Probing the electroweak sector at the LHC

Kristin Lohwasser University of Sheffield

Seminar, Zürich, April 4th 2022

The University Of Sheffield.

The Standard Model of Particle Physics

- Mathematical formulation finalized in the mid-1970s – and since then confirmed though observations
 - last in line: Higgs Boson (2012)
- Correctly describes
 - propagation of interaction particles (spin-1 bosons)
 - interactions of matter particles (spin-1/2 fermions)
 - masses of matter particles

masses of interaction particles + Higgs self-interactions

The Standard Model: Free parameters

Parameters of the Standard Model [hide]				
Symbol	Description	Renormalization scheme (point)	Value	
m _e	Electron mass		511 keV	
m_{μ}	Muon mass		105.7 MeV	
<i>m</i> _τ	Tau mass		1.78 GeV	
mu	Up quark mass	$\mu_{\overline{MS}} = 2 \text{ GeV}$	1.9 MeV	
$m_{\rm d}$	Down quark mass	$\mu_{\overline{\text{MS}}} = 2 \text{ GeV}$	4.4 MeV	
ms	Strange quark mass	$\mu_{\overline{\text{MS}}} = 2 \text{ GeV}$	87 MeV	
m _c	Charm quark mass	$\mu_{\overline{MS}} = m_c$	1.32 GeV	
$m_{ m b}$	Bottom quark mass	$\mu_{\overline{\text{MS}}} = m_{\text{b}}$	4.24 GeV	
mt	Top quark mass	On-shell scheme	172.7 GeV	
θ_{12}	CKM 12-mixing angle		13.1°	
θ_{23}	CKM 23-mixing angle		2.4°	
θ ₁₃	CKM 13-mixing angle		0.2°	
δ	CKM CP-violating Phase		0.995	
g_1 or g'	U(1) gauge coupling	$\mu_{\overline{MS}} = m_Z$	0.357	
g_2 or g	SU(2) gauge coupling	$\mu_{\overline{MS}} = m_Z$	0.652	
q ₃ or q _s	SU(3) gauge coupling	$\mu_{\overline{MS}} = m_Z$	1.221	
$\theta_{\rm QCD}$	QCD vacuum angle		~0	
v	Higgs vacuum expectation value		246 GeV	
m _H	Higgs mass		125.36±0.41 GeV (tentative)	

19 free parameters

- particle masses
- CKM mixing angle (mass and electroweak eigenstates of quarks)
- Gauge couplings (strength of forces)
- Symmetry properties of QCD
- Parameters of electroweak symmetry breaking (Higgs mass and vaccum expection value)

The Standard Model: Extremely predictive

Once parameters are known, everything else is "fixed"

Extremely precise predictions allow for consistency tests of the SM

The Standard Model's biggest triumph

- 1961 Glashow: Unification of electromagnetic and weak force
- 1964 Brout, Englert, Guralnik, Hagen, Higgs: Higgs mechanism
- 1967 Weinberg, Salam: Mechanism of electroweak symmetry breaking
- Even before the direct discovery, indirect constraints on Higgs mass through connections with W and top

result numerical prediction of probability of process

Tests of the Standard Model

- Standard Model measurements can be grouped into
 - High precision tests
 (high statistics available)

VS.

 High energy behaviour as ultimate tests of the Standard Model

Consistent, complete but does not cover all we can observe in the universe

Effective field theory (EFT) provides framework for general SM tests

- Apart from 19 free parameters: All interactions and other parameters within the Standard Model of particle physics are fixed
- Measuring SM processes is a stringent test of our understanding of nature — at high energies and statistics
- Will present a number of processes probing the the SM and finally towards a global fit to test the SM

- Measurements with (two) W bosons via different production mechanisms
 - Vector boson scattering (quartic coupling)
 - Diboson production (triple coupling)
 - Photon-induced production

Using protons....

erc

University Of Sheffield.

High energy proton-proton collisions center-of-mass energy of $\sqrt{s} = 7$, 8 and 13 TeV

.... and other collisions (photons!)

Processes with W Bosons

- Scattering of (longitudinal) W Bosons: Motivation for Higgs mechanism and building the LHC
- Diverging beyond 1 TeV

Same-sign WW scattering

 Two forward jets, two same-charge leptons inbetween: Typical VBS signature

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2013-06

QCD vs. electroweak production

Sheffield

At lowest order: QCD ($\alpha_{s}^{2}\alpha_{ewk}^{4}$) and pure EWK signal (α_{ewk}^{6}) interference (<10%)

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-06/

Theoretical description is important

Sheffield

- Same-sign measurement relies on description of m_{ii} (and other characteristic) distributions
- Very dependent on Parton Shower modelling (and a problem in the early days)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-026

Outlook: What is still in store?

Longitudinal scattering would diverge without Higgs, but we are still far from a clear signal

Similar issues with WW diboson production

Predictions obtained using perturbation theory in orders of coupling constant $\boldsymbol{\alpha}$

Large discrepancies (~20% / 2 σ) in first measurements

Experimental progress in Run-1

> Desirable: Compare theory to best fiducial measurement

Newer measurements with 0 and 1 jets

- Measurement usually constrained to 0-jet final state due to large top contribution
- Generally, this introducted problems to to presences of two scales in calculation: jet energy vs. centre-of-mass of process

ATLAS pp $\rightarrow e^{\pm}v\mu^{\mp}v$

Data 2015+2016

379 ± 5 (stat.) ± 27 (syst.) fb

 $357 \pm 4 (PDF) \pm 20 (scale) fb$

MATRIX NNLO (incl LO $gg \rightarrow WW$)

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-24/ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-34

Large statistics allows for differential measurements

- Generally well-described within uncertainties though some trends are visible
- Useful as inputs to general SM constraints

University

Sheffield.

erc

- Ambition to further investigate more general phase space
 - \rightarrow pT-dependent jet-vetoes
 - \rightarrow fully inclusive measurements

20

$\gamma\gamma \to WW$ is incredibly sensitive

- At leading order, only diagrams with triple and quartic couplings contribute
- Incredibly sensitive to electroweak interactions → but need to improve theory prediction and measurement

Mechanisms for photon collisions: resolved/dissociative

Mechanisms for photon collisions at the LHC

radiated off proton

"intact" proton: It continues to travel in the direction of the beam – empty event (here: Pb Pb $\rightarrow \gamma\gamma$, even more empty, no pileup)

$\gamma\gamma \rightarrow$ WW production at the LHC

$\gamma\gamma \rightarrow$ WW production at the LHC

Event selection

- exactly one electron and muon with opposite electric charge
- p_⊤ (II) > 30 GeV,
 m(II) > 20 GeV
- no tracks associated with primary interaction vertex

vertex Underlying event (particle from fragmentation)

leptons

Modeling of pileup (random interactions close to vertex)

Pile-up

> Modeling of underlying event of backgrounds

> Modeling of the signal ("survival factor")

Pile-up

Signal extraction: Putting it all together

- Using profile LH fit over 3+1+1 regions (1 SR + 3 CR + signal modelling CR) → 4 free normalization parameters (yy →WW, yy →II, DY, qq→WW)
- Signal region: $\gamma\gamma \rightarrow WW$ (57%), qq $\rightarrow WW$ (33%)

 p_{T} (II)

 p_{τ} (II)

< 30 GeV

> 30 GeV

CR2

CR3

 $1 \le n_{trk} \le 4$

CR1

SR

n_{trk}=0

Results

- Background-only hypothesis rejected with significance of 8.4 σ (6.7 σ exp.)
- First observation of photon-induced WW production ($\gamma\gamma \rightarrow$ WW) in exclusive phase space (without any associated tracks)
- Uncertainties dominated by WW modelling and background statistics
- Large range of theoretical models: Uncertainty dominated by data-driven scaling or scale uncertainties (SD) and second scattering probability

	cross section	uncertainty	
σ(meas)	3.13 fb	± 0.31 (stat) ± 0.28 (syst) fb	
σ(EExSF– our expectation)	0.65 fb × 3.59 2.34 fb	± 0.15 (exp) ± 0.39 (transfer, II \rightarrow WW) fb ± 0.27 (total) fb	
σ(pure theory prediction)	4.3 fb \pm 1.0 (scale) \pm 0.12 (syst) (without second scattering)	× 0.65 = 2.8 ±0.8 (total) fb × 0.82 = 3.5 ±1.0 (total) fb	

29

Outlook: What is still in store?

- Differential measurements with current data are possible
- The AFP spectrometer installed between 2016 and 2017 at z=200m
- Direct detection of scattered protons that leave the interaction intact

 Allows to reconstruct invariant mass of events

$$W = \sqrt{s\xi_1\xi_2} = m_{WW}$$

Presented measurements with (two) W bosons via different production mechanisms

- Vector boson scattering (quartic coupling)
- Diboson production (triple coupling)
- Photon-induced production

How can these be used in general tests of the Standard Model?

Tests of the Standard Model

(i.e. below some cut-off scale) \rightarrow more general applicable limits

Effective Field theory: In a nutshell

Effective Lagrangian as extension of SM Lagrangian

- \rightarrow Taylor expansion of local operators of "light" degrees of freedom
- → removes explicit description of "heavy" / high energy physics (suppressed by orders of energy scale $\Lambda >> E_{CM}$)

Systematic measure of SM deviations that can be linked to new physics phenomena

$$\mathscr{L}_{EFT} = \mathscr{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathscr{O}\left(\frac{1}{\Lambda^{4}}\right)$$

= SM up to dim-4
= dim-5:
neutrino masses but
lepton-flavour violating
= dim-6:
most studied at LHC
= dim-8:
studied for VBS
processes

Complementarity with direct searches

Global EFT fits

- > Any final state is usually impacted by a number of Wilson coefficients
 - Combination of different final states allows to disentangle effects

What is out there?

Theory Fitting groups Overview of available codes: https://indico.cern.ch/event/971727/

- Provide bases, theoretical tools (feynrules)
- Use publicly available results

LHC EFT WG https://lpcc.web.cern.ch/lhc-eft-wg

Enhance comparability

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/

LHC top WG

LHCTopWG

- Common conventions and (conversion) tools
- Common standards for systematics

LHC Higgs XS WG

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/L HCHXSWG

LHC EW (MB) WG https://twiki.cem.ch/twiki/bin/view/LHCPhysic s/LHCEW

"Topical" EFT interpretations and combinations

CMS

ATLAS

- Long-term goal: accurate likelihood-level global EFT combination of ATLAS and CMS
- In parallel: more complex combinations planned within experiments

Global EFT fits

> Case for Fit by Experimental Collaborations:

- Most accurate interpretations
- Make optimal use of data
- Fit can guide measurements strategy
- Makes sure all relevant information is published

ATLAS: HWW and WW cross-section combination

CHG

 $c_{Ha}^{(3)}$

 $c_{la}^{(3)}$

CuG

- Combination uses the likelihood function obtained in the signal strength fit of the Higgs measurement together with the unfolded differential cross-sections for the WW process
- Technically ambitious combination and proof of principle of feasibility due to combination of different "flavours" of measurements and overlaps (signal definition however orthogonal)
- There is partially overlapp with the control regions used in the Higgs analysis

Parameter value (single operator fit)

Combined EFT interpretation of H to WW and WW processes ATL-PHYS-PUB-2021-010

ATLAS: SM cross-section combination

- Post-mortem combination of unfolded differential cross-sections of WW, WZ, 4-lepton and Z+2jets
- Combined likelihood function accounts for experimental uncertainties and correlation as well as theory uncertainties
- Correlations lead to degradation of profiled limits
 → will improve once more measurements are included
- Constrain of single operators whilst others are set to zero can be misleading:

 \rightarrow UV-BSM models rarely translate to one operator only

 \rightarrow one-operator fits can yield non-zero values

Combined EFT analysis of WW, WZ, ZZ, VBF Z processes ATL-PHYS-PUB-2021-022

Principle component analysis (PCA)

- Constraints often strongly correlated (especially in linear fit)
- Using PCA to find sensitive and blind directions
- Directions correspond to eigenvectors of Hessian matrix at minimum of Likelihood

ATLAS: SM cross-section combination

- Sensitive to 33 operators constrained are 2 operators (cW, cHq⁽³⁾) and 13 linear combinations
- Comparison of linear and quadratic limits can give estimate of convergence of SMEFT extension and uncertainties

Combined EFT analysis of WW, WZ, ZZ, VBF Z processes ATL-PHYS-PUB-2021-022

Towards a global fit: LHC EFT WG

 Goal of the LHC EFT WG: provide guidance for the interpretation of LHC data in the context of effective field theories (EFTs). https://lpcc.web.cern.ch/lhc-eft-wg

Areas of interest:

- \rightarrow Basics / EFT formalism
- \rightarrow Predictions and tools
- \rightarrow Experimental measurements and observables
- \rightarrow Fits and related systematics
- \rightarrow Benchmark scenarios from UV models
- → Interplay/connection with flavour

Experimental combination between ATLAS and CMS

- \rightarrow Kick-off: https://indico.cern.ch/event/1007581/ (Feb 22, 2021)
- Use combination project to get feedback and advice from the LHC WG but also to help focus the WG discussions on something concrete and help those discussions converge, in some cases break the symmetry

Scope of combination:

- Cross-experimental (ATLAS+CMS)
- Cross-topical (i.e. including top, Higgs and EWK measurements)

Effective field theory is a general extension of the SM

- Constraints on EFT operators provide constraints on BSM physics that are more general than direct searches
- However: Need to combine a larger number of measurements
- Global EFT fits within experiments have started
 - Complementary to fits of theory collaborations

Conclusion

- Global effective field theories are a way to test the SM
- Complementary approach to direct BSM searches
- Requires strong interplay between theory and experiment
 - \rightarrow Demonstrated for measurements with two W-boson
 - \rightarrow Precision predictions and measurements are important
- Steps towards global EFT fits within the experiments
 - \rightarrow Working towards combined fit between ATLAS and CMS

Backup slides.

Characterise the Standard Model

- Effective field theory is a general SM extension
- Allows to identify deviations in a systematic (and renormalizable) way

University Of **Operators:**

Which particles interact?

Coupling strength: How strong is the interaction?

General extension: describes any new phenomena suppressed by energy scale $\Lambda^{(dimension d - 4)}$

 $d \le 4 \rightarrow$ Standard model $d = 5 \rightarrow Neutrino masses$ $d \ge 6 \rightarrow$ Unknown phenomena

WW production at the LHC

> There are 2499 CP-even dimension-6 operators

- Need to reduce redundancy → also using some assumptions
- Usually: minimal flavour violation, no CP-violation, lepton/baryon numbers

> Further requirements

- = $SU(3)_{c} \times SU(2)_{L} \times U(1)_{y}$ should be included
- EFT should reduce to SM (if there are no undiscovered light particles)
- Higgs field is included (not te case for anomalous triple gauge couplings) and linearly realised (otherwise: Higgs-EFT)
- Wilson coefficients are arbitrary (and can differ between bases!)

> Most popular: Warsaw basis

- 59 operators (when considering only 1 generation)
- Renormalization Group and 1-loop finite renormalization (SMEFT@NLO)

> Still not trivial: what is the order of the EFT expansion to be considered?

$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \sigma_i^{\rm dim-6-interf} + \sum_{ij} \frac{c_i c_j}{\Lambda^4} \sigma_{ij}^{\rm (dim-6)^2} + \sum_{k} \frac{c_k}{\Lambda^4} \sigma_k^{\rm dim-8-interf} + \dots$$
Linear quadratic dim-8

$\gamma\gamma \rightarrow$ WW production at the LHC

$\gamma\gamma \rightarrow$ WW production at the LHC

University Of Sheffield.

The ATLAS inner detector

- Accurately reconstructing as many charged-particle tracks as possible is key!
- Innermost tracking layer at r = 33.5 mm (pixel size: 50 × 250 µm²) Intrinsic spacial resolution: 10 × 75 µm²

Track reconstruction

Tracking performance

- Track efficiency ~75-80%
- Tracks are the largest consumer of CPU and disk space in ATLAS \rightarrow only tracks with pT > 500 MeV are available for analysis
- Lower $pT \rightarrow worse$ resolution (multiple scattering)

ATLAS Simulation Preliminary

vs = 13 TeV

 $p_{\rm T} > 0.1 \, \text{GeV}$

from ATL-PHYS-PUB-2015-051

Track Reconstruction Efficiency

- ATLAS standard is to choose vertex with the largest $\sum p_{\tau}^2$ as *primary*
- Not optimal for photon-induced processes, here leptons are used to reconstruct the interaction vertex:

$$z_{\rm vtx}^{\ell\ell} = \frac{z_{\ell_1} \sin^2 \theta_{\ell_1} + z_{\ell_2} \sin^2 \theta_{\ell_2}}{\sin^2 \theta_{\ell_1} + \sin^2 \theta_{\ell_2}}$$

 $(sin^2\theta parametrizes uncertainty on measured z position)$

 This definition is more efficient and unbiased* by close-by pileup tracks

Pile-up in the context of the measurement

- Pile-up is the number of pp interactions per bunch crossing
- Longitudinal width of the beam spot determines density of additional pp interaction along z
- Corrected for using reweighting approach

Correcting number of tracks per pile-up vertex

- Same procedure in data and MC: Sample number of tracks in random windows along z (away from lepton vertex)
- Weight with beam spot distribution
- Divide data/MC → final correction!

Pile-up correction at work

- Full set of correction gives good agreement between data and MC
- Efficiency to select 0-tracks in presence of pile-up is on average 52.6% for Run 2 (exclusive efficiency)
- Large source of efficiency loss

 → worsens with number of
 interactions*

Modelling of underlying event

Underlying event: Interactions of proton remnants, fragmentations

 qq/gg → WW has the same final state as γγ → WW apart from underlying event

- Problems with modelling of charge particle (track) multiplicity at low momentum are well known*
 → need to apply in-situ correction to model WW background correctly
- Use Z boson and unfold charged particle distribution as function of:
 - particle multiplicity
 - $-p_T(II)$ (measure for $p_T([di]boson)$)

Modelling of underlying event

University Of Sheffield.

Signal Modelling: Why?

Signal Modelling: How?

 Data-driven scaling of γγ →WW using γγ →ℓℓ same flavour events for a signal-like selection (n_{trk}=0, m_{µℓ} > 160 MeV)

