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Introduction
• As we’ve already heard in a number of 

talks this week, we’ve had a remarkable 
harvest of physics results from the LHC 

• In particular, the discovery and study 
of the Higgs boson

• Also many detailed measurements of 
the Standard Model

• However, so far, despite some hints, no 
conclusive evidence for physics 
beyond the Standard Model

• Run 3, which is expected to double the 
available dataset, is starting now, however, 
all eyes are on the upgrade to the LHC, 
the High-Luminosity LHC (HL-LHC), 
currently scheduled to start in 2029

2
Volume 712, Issue 3, 6 June 2012 ISSN 0370-2693

http://www.elsevier.com/locate/physlet b

PHYSICS LETTERS B
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q̃q̃, q̃→qχ̃
0
1

0 e, µ 2-6 jets Emiss
T 139 m(χ̃

0
1)<400 GeV 2010.142931.85q̃ [1×, 8× Degen.] 1.0q̃ [1×, 8× Degen.]

mono-jet 1-3 jets Emiss
T 139 m(q̃)-m(χ̃

0
1)=5 GeV 2102.108740.9q̃ [8× Degen.]

g̃g̃, g̃→qq̄χ̃
0
1

0 e, µ 2-6 jets Emiss
T 139 m(χ̃

0
1)=0 GeV 2010.142932.3g̃

m(χ̃
0
1)=1000 GeV 2010.142931.15-1.95g̃̃g Forbidden

g̃g̃, g̃→qq̄Wχ̃
0
1

1 e, µ 2-6 jets 139 m(χ̃
0
1)<600 GeV 2101.016292.2g̃

g̃g̃, g̃→qq̄("")χ̃
0
1

ee, µµ 2 jets Emiss
T 139 m(χ̃

0
1)<700 GeV CERN-EP-2022-0142.2g̃

g̃g̃, g̃→qqWZχ̃
0
1

0 e, µ 7-11 jets Emiss
T 139 m(χ̃

0
1) <600 GeV 2008.060321.97g̃

SS e, µ 6 jets 139 m(g̃)-m(χ̃
0
1)=200 GeV 1909.084571.15g̃

g̃g̃, g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Emiss
T 79.8 m(χ̃

0
1)<200 GeV ATLAS-CONF-2018-0412.25g̃

SS e, µ 6 jets 139 m(g̃)-m(χ̃
0
1)=300 GeV 1909.084571.25g̃

b̃1b̃1 0 e, µ 2 b Emiss
T 139 m(χ̃

0
1)<400 GeV 2101.125271.255b̃1

10 GeV<∆m(b̃1,χ̃
0
1)<20 GeV 2101.125270.68b̃1

b̃1b̃1, b̃1→bχ̃
0
2 → bhχ̃

0
1

0 e, µ 6 b Emiss
T 139 ∆m(χ̃

0
2 , χ̃

0
1)=130 GeV, m(χ̃

0
1)=100 GeV 1908.031220.23-1.35b̃1b̃1 Forbidden

2 τ 2 b Emiss
T 139 ∆m(χ̃

0
2 , χ̃

0
1)=130 GeV, m(χ̃

0
1)=0 GeV 2103.081890.13-0.85b̃1b̃1

t̃1 t̃1, t̃1→tχ̃
0
1

0-1 e, µ ≥ 1 jet Emiss
T 139 m(χ̃

0
1)=1 GeV 2004.14060,2012.037991.25t̃1

t̃1 t̃1, t̃1→Wbχ̃
0
1

1 e, µ 3 jets/1 b Emiss
T 139 m(χ̃

0
1)=500 GeV 2012.037990.65t̃1t̃1 Forbidden

t̃1 t̃1, t̃1→τ̃1bν, τ̃1→τG̃ 1-2 τ 2 jets/1 b Emiss
T 139 m(τ̃1)=800 GeV 2108.076651.4t̃1t̃1 Forbidden

t̃1 t̃1, t̃1→cχ̃
0
1 / c̃c̃, c̃→cχ̃

0
1

0 e, µ 2 c Emiss
T 36.1 m(χ̃

0
1)=0 GeV 1805.016490.85c̃

0 e, µ mono-jet Emiss
T 139 m(t̃1,c̃)-m(χ̃

0
1)=5 GeV 2102.108740.55t̃1

t̃1 t̃1, t̃1→tχ̃
0
2, χ̃

0
2→Z/hχ̃

0
1

1-2 e, µ 1-4 b Emiss
T 139 m(χ̃

0
2)=500 GeV 2006.058800.067-1.18t̃1

t̃2 t̃2, t̃2→t̃1 + Z 3 e, µ 1 b Emiss
T 139 m(χ̃

0
1)=360 GeV, m(t̃1)-m(χ̃

0
1)= 40 GeV 2006.058800.86t̃2t̃2 Forbidden

χ̃±
1
χ̃0

2 via WZ Multiple "/jets Emiss
T 139 m(χ̃

0
1)=0, wino-bino 2106.01676, 2108.075860.96χ̃±

1 /χ̃
0

2
ee, µµ ≥ 1 jet Emiss

T 139 m(χ̃
±
1 )-m(χ̃

0
1 )=5 GeV, wino-bino 1911.126060.205χ̃±

1 /χ̃
0

2

χ̃±
1
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1 via WW 2 e, µ Emiss
T 139 m(χ̃

0
1)=0, wino-bino 1908.082150.42χ̃±

1

χ̃±
1
χ̃0

2 via Wh Multiple "/jets Emiss
T 139 m(χ̃

0
1)=70 GeV, wino-bino 2004.10894, 2108.075861.06χ̃±

1 /χ̃
0

2
χ̃±

1 /χ̃
0

2 Forbidden
χ̃±

1
χ̃∓

1 via "̃L/ν̃ 2 e, µ Emiss
T 139 m("̃,ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1908.082151.0χ̃±

1

τ̃τ̃, τ̃→τχ̃
0
1 2 τ Emiss

T 139 m(χ̃
0
1)=0 1911.066600.12-0.39τ̃ [τ̃L, τ̃R,L] 0.16-0.3τ̃ [τ̃L, τ̃R,L]

"̃L,R "̃L,R, "̃→"χ̃
0
1

2 e, µ 0 jets Emiss
T 139 m(χ̃

0
1)=0 1908.082150.7#̃

ee, µµ ≥ 1 jet Emiss
T 139 m("̃)-m(χ̃

0
1)=10 GeV 1911.126060.256#̃

H̃H̃, H̃→hG̃/ZG̃ 0 e, µ ≥ 3 b Emiss
T 36.1 BR(χ̃

0
1 → hG̃)=1 1806.040300.29-0.88H̃ 0.13-0.23H̃

4 e, µ 0 jets Emiss
T 139 BR(χ̃

0
1 → ZG̃)=1 2103.116840.55H̃

0 e, µ ≥ 2 large jets Emiss
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0
1 → ZG̃)=1 2108.075860.45-0.93H̃

Direct χ̃
+

1
χ̃−

1 prod., long-lived χ̃
±
1 Disapp. trk 1 jet Emiss
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1
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0
1

pixel dE/dx Emiss
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0
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0
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0
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0
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0
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t̃1 t̃1, t̃1→bs 2 jets + 2 b 36.7 1710.071710.61t̃1 [qq, bs] 0.42t̃1 [qq, bs]

t̃1 t̃1, t̃1→q" 2 e, µ 2 b 36.1 BR(t̃1→be/bµ)>20% 1710.055440.4-1.45t̃1

1 µ DV 136 BR(t̃1→qµ)=100%, cosθt=1 2003.119561.6t̃1 [1e-10< λ′
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<1e-8, 3e-10< λ′

23k
<3e-9] 1.0t̃1 [1e-10< λ′

23k
<1e-8, 3e-10< λ′

23k
<3e-9]

χ̃±
1 /χ̃

0
2/χ̃

0
1, χ̃0

1,2
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+

1→bbs 1-2 e, µ ≥6 jets 139 Pure higgsino 2106.096090.2-0.32χ̃0
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Mass scale [TeV]10−1 1

ATLAS SUSY Searches* - 95% CL Lower Limits
March 2022

ATLAS Preliminary
√

s = 13 TeV

*Only a selection of the available mass limits on new states or
phenomena is shown. Many of the limits are based on
simplified models, c.f. refs. for the assumptions made.

ATLAS SUSY Summary Plots

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/


The Software and Computing Challenge at the 
HL-LHC and Beyond

• The HL-LHC will be an exciting time for 
particle physics, e.g. for ATLAS/CMS

• 5-7x increase in luminosity (LHC upgrade)

• 4-5x increase in event size (new detectors)

• 10x increase in event rate (trigger upgrade)

• However, flat computing budgets mean 
that the current computing would fall short of 
needs

• Requires new techniques and new ideas 
to close this gap

• The problem will be far worse at future 
colliders such as FCC-hh with up to 1000 (!) 
additional collisions (pile up) per bunch 
crossing
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Pile up

PILEUP:  
multiple overlapping pp 
interactions in the same 

bunch crossing

Proton-proton collisions

!8

proton proton
1011 protons 1011 protons

VS

Parton distribution functions 
describe momentum distribution of proton’s 
constituents, measured from experiments

proton-proton collision vertex
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Sustained budget model
(+10% +20% capacity/year)

ATLASPreliminary

https://iopscience.iop.org/article/10.1088/1361-6633/ac5106
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


Why Quantum Computing?
• Initial ideas for quantum computing date back 40 years (Benioff, Feynman, 

Manin, etc,)

• Use quantum mechanical processes to simulate quantum 
mechanical systems

• Further interest was stimulated by the invention of quantum 
algorithms in the early 1980’s with the promise of solutions to intractable 
problems on quantum computers (Shor, Grover, etc)

• Exponential information storage

• Revolutionize cryptography

• Solutions to unsolved (classical) problems

• Most recently quantum computing has been in the news in regards to 
quantum advantage (supremacy)

• Google, IBM, Jiuzhang

• Quantum computing is likely at the peak of its hype cycle

• How might quantum computing be useful for high-energy physics?

4



Typical Data Flow for HEP Experiments
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Trigger

Reconstruction

Analysis

Generation

Simulation

Reconstruction

Data Simulated 
Data



Many Potential Applications
• Generation/Simulation

• MC generation, e.g. 
correlations in parton 
shower*

• QCD*

• Reconstruction
• Particle tracking

• Calorimeter clustering

• Analysis 
• Higgs analyses

• SUSY searches

• Predominantly quantum 
machine learning 
(QML)
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Reconstruction
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


Reconstruction
• Reconstruction algorithms process 

the real or simulated detector 
output to produce physics 
objects for analysis

• By 2030, reconstruction could take up 
to 40% of CPU requirements due to 
increasing pile up (additional pp 
collisions)

8

Track reconstruction is expected to 
have a large CPU burden at the HL-
LHC  … and even greater at future 

pp colliders

Can we develop better algorithms 
using quantum computers?

HL-LHC: μ= 140-200

CMS Computing Needs (no R&D)

pile up

C
PU

CMS Computing Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Transition
Radiation
Tracker

Silicon
Detectors

TRT Extension

Seed

Silicon
Track

Space Point
Silicon
Track
Candidate

Nominal
Interaction
Point

Tracking Algorithms: Current Approaches
• Methods for track finding can be classified as either global or local

• Global: Treat all measurements simultaneously

• Hough, Legendre transforms, Hopfield networks, Graph Neural 
Networks 

• Local: Process measurements sequentially

• track road, track following, Kalman Filter

9

See e.g. Strandlie and Fruhwirth, 
Track and vertex reconstruction: 

From classical to adaptive methods 
for a review

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1419
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1419
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1419


Tracking Algorithms: Current Approaches
• Tracking algorithms at the LHC generally follow a multi-step local track 

following algorithms based on the Kalman filter

• Local algorithms can be parallelized (e.g. multithreaded, GPU), but execution 
time scales with the number of tracks

• Tracking is a key element of events reconstruction, but increasingly also 
in the trigger especially with the advent of even more specialized tracking 
detectors for triggering

10

Space point formation

Seed finding

Track finding

Ambiguity Solving

TRT Extension

Example track reconstruction sequence 
(ATLAS)

pT module concept

• Modules provide pT discrimination in front-end electronics through hit 
correlations between two closely spaced sensors 

• Stubs: Correlated pairs of clusters,  
consistent with ≥2 GeV track 

‣ Data reduction at trigger readout  
(by factor 10-20) 

‣ Stubs form input to track finding

!26

2.1. The Phase-II Tracker Upgrade 29

Figure 2.5: (a) Correlation of signals in closely-spaced sensors enables rejection of low-pT parti-
cles; the channels shown in light green represent the “selection window” to define an accepted
“stub”. (b) The same transverse momentum corresponds to a larger distance between the two
signals at large radii for a given sensor spacing. (c) For the end-cap disks, a larger spacing
between the sensors is needed to achieve the same discriminating power as in the barrel at the
same radius. The acceptance window can therefore be tuned along with the sensor spacing to
achieve the desired pT filtering in different regions of the detector.

2.1.3 Overview of the Pixel detector design2812

The requirement of radiation tolerance is particularly demanding for the Pixel detector, as2813

shown above in Fig. 2.3. Preliminary studies show that good results can be obtained by us-2814

ing thin planar silicon sensors, segmented into very small pixels. With such a configuration the2815

detector resolution is much more robust with respect to radiation damage than the present de-2816

tector, where the precision relies on the ability to reconstruct the tails of the charge deposited in2817

a 300 micron-thick sensor. At the same time the required improvement in two-track separation2818

mentioned above is also obtained. Pixel sizes of 25 ⇥ 100 µm2 or 50 ⇥ 50 µm2 are being con-2819

sidered, representing a factor of 6 reduction in surface area compared to the present pixel cells.2820

For the readout chip, such a small pixel size can be achieved with the use of 65 nm CMOS tech-2821

nology and an architecture where a group of channels (pixel region) shares digital electronics2822

for buffering, control, and data formatting.2823

An alternative option that is being actively pursued is the possibility to use 3D silicon sensors,2824

offering intrinsically higher radiation resistance because of the shorter charge collection dis-2825

tance. As the production process is more expensive and so not suitable for large volumes, the2826

use of 3D sensors could be limited to the small regions of highest particle fluence.2827

The research on sufficiently radiation tolerant sensors and the design of the readout chip are2828

the key activities during this initial phase of the detector development. They are discussed in2829

Sections 2.2.1 and 2.2.2.2830

The new design will preserve the ease-of-access of the current detector that enables the possi-2831

bility to replace degraded parts over an Extended Technical Stop. The geometry of the Phase-I2832

detector [6] with 4 barrel layers and 3 forward disks is taken as a starting point. The forward2833

extension could be most simply realized by increasing the number of forward disks from 3 to2834

10, out of which the last 3 consist of the outer part only, in order to be compatible with the2835

conical section of the beam pipe. Such an extended pixel detector will have an active surface2836

of approximately 4 m2, compared to 2.7 m2 for the Phase-I detector. The time required for the2837

PS modules (pixel-strip) 
• Top sensor:  2x2.5 cm strips, 100 µm pitch 

• Bottom sensor: 1.5 mm x 100 µm pixels

Figure 3

Illustration of the concept of the pT modules for the upgraded CMS outer tracker for HL-LHC.
The two types of modules, 2S and PS, are shown to the left and right, respectively. The top
images show a layout of the two module types and the bottom images show a cross-sectional view
of the connectivity at the edges of the modules. These figures illustrate how hit information is
communicated between the two sensor tiers and correlations, stubs, are formed. In the 2S modules
one CBC reads out the hits from both sensors and forms the correlations. For the PS modules,
the strip sensor, at top in the figure, is read out by the SSA and the hits are communicated
through the flexible hybrid to the MPA, which reads out the macro pixels and form the stubs.
The separation between the sensors varies from 1.6 mm to 4.0 mm. From Ref. (15).

traverse the modules in a direction approximately perpendicular to the sensor plane. This

increases the e�ciency for reconstructing a stub since the particles are more likely to hit

both sensors. It also reduces the sensor area needed to provide complete coverage. The PS

modules in the TBPS use sensor spacings of 1.6 mm, 2.6 mm, or 4.0 mm depending on the

position and orientation of the sensors, as shown in Fig. 4. The 2S modules in the barrel

all have 1.8 mm spacing.

There are five disks (TEDD) on each side of the interaction point. Each disk has five

outer rings of 2S modules with sensor spacings of 1.8 mm or 4.0 mm. The two disks closest

to the IP extend somewhat closer to the beamline and have ten rings of PS modules while

the outer three disks have seven rings of PS modules. Also shown in Fig. 4 is the stub

acceptance window, in number of strips, for which hits in the two sensors are accepted as a

stub. This window varies from as little as two strips in the PS modules at the lowest radii in

the forward region to nine strips. For the 2S modules the acceptance window varies between

6–15 strips. These acceptance windows are configurable and can be tuned to manage the

rate for the trigger data.

The simulated stub reconstruction e�ciency as a function of particle pT is shown in

Fig. 5 for modules in the barrel and endcap regions. The stub finding windows are chosen

to provide high e�ciency at the 2 GeV threshold for track finding. In the innermost layer,
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2S modules (strip-strip) 
• Strip sensors 10x10 cm2 

• 2x5 cm long strips, 90 µm pitch

Figure 3

Illustration of the concept of the pT modules for the upgraded CMS outer tracker for HL-LHC.
The two types of modules, 2S and PS, are shown to the left and right, respectively. The top
images show a layout of the two module types and the bottom images show a cross-sectional view
of the connectivity at the edges of the modules. These figures illustrate how hit information is
communicated between the two sensor tiers and correlations, stubs, are formed. In the 2S modules
one CBC reads out the hits from both sensors and forms the correlations. For the PS modules,
the strip sensor, at top in the figure, is read out by the SSA and the hits are communicated
through the flexible hybrid to the MPA, which reads out the macro pixels and form the stubs.
The separation between the sensors varies from 1.6 mm to 4.0 mm. From Ref. (15).

traverse the modules in a direction approximately perpendicular to the sensor plane. This

increases the e�ciency for reconstructing a stub since the particles are more likely to hit

both sensors. It also reduces the sensor area needed to provide complete coverage. The PS

modules in the TBPS use sensor spacings of 1.6 mm, 2.6 mm, or 4.0 mm depending on the

position and orientation of the sensors, as shown in Fig. 4. The 2S modules in the barrel

all have 1.8 mm spacing.

There are five disks (TEDD) on each side of the interaction point. Each disk has five

outer rings of 2S modules with sensor spacings of 1.8 mm or 4.0 mm. The two disks closest

to the IP extend somewhat closer to the beamline and have ten rings of PS modules while

the outer three disks have seven rings of PS modules. Also shown in Fig. 4 is the stub

acceptance window, in number of strips, for which hits in the two sensors are accepted as a

stub. This window varies from as little as two strips in the PS modules at the lowest radii in

the forward region to nine strips. For the 2S modules the acceptance window varies between

6–15 strips. These acceptance windows are configurable and can be tuned to manage the

rate for the trigger data.

The simulated stub reconstruction e�ciency as a function of particle pT is shown in

Fig. 5 for modules in the barrel and endcap regions. The stub finding windows are chosen

to provide high e�ciency at the 2 GeV threshold for track finding. In the innermost layer,
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Image Credit: Louise Skinnari

Track reconstruction in the CMS trigger 
for HL-LHC



Tracking on Quantum Computers
• Several groups have explored tracking 

algorithms for quantum computers

• Berkeley/LBNL + Tokyo, DESY, 
METU+CERN+Caltech

• Algorithms have been developed for 
quantum annealers and digital 
quantum computers

• Almost all studies here use the trackML 
dataset

• Open dataset produced for a tracking 
machine learning challenge (i.e. see if ML 
experts can develop better tracking 
algorithms)

• Many restrict the multiplicity and/or focus on 
the central detector region and/or high pT

11

TrackML on kaggle

Amrouche et al, TrackML Accuracy Stage

https://arxiv.org/abs/1904.06778
https://www.kaggle.com/c/trackml-particle-identification
https://arxiv.org/abs/1904.06778


Algorithm 1: 
Quantum Associative Memory 
(QuAM)

12

Shapoval and Calafiura, arXiv:1902.00498

https://arxiv.org/abs/1902.00498


Tracking with Associative Memory
• Store possible track patterns directly in hardware

• Instead of running algorithms to reconstruct tracks, look up patterns of 
hits

• Avoids combinatorial scaling
• Can be sensitive to changes in detector conditions 

• Technique considered for hardware track triggers, e.g. Fast Track Trigger  
(FTK) design for ATLAS 

13

https://cds.cern.ch/record/1552953?ln=en


Quantum Associative Memory

• Theoretically proven asymptotic advantages of circuit-based QC

• Optimal* recall of unstructured memories

• Optimal memory capacity 

Strategy
• Memorize N patterns by assembling a quantum superposition of the basis 

states:

• Apply generalized Grover’s algorithm to amplify the amplitude of a pattern 
being recalled.

• Measure memory

14

*an algorithm is optimal if no other algorithm can outperform it by more than a 
constant factor



Implementation
• Developed QuAM circuit generators implementing 

the Trugenberger’s initialization and generalized 
Grover’s algorithms

• Open-source quantum computing platform, 
Qiskit

• Supported backends

• IBM QE cloud-based quantum chips [5Q 
Yorktown/Tenerife, 14Q Melbourne, 20Q 
Tokyo]

• Local/remote noisy simulators

15

arXiv:1902.00498

Storage QuAM

Retrieval QuAM

Snip
pet

Snip
pet

C.A Trugenberger, Probabilistic Quantum Memories.  PRL 87, 6 (2001)

Example: complete circuit for storing one 2-bit pattern

https://qiskit.org/
https://arxiv.org/abs/1902.00498
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.87.067901


Storage Capacity
16

Detector hit identifier (bits) 8 16 32

8 hit track pattern (bits) 64 128 256

QuAM register (qubits) 130 258 514

QuAM capacity (patterns) ∼1019 ∼1038 ∼1077

cf: 1078-1082 atoms in 
the known universe

Exponential storage 
capacity (2d) 

Requires 2(d+1) qubits to 
operate



Algorithm 2 
Quantum Annealing
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https://github.com/derlin/hepqpr-qallse

Bapst et al, arXiv:1902.08324

https://arxiv.org/abs/1902.08324


Offline: Quantum Annealing
• Formulate track reconstruction as an energy minimization problem

• Use quantum annealers from D-Wave to find the minimum

• Global algorithm

• Execution time ~independent of the number of tracks

• Formally, express problem as a Quadratic unconstrained binary optimization 
(QUBO)

• Inspired from *, but use triplets of hits instead of doublets as the qubits

• Encode the quality of the triplets based on physics properties. 

• Pair-wise connections b act as constraints (>0) or incentives (<0)

• To minimize objective function, select best triplets to form track 
candidates

18

*Stimpfl-Abele & Garrido, Fast track 
finding with neural networks

https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub
https://www.sciencedirect.com/science/article/pii/001046559190048P?via%3Dihub


Implementation
• Dataset: simplified TrackML dataset, focus on  barrel, 1+ GeV, at least 5 hits

• Toy dataset, but representative of expected conditions at the HL-LHC

• QUBO solvers: qbsolv (D-Wave + simulation), neal (classical)

• D-Wave 2X (1152 qubits), D-Wave 2000Q (2048 qubits) 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Performance
20

Physics performance as a 
function of occupancy using a 
D-Wave 2X (qbsolv).

Timing  
building: 0-20 min 
solving: 0-12s (sim), 0-56 min (D-
Wave*)
*important time overhead with D-
Wave due to use of queues

arXiv:1902.08324

efficiency

Doublets for a dataset of 2456 particles and 
16855 hits

efficiency
1/fake rate

1/fake rate

simulation

https://arxiv.org/abs/1902.08324


Reducing Fakes
• At multiplicities approaching the HL-

LHC, fake contribution becomes 
significant

• Methods to reduce fakes
• tighten track quality requirements

• refining conflict & bias terms, e.g. 
including vertex assumptions
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region of the detector (width of 0.07) and shifting the ⌘ region iteratively with small overlaps
of the width of 0.01.

Figure 4 shows the e�ciency and purity of an event randomly selected for the perfor-
mance evaluation as a function of the density. The performance of the Digital Annealer is
nearly the same as the neal solver for all hit density conditions.

(a) (b)

Figure 4: E�ciency (a) and purity (b) as a function of a fraction of a hit density for a HL-
LHC pileup environment. Black line is a result by the neal solver. Magenta, blue and red line
show results by the Digital Annealer with di↵erent solver-configurations.

Table 1 shows the CPU time of the annealing by the neal solver, CPU time of a pre-
processing/postprocessing by the Digital Annealer, and annealing time on the Digital An-
nealer Unit. A queue and network time are not included here. Also, a common preprocess-
ing/postprocessing time (triplet selection/QUBO building/track formation) are not shown in
the table. The annealing time on the Digital Annealer is independent of the hit density, while
the CPU time depends on the hit density. The dominant part of the computing time for the
Digital Annealer is CPU time in the case of the full density.

Table 1: A comparison of the compute time of the Digital Annealer and the neal solver. Nslice
is the number of ⌘ slices. A queue and network time of the Digital Annealer are not included
in this table.

Density [%] Nslice DA [sec] neal [sec]
CPU time Anneal time total time

5 46 0.09 0.29 0.27
10 68 0.15 0.42 0.66
20 71 0.22 0.44 1.29
40 74 0.52 0.45 2.46
60 73 0.94 0.45 4.29
80 74 1.79 0.46 7.49

100 74 3.73 0.45 12.87

5 Conclusion

We demonstrated a new method of track finding with annealing device. A QUBO is built
based on triplets, considering the relation between triplets and the property of the triplet

7

EPJ Web of Conferences 245, 10006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024510006

Further performance optimizations
• Further improvement of the purity of 

the algorithm

• Extend to expected HL-LHC 
multiplicities

• Study performance using the Fujitsu 
Digital Annealer
• Annealing time is independent of the 

number of tracks

• Superior performance to DWave

• Recently initial studies for the LUXE 
experiment, Funcke et al
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Saito et al

(a) (b)

Figure 2: An example of doublets on x-y place in one collision event (a) before QUBO
solving (b) after QUBO solving. Dark (light) green line shows a reconstructed doublet
within (without) the momentum acceptance. Blue line shows a missing doublet, which should
be reconstructed but not remain after QUBO solving. Red line shows a fake doublet, which
is not associated with injected tracks and remains after QUBO solving. Since the catego-
rization of doublets is evaluated after connecting the neighbor doublets, a badly connected
doublet with wrong neighbor doublets is identified as a missing.

(a)
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(b)

Figure 3: (a) Purity (circle) and e�ciency (square) as a function of the number of particles.
Black (red) shows the results by neal (qbsolv) solver. (b) The number of tracks of each
categories. Tracks are reconstructed from connected doublets. If a track contains less than
five doublets, the track is rejected. A coloring is defined in a similar way in Figure 2.
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Figure 4. Sketch of the full QUBO solving procedure.

triplet pairs into quadruplets. A track is only considered matched if the track has all four hits
matched to the same particle.

The e�ciency and fake rate are defined as

E�ciency =
N

matched
tracks

N
generated
tracks

and Fake rate =
N

fake
tracks

N reconstructed
tracks

. (6)

Figure 5 and 6 show the track reconstruction e�ciency and fake rate as a function of the
laser field intensity parameter ⇠ for the four methods tested: conventional CKF-based tracking,
GNN-based tracking, VQE, and the VQE exact solution using the Eigensolver.
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Figure 5. Track reconstruction e�ciency as
a function of the field intensity parameter ⇠.
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Figure 6. Track fake rate as a function of ⇠.

The conventional CKF-based tracking, while performant, deteriorates with ⇠. The
performance of CKF-based tracking is used as a benchmark to demonstrate the performance that
can be realistically achieved. The intial results using the Eigensolver are slightly poorer than the
CKF tracking, which thus need to be further optimised. The results for VQE demonstrate that
our initial implementation is less e↵ective; however, it can also be further optimised, e.g., by
using a more appropriate choice of circuit ansatz and optimiser. The limited size of the quantum
device, which prompts the sub-QUBO algorithm, is also a potential contributing factor to the
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Figure 5. Track reconstruction e�ciency as
a function of the field intensity parameter ⇠.
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Figure 6. Track fake rate as a function of ⇠.

The conventional CKF-based tracking, while performant, deteriorates with ⇠. The
performance of CKF-based tracking is used as a benchmark to demonstrate the performance that
can be realistically achieved. The intial results using the Eigensolver are slightly poorer than the
CKF tracking, which thus need to be further optimised. The results for VQE demonstrate that
our initial implementation is less e↵ective; however, it can also be further optimised, e.g., by
using a more appropriate choice of circuit ansatz and optimiser. The limited size of the quantum
device, which prompts the sub-QUBO algorithm, is also a potential contributing factor to the
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Quantum Annealing
• An independent implementation of 

quantum annealing using Hopfield 
networks for tracking from Zlokapa et 
al, arXiv: 1908.04475

• KDE to estimate connection 
probability for a pair of hits

23

Zlokapa et al, arXiv: 1908.04475

chain to the largest coupling in the Hamiltonian to equal
a factor of 3. We find that this prevents chains from
breaking (via noise from thermal excitations and domain
walls) while still allowing qubits to flip to ensure that
the transverse field Hamiltonian drives the dynamics [44].
For each annealing run, we re-embed the problem 10 times
with randomized cross-term signs (gauges) to average out
noise on local fields and couplers [45]. For each gauge,
we perform 10, 000 annealing runs before selecting the
lowest-energy solution from all the outputs. Note that as
the inherent noise in the annealing hardware improves in
the future, fewer runs and gauges would be necessary. To
test the effect of the annealing time (which in principle
must be optimized in order to extract the true time to
solution [8, 38]), we compare runs from 5 to 800 µs.

3.6 Benchmark studies

To evaluate the performance of the annealing algorithm,
we benchmark against random edge selection after pre-
processing. Random edge selection simply randomly se-
lects edges as true according to the expected fraction
of true edge segments in the pre-processed data. Since
the edge selection by annealing occurs after our heuris-
tic edge selection with the Gaussian KDE and disjoint
sub-graph search, comparison to random edge selection
demonstrates that the patterns of hits are not found dur-
ing pre-processing, but rather by solving the QUBO.

4 Results

After measuring the overall tracking performance of
our methodology, we present results on the scalability of
our algorithm for both SA and QA to evaluate the pos-
sibility of a quantum speedup. We report error bars rep-
resenting the 1 standard deviation (�) spread of sector-
by-sector purity and efficiency for TrackML events, indi-
cating the robustness of the methodology. Particle mul-
tiplicity and pileup are linearly dependent, where 2,000
particles per event corresponds to an average of 40 pileup.

4.1 Tracking efficiency and purity

To compare the QA and SA performance in terms of par-
ticle multiplicity (see figure 11) and particle momentum
(see figure 12), we use two metrics:

Purity =
Number of true tracks reconstructed

Number of tracks reconstructed
,

Efficiency =
Number of true tracks reconstructed

Number of true tracks
.

Due to the limited size of the D-Wave machine (33 fully
connected logical qubits), we can only fit up to 500 tracks

on the quantum annealer. However, to show that the per-
formance of the algorithm does not significantly deterio-
rate at higher multiplicity, we include further results from
SA.

Figure 11: QA and SA benchmarked against random an-
nealing after pre-processing heuristics. All values are re-
ported with 1� error bars for tracks with at least 3 hits
indicating the spread of event sectors. Additionally, the
pre-processing places an upper bound of around 93% ef-
ficiency (indicated by the dashed line).

As particle multiplicity increases, the random edge se-
lection track efficiency and purity approach zero, while
the SA and QA reconstructions maintain their perfor-
mance. This suggests that the majority of tracking is
completed in solving the QUBO rather than in our heuris-
tic pre-processing methods. Although quantum annealing
on D-Wave hardware does not outperform SA, it consis-
tently obtains a solution of similar quality. The SA algo-
rithm’s slightly better performance may be attributable
to a lack of noise in embedding the Hamiltonian as well as
the ability to fully encode the problem without chains of
qubits that cause additional error in the readout process.

We present the performance in terms of track effi-
ciency and purity across several physical variables (see
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true using data samples outside the test set. Since tracks
typically originate from the interaction point near the ori-
gin, we train the Gaussian KDE on the z-intercept and
the angle in the rz-plane of line segments based on ground
truth in the TrackML data.

Figure 9: Gaussian kernel density estimation of a prior
probability for two hits to be connected by an edge, allow-
ing information from the interaction points and detector
geometry to be introduced into the QUBO.

We apply a cut on the Gaussian KDE to reduce the
size of the QUBO, yielding 93% of all the true edges with
approximately 1% purity. Given h hits, this has time
complexity O

�
h
2
�

as we traverse over all hits. We may
then construct the QUBO outlined earlier, again travers-
ing all edges with complexity O

�
h
2
�
.

3.4.2 Sub-graphing

Since we wish to anneal our problem using a small num-
ber of qubits, we further subdivide the problem into dis-
joint sub-graphs, separating individual communities of
hits connected by edges. To do so, we perform a flood-
fill search [36] to label each edge and prune the candi-
date edges from each node to only include the 5 edges
with the highest single-edge biases in the QUBO. Thus,
this sub-division procedure also runs in time O

�
h
2
�
. We

may then proceed to anneal the multiple QUBO problems
with the number of problems scaling like the number of
sub-graphs, i.e., as O(h2) since the sub-graphs divide the
event into disjoint edge communities. The sub-graphing
process is further detailed in section 2 of the Supplemen-
tary Material.

3.5 Annealing procedure

Due to the QUBO construction of assigning each possible
edge to a variable in the QUBO problem, we expect SA

with no pre-processing to solve the tracking problem in
exponential time with respect to the number of edges h2,
i.e., O

�
exp

�
ch

2
��

for a constant c > 0. After our sub-
graphing procedure, we divide the event into K = O(h2)
sub-graphs, and we expect total annealing time to grow
as

PK
i=1 exp (cmi) where mi is the number of edges in

sub-graph i. Hence, the overall scaling would depend on
the distribution of mi (see figure 10).

Figure 10: Histogram of sub-graph sizes mi summed over
the 5 largest event sectors (1/16 of an event) for different
track densities. Each bin corresponds to the number of
edges in a sub-graph, which is equivalent to the number
of variables in a QUBO.

However, since the sub-graphing procedure only re-
duces the complexity of the annealing (by dividing the
larger QUBO into smaller sub-QUBOs), the procedure’s
complexity is bounded from above by O

�
exp

�
ch

2
��

. To
verify this, we use SA and measure the convergence time
as a function of the distribution of sub-graph sizes in sec-
tion 4.2. Details of the SA algorithm are provided in
section 3 of the Supplementary Material.

Although QA is not thought to generally yield a
ground state solution to a QUBO problem in polynomial
time, it may reduce the size of the constant c in the time
complexity

PK
i=1 exp (cmi), potentially offering a signif-

icant speedup over classical methods [37, 38]. To assess
the possibility of a quantum speedup, we implement our
procedure on a programmable quantum annealer built by
D-Wave Systems Inc. [39] and housed at the University of
Southern California’s Information Sciences Institute. The
D-Wave 2X architecture has 1, 098 superconducting flux
qubits arranged in a Chimera graph, in which each qubit
is coupled to at most 6 others. To increase connectivity we
perform a minor-embedding operation by mapping each
QUBO problem onto ferromagnetic chains of qubits [40,
41, 42, 43]; the result is a fully connected graph of 33
logical qubits, each of which is used to represent an edge.

We optimize the ratio between coupling within each

7

https://arxiv.org/pdf/1908.04475.pdf
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Preliminary study



Quantum Hough Transform
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P.V.C. Hough (1962), R.O. Dude, P.E. Hart (1972), D.H. Ballard (1980) 

Slide Credit: A. Yadav



Implementation & Preliminary Results
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Slide Credit: A. Yadav Chen et al, arXiv:1908.07943

Local Maxima Detection 
using Grover-Long 
Algorithm

vote counts

Accumulator 
Space for 8 

tracks

Preliminary implementation within QISKit

Testing within a quantum simulator

https://arxiv.org/abs/1908.07943
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Fig. 4 Graphs are produced
with the pre-processing of each
event. 2D projection of hits, fake
and true edges of an event are
plotted. All hits are plotted with
black circles. Fake (on the left)
and true (on the right) edges of a
graph are plotted in the Cartesian
coordinates (transverse plane).
There are 5162 true and 5508
fake edges of this event

probabilities (e ∈ [0, 1]NE ). This pipeline is summarized
with a simple drawing in Fig. 5.

3.1 The Edge Network

The Edge Network takes pairs of nodes into account and
returns the probability for those two nodes to be connected.
Initially, the connectivity of each pair of nodes is given by
the connectivity matrices Ri and Ro. Using these matrices,
node feature vectors bo and bi of all initially connected
edges, or so called doublets (bo ⊕ bi), are obtained.

b k
o =

NV∑

j=1

R
jk
o vj b k

i =
NV∑

j=1

R
jk
i vj (7)

The feature vectors of input and output nodes of each
edge are concatenated in order to be fed into a Hybrid
Neural Network (HNN, φEdgeNetwork). The HNN returns
edges features (e), which are the probabilities for each edge,
to be part of a real trajectory or not. Next, the edge features
are passed to the Node Network.

ek = φEdgeNetwork

(
b k
o ⊕ b k

i

)
(8)

3.2 The Node Network

The Node Network builds up on the edge feature matrix
given by its predecessor, the Edge Network. Based on
this input information, the node features are updated. In
this case, a combination of each node of interest and
its neighbors from upper and lower detectors is created,
forming a triplet. Here, the node features of the neighbors’
are scaled with the corresponding edge features.

v′
j,input =

NE∑

k=1

ekR
jk
i bko v′

j,output =
NE∑

k=1

ekR
jk
o bki (9)

Similar to the Edge Network, the triplet is fed to a Hybrid
Neural Network (φNodeNetwork).

vj := φNodeNetwork

(
v′
j,input ⊕ v′

j,output ⊕ vj

)
(10)

This time, the HNN returns new node features v. The
updated features are passed again to the Edge Network
and this process is repeated for NI times. This allows the
aggregation of information from farther nodes of the graphs
and updates the hidden features accordingly.

3.3 The hybrid neural network

Our approach employs Hybrid Neural Networks (HNNs),
which combine both classical and quantum layers. The

Fig. 5 Schematic of the QGNN architecture. The pre-processed graph
is fed to an Input Network, which increases the dimension of the node
features. Then, the graph’s features are updated with the Edge and
Node Networks iteratively, number of iterations (NI ) times. Finally,

the same Edge Network is used one more time to extract the edge fea-
tures of the graph that predicts the track segments. There is only one
Edge Network in the pipeline, two Edge Networks are drawn only for
visual purposes. The pipeline is adapted from Farrell et al. (2018)
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Quantum Graph Neural Networks
• GNNs for particle tracking are under development by a number of groups

• Recent studies of the application of QGNNs to particle tracking

• Hybrid quantum-classical algorithm

• Encode the hit coordinates as angles

• Iteratively apply quantum edge and node networks to propagate 
information to all detector layers

• Final application of the edge network classifies the segments
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Fig. 4 Graphs are produced
with the pre-processing of each
event. 2D projection of hits, fake
and true edges of an event are
plotted. All hits are plotted with
black circles. Fake (on the left)
and true (on the right) edges of a
graph are plotted in the Cartesian
coordinates (transverse plane).
There are 5162 true and 5508
fake edges of this event

probabilities (e ∈ [0, 1]NE ). This pipeline is summarized
with a simple drawing in Fig. 5.

3.1 The Edge Network

The Edge Network takes pairs of nodes into account and
returns the probability for those two nodes to be connected.
Initially, the connectivity of each pair of nodes is given by
the connectivity matrices Ri and Ro. Using these matrices,
node feature vectors bo and bi of all initially connected
edges, or so called doublets (bo ⊕ bi), are obtained.
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The feature vectors of input and output nodes of each
edge are concatenated in order to be fed into a Hybrid
Neural Network (HNN, φEdgeNetwork). The HNN returns
edges features (e), which are the probabilities for each edge,
to be part of a real trajectory or not. Next, the edge features
are passed to the Node Network.

ek = φEdgeNetwork

(
b k
o ⊕ b k

i

)
(8)

3.2 The Node Network

The Node Network builds up on the edge feature matrix
given by its predecessor, the Edge Network. Based on
this input information, the node features are updated. In
this case, a combination of each node of interest and
its neighbors from upper and lower detectors is created,
forming a triplet. Here, the node features of the neighbors’
are scaled with the corresponding edge features.

v′
j,input =

NE∑

k=1

ekR
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j,output =
NE∑

k=1
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Similar to the Edge Network, the triplet is fed to a Hybrid
Neural Network (φNodeNetwork).

vj := φNodeNetwork

(
v′
j,input ⊕ v′

j,output ⊕ vj

)
(10)

This time, the HNN returns new node features v. The
updated features are passed again to the Edge Network
and this process is repeated for NI times. This allows the
aggregation of information from farther nodes of the graphs
and updates the hidden features accordingly.

3.3 The hybrid neural network

Our approach employs Hybrid Neural Networks (HNNs),
which combine both classical and quantum layers. The

Fig. 5 Schematic of the QGNN architecture. The pre-processed graph
is fed to an Input Network, which increases the dimension of the node
features. Then, the graph’s features are updated with the Edge and
Node Networks iteratively, number of iterations (NI ) times. Finally,

the same Edge Network is used one more time to extract the edge fea-
tures of the graph that predicts the track segments. There is only one
Edge Network in the pipeline, two Edge Networks are drawn only for
visual purposes. The pipeline is adapted from Farrell et al. (2018)
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Fig. 9 Best validation loss comparison with respect to different param-
eters of the hybrid GNN model. (a) The axis of angle embedding
comparison considers the best loss obtained for different embedding
axes by setting ND = NQ = 4, NL = 1 and NI = 3. (b) The num-
ber of layers comparison considers the best loss for various numbers
of layers (NL) by setting ND = NQ = 4 and NI = 3. (c) The number
of iterations comparison considers the best loss for different numbers

of iterations (NI ) by setting ND = NQ = 4 and NL = 1. (d) The hid-
den dimension size comparison considers the loss for different hidden
dimension sizes (ND) by setting NQ = ND , NL = 1 and NI = 3.
5 instances of all models with different initial parameters are trained
for 10 or 20 epochs depending on complexity for each setting, and
the mean of best losses are presented. The error bars represent the ±
standard deviation of the best losses of all 5 runs

the dataset and the model. A computational speed-up in
training has been achieved using Qulacs (Suzuki et al.
2020). Although it provided faster training, it was still not
enough. Finally, the combination of Cirq, Tensorflow and
Tensorflow Quantum (Cirq Developers 2021; Abadi et al.
2016; Broughton et al. 2020) produced the optimal scenario,
in which we were able to reduce the training times to less
than a week. The quantum circuit simulations are performed
with only taking analytical results into account, i.e.
without sampling the quantum circuits. Although analytical
results do not reflect hardware conditions, we made this
choice in order to obtain results in a reasonable amount
of time.

The 100 events selected from the dataset are separated
randomly with a 50/50 ratio to be used as training and
validation sets. Models are trained using the binary cross
entropy loss function, given in Eq. 13, where yi is the truth
label and ŷi is the model prediction for an edge.

L = − 1
NE

NE∑

i=1

yi log (1 − ŷi )+ (1 − yi) log ŷi (13)

The Adam optimizer (Kingma and Ba 2017) with a
learning rate of 0.01 is used to train all trainable parameters
of the hybrid model. The learning is done with a batch
size of 1 per graph and continued up-to 10 or 20 epochs
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ML on Quantum Computers



Quantum Machine Learning

• Recently rapid development in the field of quantum machine learning
• As quantum circuits are differentiable, train by minimizing a cost function

• Two general categories have been explored

• Variational algorithms: classical optimizer to train quantum circuit

• Kernel methods: identify key features, e.g. support vector machines

• In most cases, implemented as classical-quantum hybrid algorithms

• Machine learning is used extensively in HEP, natural to explore if such 
methods can be useful

• Not particularly constrained by computing power, but care about 
obtaining ultimate performance

• However, HEP data has high dimensionality and uses large/complex machine 
learning models

• Need to simplify problems to use current quantum computers

31

See Guan et al for a recent review

https://arxiv.org/abs/2005.08582
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Solving a Higgs optimization problem with quantum 
annealing for machine learning
Alex Mott1†*, Joshua Job2,3*, Jean-Roch Vlimant1, Daniel Lidar3,4 & Maria Spiropulu1

The discovery of Higgs-boson decays in a background of standard-
model processes was assisted by machine learning methods1,2. The 
classifiers used to separate signals such as these from background 
are trained using highly unerring but not completely perfect 
simulations of the physical processes involved, often resulting in 
incorrect labelling of background processes or signals (label noise) 
and systematic errors. Here we use quantum3–6 and classical7,8 
annealing (probabilistic techniques for approximating the global 
maximum or minimum of a given function) to solve a Higgs-
signal-versus-background machine learning optimization problem, 
mapped to a problem of finding the ground state of a corresponding 
Ising spin model. We build a set of weak classifiers based on the 
kinematic observables of the Higgs decay photons, which we then 
use to construct a strong classifier. This strong classifier is highly 
resilient against overtraining and against errors in the correlations 
of the physical observables in the training data. We show that the 
resulting quantum and classical annealing-based classifier systems 
perform comparably to the state-of-the-art machine learning 
methods that are currently used in particle physics9,10. However, in 
contrast to these methods, the annealing-based classifiers are simple 
functions of directly interpretable experimental parameters with 
clear physical meaning. The annealer-trained classifiers use the 
excited states in the vicinity of the ground state and demonstrate 
some advantage over traditional machine learning methods for 
small training datasets. Given the relative simplicity of the algorithm 
and its robustness to error, this technique may find application 
in other areas of experimental particle physics, such as real-time 
decision making in event-selection problems and classification in 
neutrino physics.

The discovery of the Higgs boson at the Large Hadron Collider 
(LHC)1,2 marks the beginning of a new era in particle physics. 
Experimental particle physicists at the LHC are measuring the 
 properties of the new boson11,12, searching for heavier Higgs bosons13 
and trying to understand whether the Higgs boson interacts with 
dark matter14. Cosmologists are trying to understand the symmetry- 
breaking Higgs phase transition that took place early in the history 
of the Universe and whether that event explains the excess of matter 
compared to antimatter15. The measured mass of the Higgs boson13 
implies that the symmetry-breaking quantum vacuum is  metastable16 
unless new physics intervenes. The implications of the discovery  
of the Higgs boson will keep motivating physics research for years  
to come.

One of the key requirements for precisely measuring the  properties 
of the Higgs boson is selecting large, high-purity samples that  contain 
the production and decay of a Higgs particle. Machine learning 
 techniques17 could potentially be used as powerful tools for selecting 
such samples, but challenges remain. These challenges are greater when 
an investigation requires faithful simulation not only of the physics 

observables themselves, but also of their correlations in the data. In 
the measurement of the properties of the Higgs boson11, disagree-
ments between simulations and observations result in label noise and 
 systematic uncertainties in the efficiency of the classifiers that adversely 
effect the classification performance and translate into uncertainties on 
the measured properties of the discovered particle.

To address these challenges in the Higgs-signal-versus-background 
optimization problem, we study a binary classifier that is trained 
with classical simulated annealing7,8 and quantum annealing3–6,18. 
To implement quantum annealing we use a programmable quantum 
annealer (D-Wave Systems, Inc.) housed at the University of Southern 
California’s Information Sciences Institute, which comprises 1,098 
superconducting flux qubits. The optimization problem is mapped to 
one of finding the ground state of a corresponding Ising spin model.  
We use the excited states in the vicinity of the ground state in the 
 training method to improve the accuracy of the classifiers beyond 
the baseline ground-state-finding model. We refer to this approach as 
quantum annealing for machine learning (QAML).

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 2Department of Physics, University of Southern California, Los Angeles, California 90089, USA. 3Center 
for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA.4Departments of Electrical Engineering, Chemistry and Physics, University 
of Southern California, Los Angeles, California 90089, USA. †Present address: DeepMind, London, UK. 
*These authors contributed equally to this work.
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Figure 1 | Representative Feynman diagrams of processes that 
contribute to the simulated distributions of the Higgs signal and of the 
background standard-model processes. The signal corresponds to the 
production of a Higgs boson (H) through the fusion of two gluons (g), 
which then decays into two photons (γ) (top). The gluon fusion and Higgs 
decay processes both proceed through virtual top quark (t) loops; t is an 
antitop quark. Representative leading-order and next-to-leading-order 
background processes are standard-model two-photon production 
processes (bottom).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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where si =  ± 1 is the ith Ising spin variable, Jij =  Cij/4 is the coupling 
between spins i and j, and λ= − + ∑h C Ci i j ij

1
2

 is the local field on 
spin i. The problem that quantum or simulated annealing attempt to 
solve is minimizing H and returning the minimizing, ground-state spin 
configuration s{ }i i

g . The strong classifier is then constructed as

∑= ∈ −x xR s c( ) ( ) [ 1, 1]
i

i i
g

for each new event x that we wish to classify6. We introduce an addi-
tional layer into our study by also constructing strong classifiers from 
excited-state spin configurations.

As benchmarks for traditional machine learning methods, we train a 
deep neural network (DNN) using Keras9 with the Theano backend19, 
and an ensemble of boosted decision trees using XGBoost (XGB)10, 
using  optimized choices for training hyperparameters (details of which 
can be found in Supplementary Information).

We compare the ground-state configurations for λ ∈  {0.01, 0.05, 0.1,  
0.2, 0.4, 0.8}. A larger λ implies an increased penalty against including 
additional variables, and so we expect the variables included at λ =  0.8 
to be determining the performance of the classifiers. Table 3 presents 
the relative strength of the variables in determining the performance 
of the classifier by showing how often variables are included in the 
ground-state configuration of the full 36-variable problem derived from 
20 different training sets with 20,000 training events each, as a function 
of the penalty term λ. We find that two of the original kinematic 
 variables, pT

1  and | ηγγ| , are never included. The number of classifiers 
included in the ground state of the corresponding Hamiltonian of all 
20 training samples is 16 out of 36 for λ ≤  0.05 and the following three 
for λ =  0.8: (i) / γγp mT

2 , (ii) ∆ γγ −R p( )T
1 and (iii) / γγp pT

2
T . These three 

classifiers have the greatest effect on the performance of the network, 
but would have been difficult to guess a priori in their composite form. 
The physical reason for why these variables are important for the clas-
sifier can be gleaned by considering the kinematics of the system. The 
key difference between an event in which a Higgs boson decays to two 
photons and another process that produces two photons in its final state 
is the production of the heavy particle in the event. A heavy particle 
will require considerably more energy to boost perpendicular to the 
beamline and hence we would expect real Higgs events to have a char-
acteristically lower γγpT  than do background events. Because the system 
with the Higgs boson has less transverse boost, we would expect  
the two photons to have similar pT spectra. Consequently, the second 
most energetic photon will typically be higher than in events without 
the heavy process. The pT of the first photon is largely determined by 
the overall energy that is available in the collision, which is also  

set by mγγ; hence / γγp mT
1  is largely stochastic and provides little 

discrimination.
We estimate the receiver operating characteristic (ROC) curves on 

the training set and construct a final output classifier such that for 

Table 3 | Variable inclusion in the ground states of instances of the Ising problem
λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8 λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8

1 0 0 0 0 0 0 0 0 19 20 20 20 20 20 18 0 0
2 20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0
3 20 20 20 20 20 20 0 0 21 0 0 0 0 0 0 0 0
4 20 20 20 20 20 20 2 0 22 19 19 19 19 1 0 0 0
5 19 19 19 19 19 19 19 0 23 0 0 0 0 0 0 0 0
6 20 20 20 20 20 20 20 0 24 20 20 20 20 20 20 7 0
7 20 20 20 20 20 20 20 9 25 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 26 3 2 1 0 0 0 0 0
9 5 4 4 1 0 0 0 0 27 0 0 0 0 0 0 0 0
10 20 20 20 20 20 20 20 18 28 20 20 20 20 20 20 20 20
11 20 20 20 20 20 14 17 0 29 19 19 19 16 1 0 0 0
12 20 20 20 20 20 20 20 0 30 7 6 4 1 0 0 0 0
13 20 20 20 20 20 20 20 20 31 0 0 0 0 0 0 0 0
14 19 19 19 19 19 12 0 0 32 15 15 15 11 5 0 0 0
15 20 20 20 20 20 20 20 2 33 0 0 0 0 0 0 0 0
16 17 17 16 10 6 4 1 0 34 19 19 19 19 16 0 0 0
17 20 20 20 20 14 1 0 0 35 20 20 20 20 20 20 20 19
18 20 20 20 17 2 0 0 0 36 20 20 20 20 20 20 3 0

The variables are listed by number (see Table 2). We show how many out of 20 training sets had the given variable turned on in the ground-state con!guration. Of the 36 variables, 3 were included for 
all values of the penalty term λ and for all of the training sets, pT

2, / ∆ γγRp1 ( )T
 and / γγp pT

2
T

; the variables / −p p p( )T
2

T
1

T
2  and η+ /∆p p( )T

1
T
2  were present in almost all; and 7 were never included, among which 

are the original kinematic variables pT
1 and ηγγ. 
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Figure 3 | Receiver operating characteristic (ROC) curves for the 
annealer-trained networks with f = 0.05, the DNN and XGB.  
a–d, Results shown are for the 36-variable networks at λ =  0.05, trained 
on 100 (a and b) or 20,000 (c and d) events. The ROC curve illustrates 
the diagnostic ability of a binary classifier system as its discrimination 
threshold is varied, and is created by plotting the background rejection 
against the signal efficiency at various threshold settings. The short-
dashed black line indicates no discrimination. Solid lines correspond to 
quantum (QA; green) or simulated (SA; blue) annealing, and dotted lines 
to the DNN (red) or XGB (cyan). Error bars are defined by the variation 
over the training sets and statistical error; 1σ error bars for quantum 
annealing and the DNN are shown as light blue and pale yellow shading, 
respectively, in a and c. The 1σ error bars for simulated annealing and XGB 
are included in b and d, but are too small to be visible owing to the larger 
number of events. For 100 events the annealer-trained networks have a 
larger AUROC, as shown directly in Fig. 4. The situation is reversed for 
20,000 training events.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <  (1 −  f)Eg (note that Eg <  0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected  logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
 current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =  0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary- 
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but  disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =  0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =  0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the  detection 
of Higgs decays. The training data are represented in a compact 
 representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =  0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −  DNN). b, Quantum 
annealing versus XGB (QA −  XGB). c, Quantum versus simulated 
annealing (QA −  SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈  {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.
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Annealing is performed with a 5 µs anneal time, with
minimal variation in performance observed for longer an-
neal times (not shown). The anneal times were selected
to attempt to achieve high performance with the short-
est anneal times possible using the D-Wave 2X device,
suggesting that future quantum annealers may achieve a
wall clock time advantage over simulated annealing if the
performance is sustained with lower anneal times.

As in QAML, we use an ensemble of excited states to
strengthen the classifier. To select the excited states, we
place two criteria: a maximum distance d to the lowest-
energy state found (i.e., an excited state must have an
energy less than (1 � d)Eground for Eground < 0 or less
than (1 + d)Eground for Eground > 0), and a maximum
total number of excited states ne to be selected. To pre-
vent an exponential increase in the tree of excited states
generated by the zooming algorithm, we also decay the
values of d and ne by iteration number. The final clas-
sifier is then defined by maximizing the area under the
ROC curve on a validation set (equivalent to the valida-
tion set used for DNN hyperparameter tuning), selecting
the best-performing excited states for di↵erent false pos-
itive rates.

B. Results

FIG. 2. Area under the ROC curve for the QAML-Z
extension, simulated annealing (SA-Z), a logistic re-
gression (LR-Z), the original QAML, a deep neural
network (DNN) and XGBoost (XGB) [65] as a func-
tion of training set size. While QAML-Z matches DNN
performance at small training set sizes, it decreases the mar-
gin between QAML and DNN by 47% for the largest training
sets. Error bars indicate 1� error, including both variation
over training sets and statistical error estimated by reweight-
ing samples from a Poisson distribution.

Compared to the QAML algorithm, the area under the
receiver operating characteristic curve (AUROC) is sig-
nificantly improved by QAML-Z on all training set sizes
(Figure 2). We select the best-performing classical clas-
sifiers (a deep neural network and XGBoost) from the
QAML Higgs optimization benchmark, although we op-
timize additional parameters of the classical algorithms
to further improve their performance from Ref. [33]. A
logistic regression (LR-Z) directly optimizes the mean-
squared error of classification over the set of augmented
classifiers that QAML-Z is applied to. When compared
to classical simulated annealing (SA-Z), QAML-Z per-
forms slightly better (see Figure 4).

FIG. 3. QAML-Z performance on the test set vs.
zooming iteration number (training set size of 1000).
Top: significant improvements by QAML-Z can be separately
seen for classifier augmentation (black) and zooming (blue)
over the original QAML algorithm (red). Bottom: Ising
model energy on the test set improves monotonically, indi-
cating negligible overfitting. Error bars indicate 1� error.

We observe the e↵ectiveness of both the zooming and
augmentation aspects of QAML-Z (Figure 3). The area
under the ROC curve illustrates both the impact of clas-
sifier augmentation and the impact of zooming, show-
ing advantages in both the classifier augmentation and

Zlokapa et al, arXiv: 1908.04480
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Fig. 7 Evolution of the cost function value in the training of
the VQC algorithm with Nvar = 3 and Ntrain

event = 40. Shown
are the cost function values observed in 5 training trials for
quantum computer and QASM simulator.

Fig. 8 ROC curves in the training and testing of the VQC
algorithm with Nvar = 3 and Ntrain

event = 40. Shown are the
ROC curves (averaged over five trials in the training or test-
ing) for quantum computer and QASM simulator. The size of
the markers represents the standard deviation of the trials.
The values in the legend give the average AUC values and
the standard deviations.

4.2 Quantum Computer and QASM Simulator

The VQC algorithm with Nvar = 3 has been tested on
the 20-qubit IBM Q Network quantum computers and
the QASM simulator, as explained in Sect. 3.3. The
present study focuses only on the classification accu-
racy with the real quantum computer. Figure 7 shows
the values of the cost function in the training as a func-
tion of Niter for both the quantum computer and the
simulator. For each of the quantum computer and the

Table 2 AUC values in the testing and training for the VQC
algorithm running the QASM simulator. The training condi-
tion is fixed to Nvar = 3 and Niter = 100 for all Ntrain

event cases.
The uncertainties correspond to the standard deviations of
the average AUC values over the trials.

Ntrain
event (= Ntest

event) Testing Training

40 0.555± 0.032 0.813± 0.012
70 0.716± 0.037 0.741± 0.022
100 0.708± 0.039 0.761± 0.025
200 0.812± 0.012 0.741± 0.014
500 0.779± 0.008 0.796± 0.007
1000 0.779± 0.008 0.789± 0.005

Fig. 9 ROC curves in the training and testing of the VQC
algorithm with Ntrain

event = 40 and 1,000 for Nvar = 3. Shown
are the ROC curves (averaged over five trials in the training
or testing) for QASM simulator. The size of the markers or
the band width represent the standard deviation of the trials.
The values in the legend give the average AUC values and the
standard deviations.

simulator, the training is repeated five times over the
same set of events and their cost-function values are
shown. When running the algorithm on the quantum
computer, the first three hardware qubits [0, 1, 2] are
used [30]. The figure shows that both the quantum com-
puter and the simulator have reached the minimum val-
ues in the cost function after iterating about 50 times.
However, the cost values for the quantum computer are
constantly higher and more fluctuating after reaching
the minimum values.

The ROC curves for the quantum computer and the
simulator obtained from the training and testing sam-
ples are shown in Fig. 8, averaged over the five trials
of the training or testing. The AUC values for the test-
ing samples are considerably worse than those for the
training ones because of the small sample sizes. This
has been checked by increasing theN train

event from 40 to 70,
100, 200, 500 and 1,000 for the simulator (Table 2). As

Terashi et al, arXiv:2002.09935.pdf
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Figure 4. The ROC curves of the quantum variational classi!er method with the
‘ibmq_boeblingen’ and ‘ibmq_paris’ quantum computer hardware (red) and with the
ibmq QasmSimulator (blue) for (a) the t̄tH analysis (using ‘ibmq_boeblingen’) and (b)
the H → µ+µ− analysis (using ‘ibmq_paris’). For each physics analysis, one dataset
consisting of 100 events for training and 100 events for testing is utilized to construct
the classi!ers. This dataset is one of the ten datasets used in !gure 3. All classi!ers
are trained with the same 10 variables processed with the PCA method. In this study, 10
qubits are employed on the quantum computer hardware and the quantum computer sim-
ulator. To visualize the discrimination power of both the quantum simulator and quantum
hardware, the testing events of the dataset are used to make the ROC curves. We observe
that, for the quantum variational classi!er method, the quantum simulator and quantum
hardware results appear to be in good agreement.
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Conclusion
• Quantum computing offers the exciting potential for the development of 

new algorithms which could allow us to obtain better computational 
performance, better physics performance or both

• Presented four different algorithms for pattern recognition on quantum 
computers and a teaser about quantum machine learning for analysis

• Collectively provide proof-of-concept that quantum computers can 
be used for track reconstruction

• Current algorithms are limited in their capacity by the number of available 
qubits and their fidelity
• Track reconstruction algorithms will require large amounts of data to be 

transferred to the quantum computers

• Thus, while such algorithms are promising, it is too early to conclude 
about how large a role quantum computers will play for track 
reconstruction at future high-energy physics experiments 
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