Hadronic light-by-light scattering
and the muon g-2
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¥ The muon anomalous magnetic moment: discrepancy between SM and experiment
¥ Hadronic contributions: hadronic vacuum polarization and hadronic light-by-light

¥ Approach based on dispersion relations for a data-driven determination of
hadronic light-by-light contribution: basic features and numerical results

M} Summary and outlook

In collaboration with G. Colangelo, M. Hoferichter, P. Stoffer and J. Ludtke



Introduction

¥ Anomalous magnetic moments of leptons ag have played a central role in the
history of particle physics by contributing to establish quantum electrodynamics

§ - QE — _96_2
£ He = 9o 5— S Ay =
N

2mg 2
¥ Dirac’s relativistic theory of spin-1/2 particles predicts g; = 2

In the Standard Model (SM), radiative corrections are responsible for gy 7 2

* aiXp = 0.00115965218073(28) [0.24 ppb] Hanneke, Fogwell, Gabrielse (2008)

provides a stringent test of QED



Introduction

¥ Muon anomalous magnetic moment is particularly interesting :

P> more sensitive than a. to weak and strong interaction effects
and New Physics scales (Aay; oc mj /M?)

» 4.20 discrepancy between a;;¥ and aEM : open puzzle

¥ The experimental world average for a,: BNL (E821) and FNAL (E989) results

Bennett et al. (2006), Abi et al. (2021)

a™® = 116592061 (41) x 10~ [0.35 ppm] sz e
ax™ = 116591810 (43) x 10~ , >
a®P — aiM = 251 (59) x 10~ S s jp—
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SM: Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative]



Introduction

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Contribution Value x 10!

Experiment (E821 + E989) 116592 061 (41) ' ’

QED 116 584 718.931(104) b
Electroweak 153.6(1.0) Schwinger (1948)
HVP (¢te, LO + NLO + NNLO) 6845( 0)

HLbL (phenomenology + lattice + NLO) 92(18) g(fg 9‘:)@2 @::@ —@ - Kﬁ
Total SM Value 116 591 810(43) @\ {@\ g’@\ /@\ 5,
Difference: Aay, == a;* — aiM 251(59) QM“Q = O (@\ ;’%

Ti(a) TI(b) TI(c) TI(d) Ti(e)

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative] 5§Hm%‘e m f:;;\‘ m ﬁ
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Kinoshita et al. (2012)



Introduction

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Contribution Value x 10!
Experiment (E821 + E989) 116 592061(41)
QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (e*e~, LO + NLO + NNLO) 6845( 0)
HLbL (phenomenology + lattice + NLO) 92(18)
Total SM Value 116 591 810(43)
Difference: Aay, == a;* — aiM 251(59)

Y

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative] A iy N



Introduction

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

. 11
Contribution Value x10 LO HVP:
Experiment (E821 + E989) 116 592061(41)
QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (ete™, LO + NLO + NNLO) 6845( 0)
HLbL (phenomenology + lattice + NLO) 92(18)
Total SM Value 116 591 810(43)
Difference: Aay, == a;* — aiM 251(59) hadrons

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative] . .
Low-energy strong interaction

effects: non-perturbative!



Introduction

The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

. T
Contribution Value x 10 LO HLbL:
Experiment (E821 + E989) 116 592061(41)

QED 116 584 718.931(104)

Electroweak 153.6(1.0)

HVP (e*e~, LO + NLO + NNLO) 6845(40) hadrons
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116 591 810(43)

Difference: Aay, == a;* — aiM 251(59)

1

Aoyama et al. (2020) [White Paper by the Muon g-2 Theory Initiative] . .
Low-energy strong interaction

effects: non-perturbative!

B> Forthcoming FNAL results also call for further scrutiny of the SM prediction



Hadronic vacuum polarization

~

¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

3 The most precise determination of the LO-HVP relies on a dispersive approach:
P> Gauge invariance: i / d'z " (0T {j5™ () 5™ (0)}0) = —(¢*guw — quav) 11(¢°)

parameterized in terms of a single scalar function of one kinematic variable



Hadronic vacuum polarization

P e

¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

3 The most precise determination of the LO-HVP relies on a dispersive approach:

P> Gauge invariance: i/d4a: e"T™0IT{j5™ ()75 (0)}0) = —(¢°gur — quav) 11(q7)

2 o0
P Analyticity: I""(¢*) = II(¢*) — 11(0) q_/ ds Im IT(s)

T s S(s—q* — i€

discontinuity along a branch cut corresponding to physical processes



Hadronic vacuum polarization

~

¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

3 The most precise determination of the LO-HVP relies on a dispersive approach:

P> Gauge invariance: i/d4a: e"T™0IT{j5™ ()75 (0)}0) = —(¢°gur — quav) 11(q7)

2 o0
P Analyticity: I""(¢*) = II(¢*) — 11(0) q_/ ds Im IT(s)

T s S(s—q* — i€

P> Unitarity (optical theorem):

x otot(eTe” — hadrons)

hadrons hadrons



Hadronic vacuum polarization

~

¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

3 The most precise determination of the LO-HVP relies on a dispersive approach:

P> Gauge invariance: i/d4a: e"T™0IT{j5™ ()75 (0)}0) = —(¢°gur — quav) 11(q7)

2 o0
P Analyticity: I""(¢*) = II(¢*) — 11(0) q_/ ds Im IT(s)

T s S(s—q* — i€

P> Unitarity (optical theorem):

ImII(s) = ﬁ(s) atot(e+e_ — hadrons) =



Hadronic vacuum polarization

e ——— —

¥ LO-HVP is obtained by integrating the hadronic R-ratio weighted with a known
perturbative QED kernel:
dro-nve ZL(@Y? [ 48 () g

H 3\ LS

dominated by the low-energy region (in particular mm contribution)

100 [ T T T T T T T I |Full hadronic R ratio
.

10 |
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Vs [GeV] Keshavarzi, Nomura and Teubner (2018)

¥ Dedicated e e program with the goal to improve the presently quoted sub-percent
accuracy (new data expected from CMD-3, BaBar, BES-III, Belle II)



LO-HVP using lattice QFT

¥ Several efforts to determine LO-HVP on Euclidean discretized space-time:

finite volume and continuum extrapolations, physical pion mass ensembles/chiral extrapolations, strong
and electromagnetic isospin breaking corrections, scale setting

RO
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¥ BMW20 (Borsanyi et al.) first lattice result with quoted sub-percent precision:
ongoing cross-checks against other lattice and data-driven determinations



Hadronic light-by-light

e ———

aﬁLbL in 10— 1" units

Contribution ~ PdRV/(09) N/JIN(09) J(17) ~ Dispersive .

7%, n,n’-poles 114(13) 99(16)  95.45(12.40) 93.8(4.0)
7, K-loops/boxes —19(19) —19(13) —20(5) —16.4(2)
S-wave m rescattering —7(7) —7(2)  —5.98(1.20) —38(1)

]

)
nt, K+ é
1

subtotal 88(24) 73(21)  69.5(13.4 69.4(4.1)
scalars — — _
tensors — - 1.1(1 - 1(3)
axial vectors 15(10) 22(5) 7.55(2.71 6(6)
u, d, s-loops / short-distance — 21(3) 20(4

c-loop 2.3 — 2.3(2 3(1)
total | 105(26) 116(39)  100.4(282) ) | 92(19)

A U

Based on model calculations: Data-driven determination
uncertainties are guesstimates with reliable uncertainties

)
)
) 15(10)
)
)

P> Dispersive approach to HLbL Colangelo, Hoferichter, MP, Stoffer

P Lattice:

a, " = 78.7(30.6)stat (17.7)sys x 10711 RBC/UKQCD, Blum et al. (2020)

aELbL =107 (15) x 10~ 11 Mainz, Chao et al. (2021)



Dispersive approach to HLbL

D —

¥ Exploits fundamental principles:

hadrons
P> gauge invariance and crossing symmetry

P> unitarity and analyticity

to relate HLbL to experimentally accessible quantities

¥ Much more challenging task than LO-HVP due to the complexity of the HLbL tensor

¥ Defines and relates single contributions to HLbL to form factors and cross sections

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015), JHEP 1704 + PRL 118 (2017)
Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014)
Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)



HLbL tensor and master formula

T2 (q1, g2, 43) = —i / d'z dtydz e\ TRV OIT{GE (2) jen (y)om (2)78m (0)}]0)

¥ Lorentz covariance: 138 structures, which are redundant due to Ward identities

¥ Derived 54 generating Lorentz structures that are manifestly gauge invariant and
crossing symmetric. The scalar functions II; are free of kinematic singularities and
zeros: their analytic structure is dictated by dynamics only

1" (q1, g2, g3) ZT“”A" s,t,u; )

¥ Obtained a general master formula:

HLbL 3772/ dQ1/ ng/ dT\/l—TZQBQQZT Q1,Q2,7) I1;(Q1, Q2,7)



Contributions to a,HLbL

¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s

! ot
IL (s t,u) = ¢ + s M2

+u—M7% +;

Pion 1 /OO ds,lmsng(s’,t,u’) N 1 /OO du,Imqu(s',t,u')

AM2 s’ —s T Jan2 u —u

¥ The lightest intfermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO UV O

N

one-pion intermediate state :

—




Contributions to a,HLbL

¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s

! ot
IL (s t,u) = ¢ + s M2

+u—M7% +;

Pion 1 /OO dS,Imsﬂé(s’,t,u’) N 1 /OO du,Imung(s',t,u')
4M7% S — S T

4M2 u' —u

¥ The lightest intfermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO

UV O

\

two-pion intermediate state in both channels :

\—




Contributions to a,HLbL

¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s

! ot
IL (s t,u) = ¢ + s M2

+u—M7% +;

Pion 1 /OO ds,lmsng(s’,t,u’) N 1 /OO du,Imung(s',t,u')

AM2 s’ —s T Jan2 u —u

¥ The lightest intfermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO UV O

two-pion state only in the direct channel:

.




Contributions to a,HLbL

¥ Unitarity in direct and crossed channel (poles and branch cuts)

%3
Hg(s, t,u) = cﬁ 4+

+ +

Pion 1 /OO ds,lmsng(s’,t,u’) N 1 /OO du,Imung(s',t,u')

s—Mz  u—Mz 7 [ a2 s’ — s T Jans2 u —u

¥ The lightest intfermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO UV O

| higher intermediate states: ongoing work




Numerical results for dispersive a,Hbt

Info on pion fransition form factor: a7 ~P°'¢ = 63.0727 x 107!

—— ——

Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

In agreement with lattice: Gérardin, Meyer, Nyffeler (2019)

Info on pion vector form factor: aj, " = —15.9(2) x 10~

Colangelo, Hoferichter, MP, Stoffer (2017)

Info on helicity partial waves for yv*v* — 7w
with S-wave nmr rescattering effects:

al_g = —8(1) x 107!

Colangelo, Hoferichter, MP, Stoffer (2017)



Ongoing work on dispersive a,HtbL

D e

Reduce model dependence in the remaining contributions:

¥ Include rescattering contributions for higher partial waves to account for
prominent features in photon-photon fo two mesons cross sections.

Extension of the solution of partial-wave dispersion relations for v*v* — 7w
to D-waves to capture effects of f2(1270) beyond narrow width approximation

Hoferichter and Stoffer (2019)

¥ Contributions from higher intermediate states (axial and tensor mesons)

¥ Asymptotic regime: short-distance constraints on HLbL (OPE and pQCD)

Hadronic models: Melnikov and Vainshtein (2004), Colangelo et al. (2020),
Leutgeb and Rebhan (2020), Cappiello et al. (2020)

Interpolants: Lidtke and MP (2020)

Will lead to a more precise SM evaluation of the muon g-2 !



Summary

D e

3 The discrepancy between SM prediction and experimental determination of the
muon anomalous magnetic moment is (still) an open puzzle: new physics ?

¥ Theoretical uncertainties are dominated by hadronic contributions

¥ Hadronic vacuum polarization: quoted sub-percent precision from a data-driven
approach based on dispersion relations.
Ongoing work: improved experimental inpuf, further accurate lattice evaluations,
MUonE experiment.

¥ Hadronic light-by-light: data-driven dispersive approach delivered robust
evaluations of dominant and sub-dominant contributions, in agreement with lattice.
Ongoing work: refined analysis of two-meson intermediate states, higher
intermediate states and asymptotic constraints from OPE and perturbative QCD.
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A roadmap for HLbL

Pion transition form factor
2 2
Fﬂ-O,.Y*,.Y* (ql’ q2)

Pion vector
form factor F{}

Partial waves for
,Y*,Y* g ete” wete nrr
Gion polarizabilitie

Artwork by M. Hoferichter



The HLbL fensor

¥ The fully off-shell HLbL tensor :

27 (q1, g2, 43) = —i / d'z dtydtz e\ TRV OIT{GE (%) jin (Y) o (2) 5 (0)}0)

¥ Mandelstam variables:

s=(p+@)t=(@+a¢) u=(@+q¢)

HLbL

¥ In order to extract a,

, qu — 0 affterwards



3 Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

H/,u/)\a _ g,ul/g)\a Hl + gu)\gva H2 + guagl/A H3

+ > ad Tyt Y ¢PGa G+ Y 9" diar 1T

k=124 =134 134
=123 1=1,2.3 =124
VA M 711 vo M )\ Ao W Y11

+ > gl I+ > gl I, + Z gVl qy 11

=234 =234 =2

1=1,2,3 k=124 =1

v A o1r7l0

=+ E E ¢ 9599 1Lk

i=2.3,4 k=124

=134 1=123

3 In 4 space-time dimensions there are 2 linear relations among these 138 structures

Eichmann, Fischer, Heupel, Williams (2014)

¥ Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

¥ This set of functions is hugely redundant: Ward identities imply 95 linear relations
among these scalar functions (kinematic zeros)



¥ Following Bardeen and Tung (1968) - “BT"- we contracted the HLBL tensor with

Ko v A O
oy =g — I pe = o B

q1 g2 q3 * 44

B> 95 structures project to zero
¥ 1/¢1-q and 1/g3 - q4 poles eliminated by taking linear combinations of structures

¥ This procedure introduces kinematic singularities in the scalar functions:
degeneracies in these BT Lorentz structures, e.g. as ¢1- ¢ —0,¢3-q — 0

Z CZT]QW)\U = q - Q2XZHV>\U + g3 - q4y;/,w)\a
k



¥ Following Tarrach (1975) we extended BT set to incorporate XAe y A
to obtain a ("BTT") generating set of structures even for ¢ - ¢ —0,¢3- ¢ — 0

12 (q1, g2, 43) ZTW“ 5,t,u; )

.

P> Lorentz structures are manifestly gauge invariant

B crossing symmetry is manifest (only 7 genuinely different structures, the
remaining ones being obtained by crossing)

B> the BTT scalar functions are free of kinematic singularities and zeros:
their analytic structure is dictated by dynamics only.
This makes them suitable for a dispersive freatment



Master formula for a HbL

HLbL
¥ From 5, to a, "

By expanding the photon-muon vertex function around ¢4 = 0,

HLbL _ _
H 48m,

a Tr ((p + mp) [V, 771 (p + mu)Thr ™ (p))

Aldin, Brodsky, Dufner, Kinoshita (1970)

where p? = mi and

HLDL () _ 6 d'q d*q2 PHd, +mu)  @P—d,+mu)
Foo™(p) = / eni et wral—m2) o-g@?E_md

1 0

X ILxo(91,92,94 — q1 — q2)
?q2 (g1 + ¢2)2 0gf "

q4=0



Master formula for a HbL

¥ FromII,, ., to aHLbL

By expanding the photon-muon vertex function around ¢4 = 0,

P = o T ((p 4 m) BN T )

¥ Since there are no kinematic singularities in the BTT scalar functions,
the limit ¢4 — 0 can be taken explicitly

HLbL _ € / d*q1 d'qo 1 1 1
: 48my, ) (2m)* (2m)* ¢iq5(q1 + q2)? (P + q1)? —m2 (p — q2)? —m?

< Tr ((p+mu>w PP+ )V + )7 (p = gy + )

X Z (WT/ZV)\O- d1,42,44 — 41 — QQ))

1,(q1, 92, —q1 — q2)
q4=0



Master formula for a HbL

¥ We obtained a general master formula

" o ’ 12 B
/ e / 40, [ drv/1—r2QG2 Y T, Ca, TI(O1. o, )
=1

e Q? = —qf are Euclidean momenta and () - Q2 = Q)1 Q2 7: space-like kinematics
¥ Generalization of the formula for the pion pole by Knecht and Nyffeler (2002)

¥ We determined the integration kernels T;.
The scalar functions 11, are linear combinations of the BTT II,

¥ Our goal: dispersive representation of HLbL scalar functions at fixed photon
virtualities to be evaluated at the reduced kinematics in the master formula,

S = _QS _Q% o 2Q1Q27- — Q%a t = _an U = _Q%7
@G =-0Q G=-03 @G=-0Qi=-0Q7-201Q21—Q3, ¢ =0



The pion-pole contribution

¥ From the unitarity relation with only 1% intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( F,«,«r0 and F.«yq0 , input for our analysis)

0 2 3 > > ! =’ 168
ap P = / dQ / dQ / dry/'1=72Q3Q3 (T1(Q1, Q2. )T P*(Q1, @2, 7) + Ta(Q1, Q2 TG P(Q1, Qa, 7))
37T 0 0 -1

with

ﬁWO-POIG _ FWOW*W* (_ %7 _Q%>Fﬂ'07*7* (_an O) ﬁﬂo-pole _ fWO’Y*’Y* (_ %7 _Qg)}-wofy*'y* (_an 0)




The pion-pole contribution

P e

¥ From the unitarity relation with only 1% intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( F,«,«r0 and F.«yq0 , input for our analysis)

¥ These form factors can be reconstructed dispersively using

P> pion vector form factor

» +* — 37 amplitude

P elastic mm scattering amplitude

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

0
—_— az —pole _ 62,61‘3% X 1()_11 Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

¥ Pseudoscalar poles with higher masses can be treated analogously



Pion-box contribution

¥ Defined by simultaneous two-pion cuts in two channels

¥ Contribution to scalar functions as dispersive integral of double spectral functions

:_/ds’dt St/t’zt)_k(tﬁu)—l—(sﬁu)

¥ Dependence on g; carried by the pion vector FFs for each off-shell photon

¥ one-loop SQED projected onto the BTT structures fulfills the same Mandelstam
representation of the pion box, the only difference being the pion vector FFs :

|
|
N RN S
X ! ! R R
R - -1
| | I - ol
! | ! | T
- I I
L | -




Numerics for the pion-box contribution ¥

¥ The only input: pion vector form factor in the space-like region

1
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08— Qur fit
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0.6 4 Volmer et al.
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¥ Numerical results: o] "> =—-15.9(2) x 107" vs aff P VMP ~ 05 x 1071

3 Rapid convergence: Qmax = {1,1.5}GeV = a7 = {95,99}% of full result



¥ Two-pion cut only in the direct channel:

LH cut due to mulfi-particle infermediate
states in the crossed channel neglected

¥ Unitarity relates this contribution to the subprocess v*y*) — 7

By generalizing previous analyses of vy — mm and yy* — 77 Moussallam et al. (2010, 2013)
our goal is a dispersive reconstruction (based on analyticity, unitarity and crossing)
of helicify parfial waves for ’y*”}/* —> T Colangelo, Hoferichter, MP, Stoffer (2014)

The solution of the resulting coupled set of dispersion
relations involves elastic mmm phase shifts, which allows fo ...
for the summation of nm rescattering effects in the
direct channel (effects of resonances coupling to )




The remaining mrm contribution

i

¥ Contribution to aj, " from v*y* — 7 helicity partial waves :

|
Im 2 2 2 0) = 8, h 0 / : :
mhi, . (847,92, G35,0) = 167 J++(S o q2) g+ (S0 q3’ ) |
\\I—’/

projecting onfo BTT basis determines Im II;, from which II; for master formula.
Our framework holds for arbitrary partial waves.

¥ We solved dispersion relations for v*v* — mm S-waves taking:

P> pion pole as only LH singularity and phenomenological mmm phase shifts

ay*tin 107" units
wm,m-pole LHGC 11
A 1GeV 1.5GeV 2GeV oo a, j—0 = —8(1) x 10
fo(500) —— /= —9.2 —9.5 —-9.3  -88

| =2 2.0 1.3 1.1 0.9




