

Applications of Plasma-Wakefield Accelerators to Particle Colliders

Brian Foster (Oxford)

Humboldt Kolleg Kitzbühel June 29th 2022

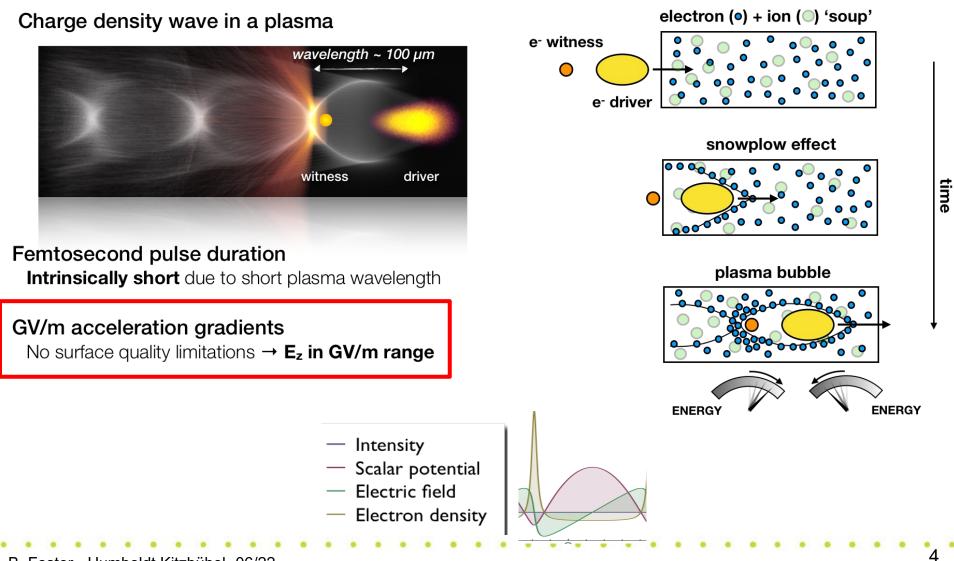
Outline

Introduction to Plasma Acceleration

- Applications to Colliders
 - Injectors
 - Booster/afterburner
 - Stand-alone colliders

• Summary

Plasma Wave Acceleration



Wake Excitation

Particle Acceleration

Plasma Wave Acceleration

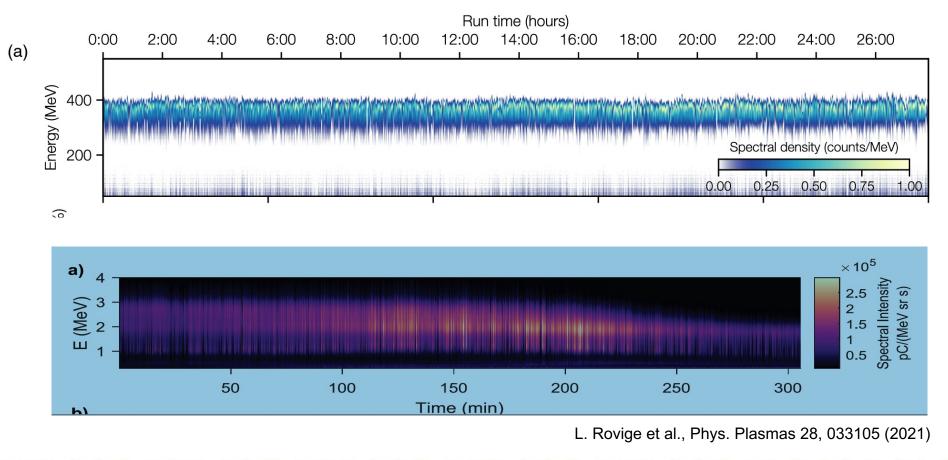
B. Foster - Humboldt Kitzbühel- 06/22

Collider Applications

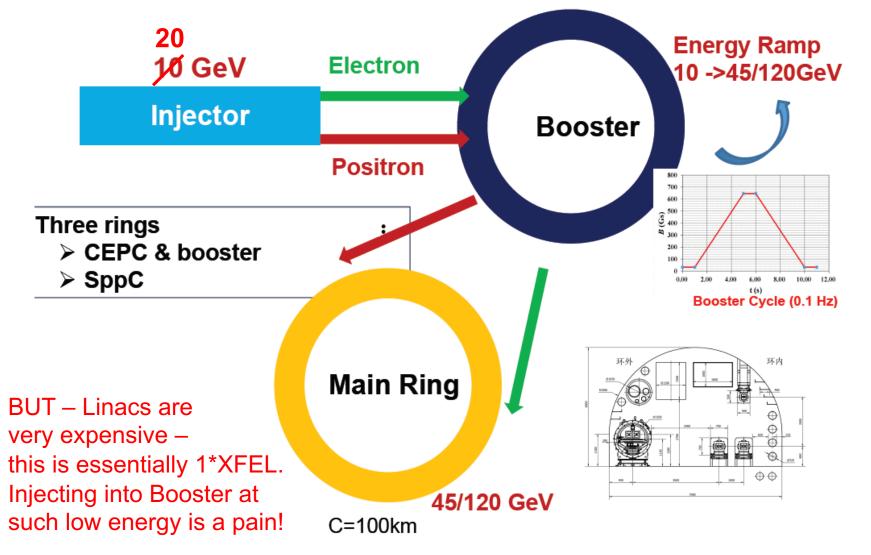
- ~40th anniversary of 1st workshop on PWFA for pp 3 years after Tajima and Dawson. There has been no user-orientated pp application in the interim.
- Applications in colliders governed by ability to produce required luminosity:
- Event rate = $\sigma \mathcal{L}$;
- $\mathcal{L} = N_1 N_2 fn_b / (4\pi \sigma_x \sigma_y)$
- $\mathcal{L} \propto \eta P_{\text{wall}} / \sigma_x \sigma_y$
- Point-like cross section goes like $1/E^2_{CM}$ so to get the same number of events, \mathcal{L} must increase like s.
- In the end, getting power into beams is the show-stopper but lots of other potential ones on the way.
- Some warning remarks:
- L/PWFA can show wonderful results generally as one-offs, on a good day, when all the stars align. For a user machine like a collider – the stars must align 24/7.
- Reproducibility, reliability are key.
- Positrons! Beam Delivery System (BDS)! (see Adli, JINST 17 (2022) 05, T05006)
- I concentrate on L/PWFA.

Injectors

- An obvious use of L/PWFA intrinsically tiny "feature-size" promises intrinsically excellent 6D emittance – low energy, no staging required. But archetypically the area where reliability crucial. Some applications need low rep. rate.
- What is state of art?

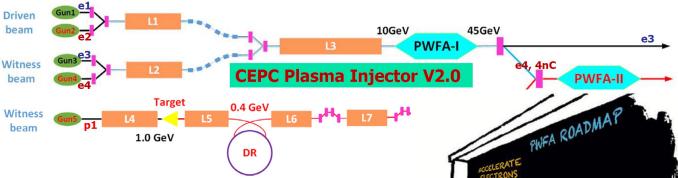

Plasma-Based Particle Sources, Fuchs et al., Snowmass2021, arXiv:2203.08379

Bunch property	State of the Art	Other beam parameters	References			
Bunch energy	8 GeV	5 pC, 0.2 mrad	Gonsalves <i>et al.</i> ,			
Bunch energy	o Gev	(up to 60 pC in 6 GeV peak)	PRL (2019)[24]			
	220 pC	250 MeV, 7 mrad	Couperus et al.,			
Bunch charge	(dE/E = 14% FWHM*)	[ionization injection]	Nat. Comm. (2017) [25]			
	338 pC	216 MeV, 0.36 mrad	Götzfried et al.,			
	$(dE/E = 15\% \text{ FWHM}^*)$	[shock front injection]	PRX (2020) [26]			
	700 nC	Up to 200 MeV	Shaw, et al.			
	$(dE/E = 100\%^*)$	laser: OMEGA-EP, 100 J, 700 fs	Sci Rep 11 (2021) [27]			
Energy spread*	0.2 - 0.4% (RMS)	$800 \mathrm{MeV},8.5-24\mathrm{pC}$	Ke, et al.			
Energy spread	0.2 - 0.470 (1000)	shockwave assisted injection	PRL (2021) [28]			
Bunch duration	1.4 fs (RMS)	15 pC, CTR	Lundh et al.,			
	1.4 IS (IUNS)	(diagnostic limited)	Nat Phys (2011) [29]			
	2.5 fs (RMS)	Faraday rotation	Buck et al.,			
	2.5 IS (RMS)	(diagnostic limited)	Nat Phys (2011) 30			
Emittance*	$0.2 \ \pi \ \mathrm{mm} \ \mathrm{mrad}$	Single-shot measurement	Weingartner <i>et al.</i>			
(normalized)	(@245 MeV)	Single-shot measurement	PRSTAB (2012) [31]			
	1 Hz	24-hour operation;	Maier et al.,			
Repetition Rate		100,000 consecutive shots	PRX (2020)[32]			
	1 kHz	up to 15 MeV, 2.5 pC	Salehi et al.,			
		up to 10 met, 2.0 pe	PRX (2021) [33]			
Efficiency	3%	2J in driver laser pulse	Götzfried et al.,			
(laser-to-electron)		20 m univer laser pulse	PRX (2020) [26]			


- Perhaps most obvious use of L/PWFA intrinsically tiny "feature-size" promises intrinsically excellent 6D emittance – low energy, no staging required. But archetypically the area where reliability crucial.
- What is state of art?

Injectors - CEPC

CEPC Accelerator CDR Status and Perspectives towards TDR Jie Gao (Institute of High Energy Physics, Chinese Academy of Sciences)


B. Foster - Humboldt Kitzbühel - 06/22

CEPC PWFA Linac

Booster Requirement						
45.5 (0.2%)						
0.78						
<3000						
0.2						
<800						
<2000						

- → Electron Acceleration → HTR
- ▶ Positron Acceleration \rightarrow Stable mode
- Conventional Accelerator optimization
- Beam manipulations

- Uniquely useful for green-field site FCCee? No.
- But e⁺? Linear wakes can symmetrise e⁺/e⁻ but only with low efficiency, high emittance, low gradient. Non-linear?

"I think you should be more explicit here in step two."

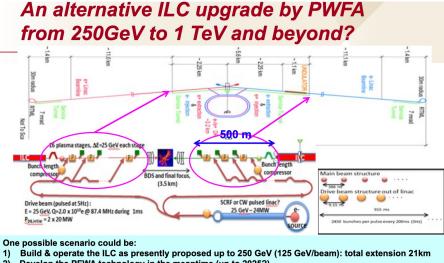
CEPC Timeline

CEPC Project Timeline

	2015	2050	Sol Color	²⁰³⁰	203S	2040	
Pre	e-Studies	Key Tech. R&D Engineering Design	Pre- Construction	Construction	Data Ta	king	SPPC (pp/ep/eA)
CEPC-SPPC Concept		 2016.6 R&D funde 2018.5 1st Worksh 2018.11 Release of roject kick-off meetingelease of Pre-CDR 	technology & • Accelerator internationa ed by MOST op outside of China of CDR	al collaboration	 Higgs Tunnel and infrastru Accelerator compon Installation, alignme commissioning Decision on detector detector TDRs; Cons installation and com	ents production; ent, calibration and rs and release of truction,	
) T SC dipole magne		T SC dipole magnet R& n+HTS or HTS	&D with	
			HTS Ma	gnet R&D Program		_	

Outline

Introduction to Plasma Acceleration

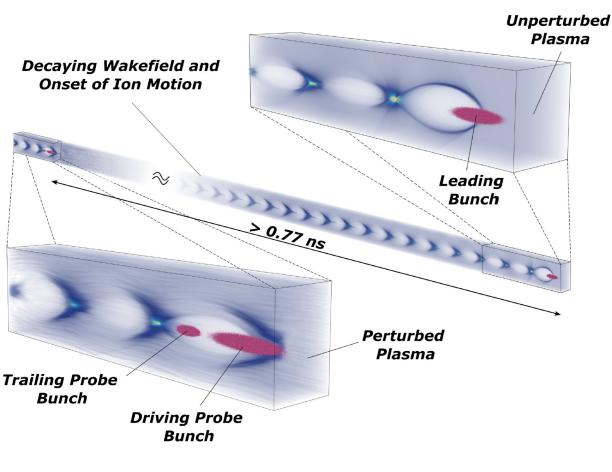

- Applications to Colliders
 - Injectors
 - Booster/afterburner
 - Stand-alone colliders

• Summary

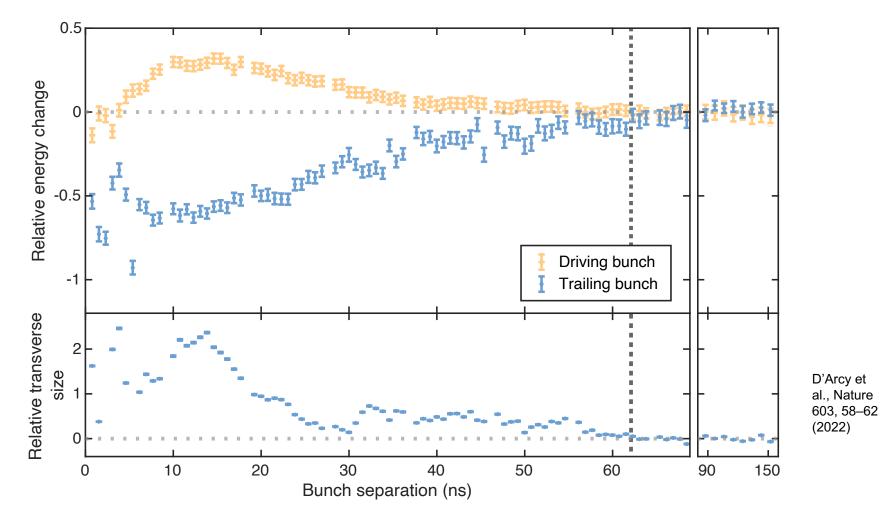
Booster/Afterburner

- Need to match beam delivered to L/PWFA to give optimum results. Because it sits inside conventional accelerator, many problems such as staging amenable to conventional solutions - easier? Collider more difficult than boosting XFEL because staging, positrons required in addition to rep. rate.
- Again, reliability/reproducibility at a premium.
- E.g. add plasma stages to boost ILC from Higgs Factory to 500 GeV/1 TeV

- Develop the PFWA technology in the meantime (up to 2025?) 2)
- When ILC upgrade requested by Physics (say up to 1 TeV), decide for ILC or PWFA technology: 3)
- Do not extend the ILC tunnel but remove latest 500m of ILC linac (beam energy reduced by 12.5 GeV)
- Install a bunch length compressor and 16 plasma cells in latest part of each linac in the same tunnel 5) for a 375+12.5 GeV PWFA beam acceleration (465m)
- Reuse the return loop of the ILC main beam as return loop of the PWFA drive beam


Basic L/PWFA limits - Rates

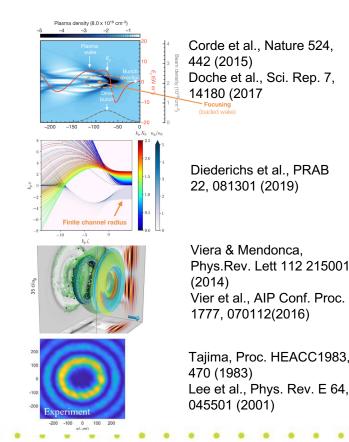
- Need to understand how plasma reacts to beam structure of "conventional" accelerators – what are the limits and are they compatible with afterburner requirements?
- FLASHForward results on maximum repetition rate from basic plasma relaxation.


Basic L/PWFA limits - Rates

- > A leading bunch perturbs the plasma by driving a wake
- > A second probe-bunch pair arrives >0.77 ns behind the leading bunch and samples the plasma at that point in time
- > The nature of the plasma can be inferred from the probe-bunch properties after driving its own wake
- > The delay of the probe bunch can be changed in order to map out the evolution
- > Analogous to pump-probe methodology in photon science

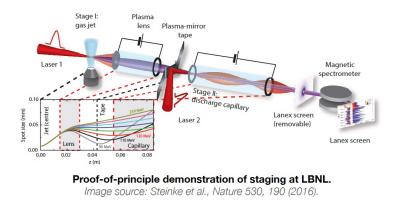
D'Arcy et al., Nature 603, 58–62 (2022)

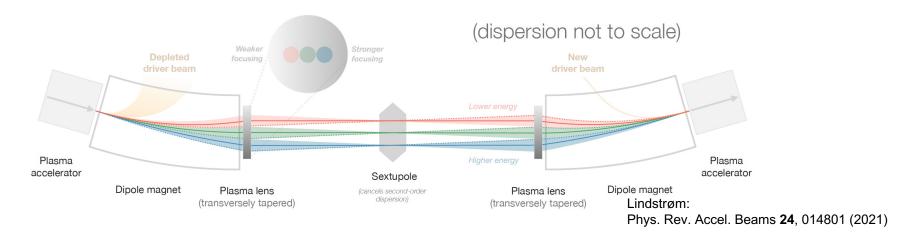
Basic L/PWFA limits - Rates



 Corresponds to rate limit ~ 16 MHz. NB – intrinsic limit due to physics processes – in practice, limit set by engineering issues, e.g. cell cooling, plasma generation...

Basic Limits – e+ acceleration


- Many approaches to e⁺ acceleration:
- Linear wakefields: original observation of e⁺ acceleration but cannot escape from low efficiency, high emittance and low gradient;
- Non-linear wakefields blow-out accelerating regime is naturally defocusing basically need to manipulate beam or plasma:
 - "self-loading" regime may work but bunch shape distorts in equilibrium – likely to give high emittance;
 - Limit the diameter of the plasma cylinder can give region of both acceleration & focusing.
 Promising, but potential sources of emittance growth need further investigation;
 - Wake inversion tailor the beam shape e.g. torus can engineer blow-out – but beam loading gives non-linear focusing;
 - Hollow Channel conjugate of WI tailor plasma so no ions on axis to defocus e+ but stability issues - may require strong focusing.



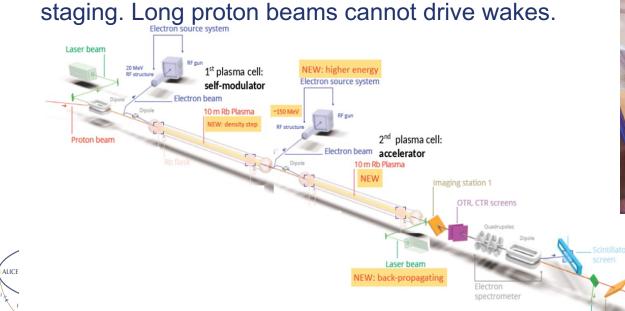
Basic Limits – Staging

• Staging demonstrated – but as yet no scheme that preserves emittance & charge.

• Several new ideas, e.g. achromatic staging with non-linear plasma lenses

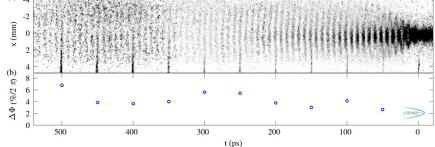
Outline

Introduction to Plasma Acceleration

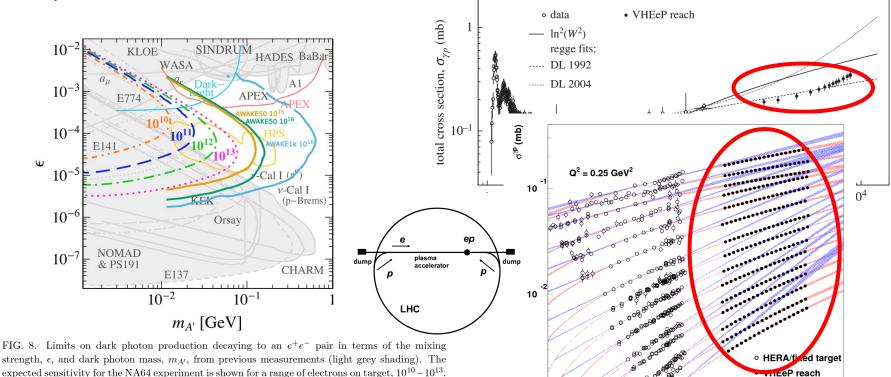

- Applications to Colliders
 - Injectors
 - Booster/afterburner
 - Stand-alone colliders

• Summary

No Staging - AWAKE


Proton-beam-driven facilitates long plasma cells and reduces/removes need for

Plasma source 10m long, 4cm diameter, density $10^{14} - 10^{15}$ cm⁻³



AWAKE Physics

L Limited by p accelerator repetition rate – look for high-cross-section processes to compensate.

-3

10

10

strength, ϵ , and dark photon mass, $m_{A'}$, from previous measurements (light grey shading). The expected sensitivity for the NA64 experiment is shown for a range of electrons on target, $10^{10} - 10^{13}$. Expectations from other potential experiments are shown as colored lines. Expected limits are also shown for 10^{15} (orange line) or 10^{16} (green line) electrons of 50 GeV ("AWAKE50") on target and 10^{16} (blue line) electrons of 1 TeV ("AWAKE1k") on target provided to an experiment using the future AWAKE accelerator scheme. From Ref. [29].

χ^{-λ(Q²)}

 $Q^2 = 120 \text{ GeV}^2$

10³

10²

(B(Q²)√log(1/x))

10⁴

W (GeV)

L/PWFA Colliders

• Ideas around now for a long time.

Figure 6: Tentative PWFA schedule for R&D and possible applications

Technological	issues	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203
Systems	Components & options																					
	FACET																					
Test facilities	FACET II																					
lest facilities	ILC as Higgs factory @ 250GeV																					
	ILC as R&D platform																					
Key issues	development of a concept for positron acceleration with high beam brightness High beam loading with both electrons and positrons Beam acceleration with small energy spreads Preservation of small electron beam emittances and mitigation of effects resulting from ion motion Positron beam emittances preservation and mitigation of effects resulting from plasma electron collapse Average bunch repetition rates in the 10's of kHz Synchronization of multiple plasma stages Optical beam matching between plasma acceleration stages and from plasma to beam delivery systems.																			Color R&D f Conce design Techn Const	easibi ptual n ical de ructio	<mark>ility,</mark> esign
	Beam generation with extremely small emittances																					
Integrated systems with	(Trojan horse technique)																					
Physics	Compact X-FEL using the plasma as a high-gradient accelerator and a source of high-brightness beams																					
applications	ILC energy upgrade																					

Adli et al., arXiv: 1308.1145

LWFA Colliders

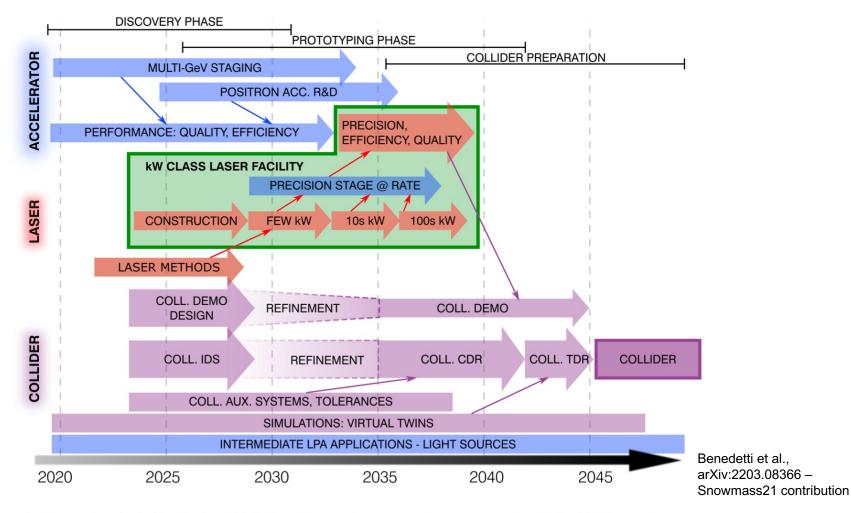
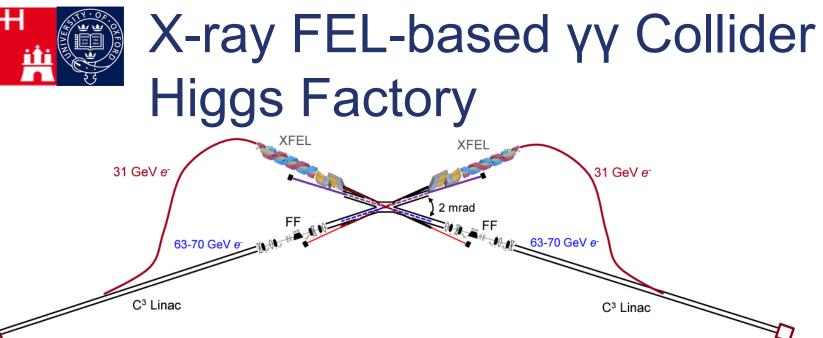



FIG. 2. Technically-limited high-level laser-plasma-accelerator-based collider R&D roadmap.

cryo RF gun

~ 2.5 km

Technology is C³ @ 70 MV/m

Round beams may increase experimental backgrounds;

Beta functions highly challenging - tolerances!

Table 5: Summary of design parameters for $\gamma\gamma$ mode at $\sqrt{s} = 125$ GeV.											
Final Focus parameters	Approx. value	XFEL parameters	Approx. value	Б							
Electron energy	62.8 GeV	Electron energy	31 GeV	Ba							
Flootron boom power	0.57 MW	Electron beam power	0.28 MW	ar							
β_x/β_y	0.03/0.03 mm	normalized emittance	120 nm	Sr							
$\gamma \epsilon_r / \gamma \epsilon_n$	120/120 mm	RMS energy spread $\langle \Delta \gamma / \gamma \rangle$	0.05%								
σ_x/σ_y at e^-e^- IP	5.4/5.4 nm	bunch charge	1 nC	Se							
-		Undulator B field	$\gtrsim 1 \text{ T}$	Ba							
bunch charge	1 nC	Judulator period λ_u	9 cm	-							
Rep. Rate at IP	$240 \times 38 \text{ Hz}$	Average β function	12 m	ar							
σ_x/σ_y at IPC		x-ray λ (energy)	1.2 nm (1 keV)	Sr							
$\mathcal{L}_{ ext{geometric}}$	$9.7\times 10^{34}~{\rm cm^2~s^{-1}}$	x-ray pulse energy	0.7 J	Ac							
δ_E/E	0.05%	pulse length	$40 \ \mu m$								
L^* (QD0 exit to e^- IP)	1.5m	$a_{\gamma x}/a_{\gamma y}$ (x/y waist)	10.8/10.8 nm	TC							
d_{cp} (IPC to IP)	$60 \ \mu m$	non-linear QED ξ^2	0.38								
QD0 aperture	$9 \mathrm{~cm}$ diameter										
Site parameters	Approx. value										
crossing angle	2 mrad										
total site power	86 MW										
total length	2.5 km										

Barklow et al, arXiv:2203.08484 Snowmass21 See also Barzi et al, arXiv:2203.08353 Snowmass21; Adli, JINST 17 (2022) 05, T05006

cryo RF gun

DESY.

Application Readiness

Application	LWFA	PWFA	DWFA	DLA	Cyro NCRF
Light sources	Near to mid	Near to mid	Near	Mid to long	Near
HEP add-ons	Near to mid	Near to mid	Near	Unknown	Near
e- only HEP	Mid to long	Mid to long	Near to mid	Unknown	Near
Multi-TeV ALIC	Long	Long	Mid	Unknown	Near to Mid
10-TeV ALIC	Longer	Longer	Not suitable	Unknown	Not suitable

Carlston et al, J. Phys.1596 (2020) 012063

Asymmetric Hybrid Higgs Factory

Another way to avoid the e^+ problem - use conventional technology and reduce cost by reducing energy. Obviously, this boosts the collision frame.

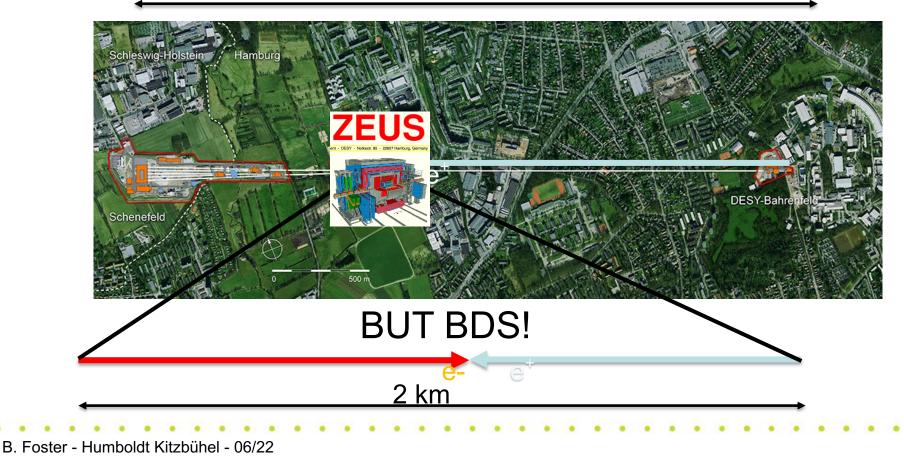
Some simple relativistic kinematics:

 $E_{cm}=2sqrt(E_1E_2)$; gamma = (E₁+E₂)/ E_{cm}

For HERA, γ of CM was (27.5+920)/318 = ~3

For an e^+e^- Higgs factory assume E_{cm} =125 GeV; for same γ as Hera,

 $E_1E_2 = 125*125/4$ and $E_1+E_2 = 3*125$, which has solution for roughly


E₁ ~ 10.7 GeV, E₂ ~ 364.3 GeV.

Asymmetric Hybrid Higgs Factory (A HH Factory)

Why not use E-XFEL, with added e⁺ source @ 17.5 GeV? For E_{cm} =125 GeV, E_{e-} ~223 GeV => γ ~ 2. Assuming 1 GV/m PWFA then:

2 km

Summary & Outlook

- 1) Many promises made on the applications of L/PWFA to pp. Progress but so far no application in the real world. Realistic timescales essential.
- Afterburners etc. have to accept beam parameters from conventional machines. Proper proposal for PWFA collider needs to start from *tabula rasa* to optimise bunch numbers & structure, currents etc. Shorten BDS – plasma lenses?
- 3) 24/7 reliability & weeks of stable operation required.
- 4) High power/repetition rate/efficiency
- 5) Positrons. Some distance from a solution that could be applied to a real machine. R&D @ FACET-II
- 6) Maybe hybrid solutions either with conventional or structure acceleration or $\gamma\gamma$ are a way forward?
- Non-pp PWFA application much closer eventually progress here will also feed through to pp.