 
the belt fast enough to save 
most satellites.

• Have compared the beam with 
a dipole and loop antenna.
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The Beam Plasma Interactions 
Experiment: BEAM PIE
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BEAM-PIE will test the models of radiation from a beam

• BEAM-PIE will field a 6 mA, 10-50 keV electron beam aboard a sounding 
rocket.

• Uses a HEMT cavities to accelerate electron beam.



213/10/2022

BEAM-PIE Diagnostics

• “Mother-Daughter” rocket configuration allows a diagnostic section to split off 
from electron beam.

• Measurement of plasma waves will be used to validate the models.
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BEAM-PIE accelerator designed, being built in lab

• The BEAM-PIE accelerator has been designed and modeled using microwave 
studio.

• Being assembled in lab to verify that it works, then will be put in rocket body.
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Model propagation of BEAM-PIE beam into space

• Take outputs of many microwave studio 
simulations to make one distribution of a 
single BEAM-PIE bunch.

• Use a new microwave studio simulation 
to model the beam propagating into 
space.

• Beam debunches more quickly than 
ideal beam because of energy spread.
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Model BEAM-PIE beam with SPS to predict waves 
generated from experiment

• Beam spreads out because of energy 
spread.

• This reduces the high frequency 
oscillations (x-mode) significantly (scale 
of colorbar is different here).

• Low frequency waves (whistler) are only 
slightly reduced.

• Can compare these results to 
experiment.
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Comparison of SPS to linear theory

• Compare total wave power from BEAM-PIE and ideal beam in SPS to 
analytical theory (for an ideal beam).

• Find reasonable agreement between ideal beam and analytical theory for ideal 
beam, BEAM-PIE significantly lower at high frequencies.  

• Allows for quantitative comparison of SPS results. 
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The CONNEX Experiment
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The CONNEX experiment: map out magnetic field

• Experimentally map magnetic field between the magnetosphere and the ionosphere 
using a 1 MeV electron beam.

• Image the electron beam hitting the atmosphere by using ground based cameras.
• Answers important questions about the auroras.
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Experimental design of CONNEX

• The CONNEX experiment will be driven with a 1 MeV, 1 mA electron beam.
• Modular design simplifies things and allows for easy adjustment of total energy 

of beam.
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Low Power Electron Injector for 
Space Applications
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Low power electron injector for space applications

• Use a diode laser to heat the cathode.  This electrically decouples the heating 
from the high voltage power supply.

• Design a high voltage power supply specifically qualified for space that is 
modular and scalable.

Diode Laser

Cathode Anode

Electron Injectorzeta converter
zeta converter

zeta converter

…

HVPS
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GND

Focusing element

Electron Beam

Acclerator
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Experimental results show laser heating is highly 
efficient
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A Simple Electron Beam for 
Plasma Diagnostics in Space
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Detector in sunlight is blinded by photoelectrons
Detector Count: what the detector  sees

In simulations we can separate both species

Detector

CPIC Simulation

ɸsc = 4.7 V

photoelectrons

Material: Aluminum (in space)
Jph = 100 µA/m2 (40 µA/m2 in the lab)
Tph = 1 eV

Density = 13 cm-3

Te = 0.5 eV
Debye Length ~ 1.4 m
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Having the detector in the shade helps, but in a real case 
it would still be hard to distinguish the two signals

Note: this is idealized, uncertainties in photoelectron spectrum could still mask the signal!

Detector Count: what the detector sees

In simulations we can separate both species
Detector

CPIC Simulation

ɸsc = 4.7 V

photoelectrons

Material: Aluminum (in space)
Jph = 100 µA/m2 (40 µA/m2 in the lab)
Tph = 1 eV

Density = 13 cm-3

Te = 0.5 eV
Debye Length ~ 1.4 m
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Here we study a case where we bias the whole spacecraft 
to +30 V. It works, we can separate the two signals!!!

Detector Count: what the detector sees

In simulations we can separate both species

CPIC Simulation

ɸsc = ɸbias= 
+30V

Material: Aluminum (clean)
Jph = 40 µA/m2 (~100 µA/m2 aged)
Tph = 2 eV

Density = 13 cm-3

Te = 0.5 eV
Debye Length ~ 1.4 m
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Conclusion

• A novel method is being developed and tested at LANL for using 
HEMTs to power cavities.  This allows for a compact electron 
accelerator that is well suited for space applications.

• In order to mitigate spacecraft charging, a plasma contactor scheme is 
being developed.

• An electron beam can be used to generate whistler waves in the 
magnetosphere, which can then mitigate a radiation belt.

• This concept is being tested with the BEAM-PIE experiment.
• Several other important concepts related to accelerators in space are 

currently being developed at LANL.
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