Hadronic light-by-light scattering and the muon g-2

Massimiliano Procura

Clues to a mysterious Universe, Humboldt Kolleg, Kitzbühel, 26 June – 1 July 2022

Outline

- * The muon anomalous magnetic moment: discrepancy between SM and experiment
- * Hadronic contributions: hadronic vacuum polarization and hadronic light-by-light
- * Approach based on dispersion relations for a data-driven determination of hadronic light-by-light contribution: basic features and numerical results
- * Summary and outlook

In collaboration with G. Colangelo, M. Hoferichter, P. Stoffer and J. Lüdtke

* Anomalous magnetic moments of leptons a_ℓ have played a central role in the history of particle physics by contributing to establish quantum electrodynamics

$$\vec{\mu}_{\ell} = \mathbf{g}_{\ell} \, \frac{q_{\ell}}{2m_{\ell}} \, \vec{s} \qquad a_{\ell} = \frac{\mathbf{g}_{\ell} - 2}{2}$$

- ** Dirac's relativistic theory of spin-1/2 particles predicts $g_\ell=2$ In the Standard Model (SM), radiative corrections are responsible for $g_\ell\neq 2$
- $** a_e^{\rm exp}=0.00115965218073(28)~[0.24~{
 m ppb}]$ Hanneke, Fogwell, Gabrielse (2008) provides a stringent test of QED

- * Muon anomalous magnetic moment is particularly interesting:
 - more sensitive than a_e to weak and strong interaction effects and New Physics scales $(\Delta a_\ell \propto m_\ell^2/M^2)$
 - ▶ $4.2\,\sigma$ discrepancy between $a_{\mu}^{\rm exp}$ and $a_{\mu}^{\rm SM}$: open puzzle

 $a_{\mu}^{\text{exp}} = 116592061(41) \times 10^{-11} \quad [0.35 \,\text{ppm}]$

$$a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11}$$

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = 251(59) \times 10^{-11}$$

Bennett et al. (2006), Abi et al. (2021)

SM: Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative]

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Contribution	Value $\times 10^{11}$
Experiment (E821 + E989)	116592061(41)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	251(59)

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative]

Schwinger (1948)

Kinoshita et al. (2012)

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Contribution	Value $\times 10^{11}$
Experiment (E821 + E989)	116592061(41)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP $(e^+e^-, LO + NLO + NNLO)$	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	251(59)

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative]

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Contribution	Value $\times 10^{11}$
Experiment (E821 + E989)	116592061(41)
QED Electroweak	116 584 718.931(104) 153.6(1.0)
HVP $(e^+e^-, LO + NLO + NNLO)$	6845(40)
HLbL (phenomenology + lattice + NLO) Total SM Value Difference: $\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	92(18) $116591810(43)$ $251(59)$

LO HVP:

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative]

Low-energy strong interaction effects: non-perturbative!

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Contribution	Value ×10 ¹¹
Experiment (E821 + E989)	116592061(41)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	251(59)

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative]

Low-energy strong interaction effects: non-perturbative!

Forthcoming FNAL results also call for further scrutiny of the SM prediction

- * The crucial limiting factor in the accuracy of SM predictions for a_{μ} is control over hadronic contributions, responsible for most of the theory uncertainty
- * The most precise determination of the LO-HVP relies on a dispersive approach:
 - ► Gauge invariance: $i \int d^4x \, e^{iq \cdot x} \langle 0 | T\{j_{\mu}^{\rm em}(x) j_{\nu}^{\rm em}(0)\} | 0 \rangle = -(q^2 g_{\mu\nu} q_{\mu}q_{\nu}) \, \Pi(q^2)$

parameterized in terms of a single scalar function of one kinematic variable

- * The crucial limiting factor in the accuracy of SM predictions for a_{μ} is control over hadronic contributions, responsible for most of the theory uncertainty
- * The most precise determination of the LO-HVP relies on a dispersive approach:
 - ► Gauge invariance: $i \int d^4x \, e^{iq \cdot x} \langle 0 | T\{j_{\mu}^{\rm em}(x) j_{\nu}^{\rm em}(0)\} | 0 \rangle = -(q^2 g_{\mu\nu} q_{\mu}q_{\nu}) \, \Pi(q^2)$
 - Analyticity: $\Pi^{\rm ren}(q^2)=\Pi(q^2)-\Pi(0)=\frac{q^2}{4\pi}\int_{s_{\rm thr}}^{\infty}ds\,\frac{{\rm Im}\,\Pi(s)}{s(s-q^2-i\epsilon)}$

discontinuity along a branch cut corresponding to physical processes

- * The crucial limiting factor in the accuracy of SM predictions for a_{μ} is control over hadronic contributions, responsible for most of the theory uncertainty
- * The most precise determination of the LO-HVP relies on a dispersive approach:
 - ► Gauge invariance: $i \int d^4x \, e^{iq \cdot x} \langle 0 | T\{j_{\mu}^{\rm em}(x) j_{\nu}^{\rm em}(0)\} | 0 \rangle = -(q^2 g_{\mu\nu} q_{\mu}q_{\nu}) \frac{\Pi(q^2)}{\Pi(q^2)}$

 - ► Unitarity (optical theorem):

- * The crucial limiting factor in the accuracy of SM predictions for a_{μ} is control over hadronic contributions, responsible for most of the theory uncertainty
- * The most precise determination of the LO-HVP relies on a dispersive approach:
 - ► Gauge invariance: $i \int d^4x \, e^{iq \cdot x} \langle 0 | T\{j_{\mu}^{\rm em}(x) j_{\nu}^{\rm em}(0)\} | 0 \rangle = -(q^2 g_{\mu\nu} q_{\mu}q_{\nu}) \frac{\Pi(q^2)}{\Pi(q^2)}$
 - Analyticity: $\Pi^{\rm ren}(q^2) = \Pi(q^2) \Pi(0) = \frac{q^2}{4\pi} \int_{s_{\rm thr}}^{\infty} ds \, \frac{{\rm Im}\,\Pi(s)}{s(s-q^2-i\epsilon)}$
 - ► Unitarity (optical theorem):

$$\operatorname{Im}\Pi(s) = \frac{s}{4\pi\alpha(s)}\,\sigma_{\mathrm{tot}}(e^{+}e^{-} \to \mathrm{hadrons}) = \frac{\alpha(s)}{3}\,R^{\mathrm{had}}(s)$$

* LO-HVP is obtained by integrating the hadronic R-ratio weighted with a known perturbative QED kernel:

$$a_{\mu}^{\text{LO-HVP}} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{s_{\text{thr}}}^{\infty} \frac{ds}{s} K(s) R^{\text{had}}(s)$$

dominated by the low-energy region (in particular $\pi\pi$ contribution)

lpha Dedicated e^+e^- program with the goal to improve the presently quoted sub-percent accuracy (new data expected from CMD-3, BaBar, BES-III, Belle II)

LO-HVP using lattice QFT

* Several efforts to determine LO-HVP on Euclidean discretized space-time:

finite volume and continuum extrapolations, physical pion mass ensembles/chiral extrapolations, strong and electromagnetic isospin breaking corrections, scale setting

** BMW20 (Borsanyi et al.) first lattice result with quoted sub-percent precision: ongoing cross-checks against other lattice and data-driven determinations

Hadronic light-by-light

$$a_{\mu}^{\mathrm{HLbL}}$$
 in 10 $^{-11}$ units

Contribution	PdRV(09)	N/JN(09)	J(17)	Dispersive
π^0, η, η' -poles π, K -loops/boxes S -wave $\pi\pi$ rescattering	$ \begin{array}{r} 114(13) \\ -19(19) \\ -7(7) \end{array} $	$ \begin{array}{r} 99(16) \\ -19(13) \\ -7(2) \end{array} $	$95.45(12.40) \\ -20(5) \\ -5.98(1.20)$	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
$\begin{array}{c} \text{scalars} \\ \text{tensors} \\ \text{axial vectors} \\ u,d,s\text{-loops} \ / \ \text{short-distance} \end{array}$	- - 15(10) -	22(5) 21(3)	$ \begin{array}{r} -1.1(1) \\ 7.55(2.71) \\ 20(4) \end{array} $	$ \begin{cases} -1(3) \\ 6(6) \\ 15(10) \end{cases} $
c-loop	2.3	_	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

Based on model calculations: uncertainties are guesstimates

Data-driven determination with reliable uncertainties

Dispersive approach to HLbL

Colangelo, Hoferichter, MP, Stoffer

► Lattice:

$$a_{\mu}^{\rm HLbL} = 78.7\,(30.6)_{\rm stat}\,(17.7)_{\rm sys}\times 10^{-11} \qquad \text{RBC/UKQCD, Blum et al. (2020)}$$

$$a_{\mu}^{\rm HLbL} = 107\,(15)\times 10^{-11} \qquad \qquad \text{Mainz, Chao et al. (2021)}$$

Dispersive approach to HLbL

- Exploits fundamental principles:
 - gauge invariance and crossing symmetry
 - unitarity and analyticity

- * Much more challenging task than LO-HVP due to the complexity of the HLbL tensor
- * Defines and relates single contributions to HLbL to form factors and cross sections

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015), JHEP 1704 + PRL 118 (2017)

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014)

Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)

HLbL tensor and master formula

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = -i \int d^4x \, d^4y \, d^4z \, e^{-i(q_1 \cdot x + q_2 \cdot y + q_3 \cdot z)} \langle 0|T\{j_{\rm em}^{\mu}(x)j_{\rm em}^{\nu}(y)j_{\rm em}^{\lambda}(z)j_{\rm em}^{\sigma}(0)\}|0\rangle$$

- * Lorentz covariance: 138 structures, which are redundant due to Ward identities
- * Derived 54 generating Lorentz structures that are manifestly gauge invariant and crossing symmetric. The scalar functions Π_i are free of kinematic singularities and zeros: their analytic structure is dictated by dynamics only

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

* Obtained a general master formula:

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \,\bar{\Pi}_i(Q_1, Q_2, \tau)$$

Contributions to a µHLbL

* Unitarity in direct and crossed channel (poles and branch cuts)

$$\Pi_{i}^{t}(s,t,u) = c_{i}^{t} + \frac{\rho_{i;s}^{t}}{s - M_{\pi}^{2}} + \frac{\rho_{i;u}^{t}}{u - M_{\pi}^{2}} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\operatorname{Im}_{s} \Pi_{i}^{t}(s',t,u')}{s' - s} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{\operatorname{Im}_{u} \Pi_{i}^{t}(s',t,u')}{u' - u}$$

- * The lightest intermediate states dominate (in agreement with models)
- * HLbL tensor can be split up into contributions with different topologies:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

one-pion intermediate state:

Contributions to a µHLbL

* Unitarity in direct and crossed channel (poles and branch cuts)

$$\Pi_{i}^{t}(s,t,u) = c_{i}^{t} + \frac{\rho_{i;s}^{t}}{s - M_{\pi}^{2}} + \frac{\rho_{i;u}^{t}}{u - M_{\pi}^{2}} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\operatorname{Im}_{s} \Pi_{i}^{t}(s',t,u')}{s' - s} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{\operatorname{Im}_{u} \Pi_{i}^{t}(s',t,u')}{u' - u}$$

- * The lightest intermediate states dominate (in agreement with models)
- * HLbL tensor can be split up into contributions with different topologies:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels :

Contributions to auHLbL

* Unitarity in direct and crossed channel (poles and branch cuts)

$$\Pi_{i}^{t}(s,t,u) = c_{i}^{t} + \frac{\rho_{i;s}^{t}}{s - M_{\pi}^{2}} + \frac{\rho_{i;u}^{t}}{u - M_{\pi}^{2}} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\text{Im}_{s} \Pi_{i}^{t}(s',t,u')}{s' - s} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{\text{Im}_{u} \Pi_{i}^{t}(s',t,u')}{u' - u}$$

- * The lightest intermediate states dominate (in agreement with models)
- * HLbL tensor can be split up into contributions with different topologies:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion state only in the direct channel:

Contributions to a µHLbL

* Unitarity in direct and crossed channel (poles and branch cuts)

$$\Pi_{i}^{t}(s,t,u) = c_{i}^{t} + \frac{\rho_{i;s}^{t}}{s - M_{\pi}^{2}} + \frac{\rho_{i;u}^{t}}{u - M_{\pi}^{2}} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\operatorname{Im}_{s} \Pi_{i}^{t}(s',t,u')}{s' - s} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{\operatorname{Im}_{u} \Pi_{i}^{t}(s',t,u')}{u' - u}$$

- * The lightest intermediate states dominate (in agreement with models)
- * HLbL tensor can be split up into contributions with different topologies:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

higher intermediate states: ongoing work

Numerical results for dispersive a_{μ}^{HLbL}

Info on pion transition form factor: $a_{\mu}^{\pi^0-\mathrm{pole}}=63.0^{+2.7}_{-2.1}\times10^{-11}$

Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

In agreement with lattice: Gérardin, Meyer, Nyffeler (2019)

Info on pion vector form factor: $a_{\mu}^{\pi-{
m box}}=-15.9(2)\times 10^{-11}$

Colangelo, Hoferichter, MP, Stoffer (2017)

Info on helicity partial waves for $\gamma^* \gamma^* \to \pi \pi$ with S-wave $\pi\pi$ rescattering effects:

$$a_{\mu,J=0}^{\pi\pi} = -8(1) \times 10^{-11}$$

Colangelo, Hoferichter, MP, Stoffer (2017)

Ongoing work on dispersive au HLbL

Reduce model dependence in the remaining contributions:

** Include rescattering contributions for higher partial waves to account for prominent features in photon-photon to two mesons cross sections. Extension of the solution of partial-wave dispersion relations for $\gamma^*\gamma^* \to \pi\pi$ to D-waves to capture effects of $f_2(1270)$ beyond narrow width approximation

Hoferichter and Stoffer (2019)

- * Contributions from higher intermediate states (axial and tensor mesons)
- * Asymptotic regime: short-distance constraints on HLbL (OPE and pQCD)

Hadronic models: Melnikov and Vainshtein (2004), Colangelo et al. (2020), Leutgeb and Rebhan (2020), Cappiello et al. (2020)

Interpolants: Lüdtke and MP (2020)

Will lead to a more precise SM evaluation of the muon g-2!

Summary

- * The discrepancy between SM prediction and experimental determination of the muon anomalous magnetic moment is (still) an open puzzle: new physics?
- * Theoretical uncertainties are dominated by hadronic contributions
- * Hadronic vacuum polarization: quoted sub-percent precision from a data-driven approach based on dispersion relations.
 Ongoing work: improved experimental input, further accurate lattice evaluations, MUonE experiment.
- * Hadronic light-by-light: data-driven dispersive approach delivered robust evaluations of dominant and sub-dominant contributions, in agreement with lattice. Ongoing work: refined analysis of two-meson intermediate states, higher intermediate states and asymptotic constraints from OPE and perturbative QCD.

Additional slides

A roadmap for HLbL

Colangelo, Hoferichter, Kubis, MP, Stoffer (2014)

Artwork by M. Hoferichter

The HLbL tensor

* The fully off-shell HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = -i \int d^4x \, d^4y \, d^4z \, e^{-i(q_1 \cdot x + q_2 \cdot y + q_3 \cdot z)} \langle 0|T\{j_{\rm em}^{\mu}(x)j_{\rm em}^{\nu}(y)j_{\rm em}^{\lambda}(z)j_{\rm em}^{\sigma}(0)\}|0\rangle$$

* Mandelstam variables:

$$s = (q_1 + q_2)^2$$
, $t = (q_1 + q_3)^2$, $u = (q_2 + q_3)^2$

 $\slash\hspace{-0.4em}\#$ In order to extract $a_\mu^{\rm HLbL}$, $q_4 \to 0$ afterwards

Lorentz structure of HLbL tensor

* Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

$$\begin{split} \Pi^{\mu\nu\lambda\sigma} &= g^{\mu\nu}g^{\lambda\sigma}\,\Pi^1 + g^{\mu\lambda}g^{\nu\sigma}\,\Pi^2 + g^{\mu\sigma}g^{\nu\lambda}\,\Pi^3 \\ &+ \sum_{\substack{k=1,2,4\\l=1,2,3}} g^{\mu\nu}q_k^\lambda q_l^\sigma\,\Pi_{kl}^4 + \sum_{\substack{j=1,3,4\\l=1,2,3}} g^{\mu\lambda}q_j^\nu q_l^\sigma\,\Pi_{jl}^5 + \sum_{\substack{j=1,3,4\\k=1,2,4}} g^{\mu\sigma}q_j^\nu q_k^\lambda\,\Pi_{jk}^6 \\ &+ \sum_{\substack{i=2,3,4\\l=1,2,3}} g^{\nu\lambda}q_i^\mu q_l^\sigma\,\Pi_{il}^7 + \sum_{\substack{i=2,3,4\\k=1,2,4}} g^{\nu\sigma}q_i^\mu q_k^\lambda\,\Pi_{ik}^8 + \sum_{\substack{i=2,3,4\\j=1,3,4}} g^{\lambda\sigma}q_i^\mu q_j^\nu\,\Pi_{ij}^9 \\ &+ \sum_{\substack{i=2,3,4\\l=1,2,3}} \sum_{\substack{k=1,2,4\\l=1,2,3}} q_i^\mu q_j^\nu q_k^\lambda q_l^\sigma\,\Pi_{ijkl}^{10} \end{split}$$

* In 4 space-time dimensions there are 2 linear relations among these 138 structures

Eichmann, Fischer, Heupel, Williams (2014)

- * Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables
- * This set of functions is hugely redundant: Ward identities imply 95 linear relations among these scalar functions (kinematic zeros)

Lorentz structure of HLbL tensor

* Following Bardeen and Tung (1968) - "BT"- we contracted the HLBL tensor with

$$I_{12}^{\mu\nu} = g^{\mu\nu} - \frac{q_2^{\mu}q_1^{\nu}}{q_1 \cdot q_2}, \quad I_{34}^{\lambda\sigma} = g^{\lambda\sigma} - \frac{q_4^{\lambda}q_3^{\sigma}}{q_3 \cdot q_4}$$

> 95 structures project to zero

 $rac{1}{q_1\cdot q_2}$ and $1/q_3\cdot q_4$ poles eliminated by taking linear combinations of structures

* This procedure introduces kinematic singularities in the scalar functions: degeneracies in these BT Lorentz structures, e.g. as $q_1 \cdot q_2 \rightarrow 0$, $q_3 \cdot q_4 \rightarrow 0$

$$\sum_{k} c_{k}^{i} T_{k}^{\mu\nu\lambda\sigma} = q_{1} \cdot q_{2} X_{i}^{\mu\nu\lambda\sigma} + q_{3} \cdot q_{4} Y_{i}^{\mu\nu\lambda\sigma}$$

Lorentz structure of HLbL tensor

Following Tarrach (1975) we extended BT set to incorporate $X_i^{\mu\nu\lambda\sigma}$, $Y_i^{\mu\nu\lambda\sigma}$ to obtain a ("BTT") generating set of structures even for $q_1\cdot q_2\to 0$, $q_3\cdot q_4\to 0$

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- ► Lorentz structures are manifestly gauge invariant
- crossing symmetry is manifest (only 7 genuinely different structures, the remaining ones being obtained by crossing)
- the BTT scalar functions are free of kinematic singularities and zeros: their analytic structure is dictated by dynamics only. This makes them suitable for a dispersive treatment

Master formula for auHLbL

lpha From $\Pi_{\mu
u\lambda\sigma}$ to $a_{\mu}^{
m HLbL}$:

By expanding the photon-muon vertex function around $q_4=0$,

$$a_{\mu}^{\mathrm{HLbL}} = -\frac{1}{48m_{\mu}} \mathrm{Tr} \left((\not p + m_{\mu}) [\gamma^{\rho}, \gamma^{\sigma}] (\not p + m_{\mu}) \Gamma_{\rho\sigma}^{\mathrm{HLbL}} (p) \right)$$

Aldin, Brodsky, Dufner, Kinoshita (1970)

where $p^2=m_\mu^2$ and

$$\Gamma_{\rho\sigma}^{\text{HLbL}}(p) = e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \gamma^{\mu} \frac{(\not p + \not q_{1} + m_{\mu})}{(p + q_{1})^{2} - m_{\mu}^{2}} \gamma^{\lambda} \frac{(\not p - \not q_{2} + m_{\mu})}{(p - q_{2})^{2} - m_{\mu}^{2}} \gamma^{\nu}$$

$$\times \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}} \frac{\partial}{\partial q_{4}^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_{1}, q_{2}, q_{4} - q_{1} - q_{2}) \Big|_{q_{4} = 0}$$

Master formula for auHLbL

 \divideontimes From $\Pi_{\mu\nu\lambda\sigma}$ to a_{μ}^{HLbL} :

By expanding the photon-muon vertex function around $q_4=0$,

$$a_{\mu}^{\mathrm{HLbL}} = -\frac{1}{48m_{\mu}} \mathrm{Tr} \left((\not p + m_{\mu}) [\gamma^{\rho}, \gamma^{\sigma}] (\not p + m_{\mu}) \Gamma_{\rho\sigma}^{\mathrm{HLbL}}(p) \right)$$

** Since there are no kinematic singularities in the BTT scalar functions, the limit $q_4 \to 0$ can be taken explicitly

$$a_{\mu}^{\text{HLbL}} = -\frac{e^{6}}{48m_{\mu}} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}} \frac{1}{(p+q_{1})^{2}-m_{\mu}^{2}} \frac{1}{(p-q_{2})^{2}-m_{\mu}^{2}} \times \text{Tr}\left((\not p+m_{\mu})[\gamma^{\rho},\gamma^{\sigma}](\not p+m_{\mu})\gamma^{\mu}(\not p+\not q_{1}+m_{\mu})\gamma^{\lambda}(\not p-\not q_{2}+m_{\mu})\gamma^{\nu}\right) \times \sum_{i=1}^{54} \left(\frac{\partial}{\partial q_{4}^{\rho}} T_{\mu\nu\lambda\sigma}^{i}(q_{1},q_{2},q_{4}-q_{1}-q_{2})\right) \Big|_{q_{4}=0} \Pi_{i}(q_{1},q_{2},-q_{1}-q_{2})$$

Master formula for auHLbL

* We obtained a general master formula

$$\mathbf{a}_{\mu}^{\mathsf{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} \mathsf{d}Q_1 \int_0^{\infty} \mathsf{d}Q_2 \int_{-1}^1 \mathsf{d}\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} \mathit{T}_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

- $Rack Q_i^2 = -q_i^2$ are Euclidean momenta and $Q_1 \cdot Q_2 = Q_1 \, Q_2 \, au$: space-like kinematics
- # Generalization of the formula for the pion pole by Knecht and Nyffeler (2002)
- ** We determined the integration kernels T_i . The scalar functions $\bar{\Pi}_i$ are linear combinations of the BTT Π_i
- * Our goal: dispersive representation of HLbL scalar functions at fixed photon virtualities to be evaluated at the reduced kinematics in the master formula,

$$s = -Q_3^2 = -Q_1^2 - 2Q_1Q_2\tau - Q_2^2, \quad t = -Q_2^2, \quad u = -Q_1^2,$$

$$q_1^2 = -Q_1^2, \quad q_2^2 = -Q_2^2, \quad q_3^2 = -Q_3^2 = -Q_1^2 - 2Q_1Q_2\tau - Q_2^2, \quad q_4^2 = 0$$

The pion-pole contribution

From the unitarity relation with only π^0 intermediate state, the pole residues in each channel are given by products of doubly-virtual and singly-virtual pion transition form factors ($\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$, input for our analysis)

$$a_{\mu}^{\pi^{0}\text{-pole}} = \frac{2\alpha^{3}}{3\pi^{2}} \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \sqrt{1 - \tau^{2}} Q_{1}^{3} Q_{2}^{3} \left(T_{1}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{1}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} + T_{2}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{2}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} \right) dQ_{1} dQ_{2} \int_{-1}^{1} d\tau \sqrt{1 - \tau^{2}} Q_{1}^{3} Q_{2}^{3} \left(T_{1}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{1}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} + T_{2}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{2}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} \right) dQ_{2} dQ_{2} \int_{-1}^{1} d\tau \sqrt{1 - \tau^{2}} Q_{1}^{3} Q_{2}^{3} \left(T_{1}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{1}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} + T_{2}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{2}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} \right) dQ_{2} dQ_{2}$$

with

$$\bar{\Pi}_{1}^{\pi^{0}\text{-pole}} = -\frac{\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{1}^{2}, -Q_{2}^{2}\right)\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{3}^{2}, 0\right)}{Q_{3}^{2} + M_{\pi}^{2}} \qquad \bar{\Pi}_{2}^{\pi^{0}\text{-pole}} = -\frac{\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{1}^{2}, -Q_{3}^{2}\right)\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{2}^{2}, 0\right)}{Q_{2}^{2} + M_{\pi}^{2}}$$

The pion-pole contribution

- From the unitarity relation with only π^0 intermediate state, the pole residues in each channel are given by products of doubly-virtual and singly-virtual pion transition form factors ($\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$, input for our analysis)
- * These form factors can be reconstructed dispersively using
 - pion vector form factor
 - $ightharpoonup \gamma^*
 ightarrow 3\pi$ amplitude
 - \blacktriangleright elastic $\pi\pi$ scattering amplitude

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

$$a_{\mu}^{\pi^{0}-\text{pole}} = 62.6_{-2.5}^{+3.0} \times 10^{-11}$$

Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

* Pseudoscalar poles with higher masses can be treated analogously

Pion-box contribution

- * Defined by simultaneous two-pion cuts in two channels
- * Contribution to scalar functions as dispersive integral of double spectral functions

$$\Pi_i = \frac{1}{\pi^2} \int ds' dt' \frac{\rho_i^{st}(s', t')}{(s' - s)(t' - t)} + (t \leftrightarrow u) + (s \leftrightarrow u)$$

- $\slash\hspace{-0.4em}$ Dependence on q_i^2 carried by the pion vector FFs for each off-shell photon
- * one-loop sQED projected onto the BTT structures fulfills the same Mandelstam representation of the pion box, the only difference being the pion vector FFs:

Numerics for the pion-box contribution

* The only input: pion vector form factor in the space-like region

- ** Numerical results: $a_{\mu}^{\pi-{
 m box}} = -15.9(2) \times 10^{-11} \ {
 m vs} \ a_{\mu}^{K-{
 m box},{
 m VMD}} \simeq -0.5 \times 10^{-11}$
- ** Rapid convergence: $Q_{\text{max}} = \{1, 1.5\} \text{ GeV } \Rightarrow a_{\mu}^{\pi\text{-box}} = \{95, 99\}\% \text{ of full result }$

The remaining $\pi\pi$ contribution

* Two-pion cut only in the direct channel: LH cut due to multi-particle intermediate states in the crossed channel neglected

- $\slash\hspace{-0.4cm}$ Unitarity relates this contribution to the subprocess $\gamma^*\gamma^{(*)}\to\pi\pi$
- ** By generalizing previous analyses of $\gamma\gamma \to \pi\pi$ and $\gamma\gamma^* \to \pi\pi$ Moussallam et al. (2010, 2013) our goal is a dispersive reconstruction (based on analyticity, unitarity and crossing) of helicity partial waves for $\gamma^*\gamma^* \to \pi\pi$ Colangelo, Hoferichter, MP, Stoffer (2014)
- The solution of the resulting coupled set of dispersion relations involves elastic $\pi\pi$ phase shifts, which allows for the summation of $\pi\pi$ rescattering effects in the direct channel (effects of resonances coupling to $\pi\pi$)

The remaining $\pi\pi$ contribution

Contribution to a_{μ}^{HLbL} from $\gamma^*\gamma^* \to \pi\pi$ helicity partial waves :

$$\operatorname{Im} h_{++,++}^{J}(s;q_{1}^{2},q_{2}^{2};q_{3}^{2},0) = \frac{\sigma(s)}{16\pi}h_{J,++}^{*}(s;q_{1}^{2},q_{2}^{2})h_{J,++}(s;q_{3}^{2},0)$$

projecting onto BTT basis determines Im Π_i , from which Π_i for master formula. Our framework holds for arbitrary partial waves.

- We solved dispersion relations for $\gamma^* \gamma^* \to \pi \pi$ S-waves taking:
 - pion pole as only LH singularity and phenomenological ππ phase shifts

$$a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1) \times 10^{-11}$$