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Introduction 

Anomalous magnetic moments of leptons     have played a central role in the 
history of particle physics by contributing to establish quantum electrodynamics

a` =
g` � 2

2

a`

provides a stringent test of QED

aexpe = 0.00115965218073(28) [0.24 ppb]
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q`
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~s

s relativistic theory of spin-1/2 particles predicts g` = 2

g` 6= 2

Hanneke, Fogwell, Gabrielse (2008)

In the Standard Model (SM), radiative corrections are responsible for

Dirac’

A. El-Khadra Aspen Winter, 25-31 March 2018
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muon anomalous magnetic moment: 
  

is generated by quantum effects (loops).  
receives contributions from QED, EW, and QCD effects in the SM.  
is a sensitive probe of new physics.
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Fig. 3. Spin precession in the g − 2 ring (∼ 12◦/circle).

Note that in higher orders the form factors in general aquire an imaginary part. One may therefore write
an effective dipole moment Lagrangian with complex “coupling”

LDM
eff = −1

2

{

ψ̄ σµν

[

Dµ
1 + γ5

2
+ D∗

µ
1 − γ5

2

]

ψ

}

Fµν (21)

with ψ the muon field and

Re Dµ = aµ
e

2mµ
, Im Dµ = dµ =

ηµ

2

e

2mµ
. (22)

Thus the imaginary part of FM(0) corresponds to an electric dipole moment. The latter is non–vanishing
only if we have T violation. The existence of a relatively large EDM would also affect the extraction of aµ.
This will be discussed towards the end of the next section.

2. The Muon g − 2 Experiments

2.1. The Brookhaven Muon g − 2 Experiment

The measurement of aµ in principle is simple. As illustrated in Fig. 3, when polarized muons travel on a
circular orbit in a constant magnetic field, then aµ is responsible for the Larmor precession of the direction
of the spin of the muon, characterized by the angular frequency %ωa. Correspondingly, the principle of the
BNL muon g − 2 experiment involves the study of the orbital and spin motion of highly polarized muons in
a magnetic storage ring. This method has been applied in the last CERN experiment [91] already. The key
improvements of the BLN experiment include the very high intensity of the primary proton beam from the
proton storage ring AGS (Alternating Gradient Synchrotron), the injection of muons instead of pions into
the storage ring, and a super–ferric storage ring magnet [92] (see also the reviews [23,28,33,34,43]).

The muon g − 2 experiment at Brookhaven works as illustrated in Fig. 4 [93,94,95]. Protons of energy
24 GeV from the AGS hit a target and produce pions. The pions are unstable and decay into muons plus
a neutrino where the muons carry spin and thus a magnetic moment which is directed along the direction
of the flight axis. The longitudinally polarized muons from pion decay are then injected into a uniform
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Muon anomalous magnetic moment is particularly interesting :

more sensitive than    to weak and strong interaction effects 

and New Physics scales 

ae
(�a` / m2

`/M
2)

discrepancy between       and       : open puzzle 

The experimental world average for    : BNL (E821) and FNAL (E989) results
Bennett et al. (2006), Abi et al. (2021)
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Bk and Bq.—Two fast transients induced by the dynam-
ics of charging the ESQ system and firing the SR kicker
magnet slightly influence the actual average field seen by
the beam compared to its NMR-measured value as
described above and in Ref. [61]. An eddy current induced
locally in the vacuum chamber structures by the kicker
system produces a transient magnetic field in the storage
volume. A Faraday magnetometer installed between the
kicker plates measured the rotation of polarized light in a
terbium-gallium-garnet crystal from the transient field to
determine the correction Bk.

The second transient arises from charging the ESQs,
where the Lorentz forces induce mechanical vibrations in
the plates that generate magnetic perturbations. The ampli-
tudes and sign of the perturbations vary over the two
sequences of eight distinct fills that occur in each 1.4 s
accelerator supercycle. Customized NMR probes measured
these transient fields at several positions within one ESQ
and at the center of each of the other ESQs to determine
the average field throughout the quadrupole volumes.
Weighting the temporal behavior of the transient fields
by the muon decay rate, and correcting for the azimuthal
fractions of the ring coverage, 8.5% and 43% respectively,
each transient provides final corrections Bk and Bq to aμ as
listed in Table II.

V. COMPUTING aμ AND CONCLUSIONS

Table I lists the individual measurements of ωa and ω̃0
p,

inclusive of all correction terms in Eq. (4), for the four run
groups, as well as their ratios, R0

μ (the latter multiplied by
1000). The measurements are largely uncorrelated because
the run-group uncertainties are dominated by the statistical
uncertainty on ωa. However, most systematic uncertainties
for both ωa and ω̃0

p measurements, and hence for the ratios
R0

μ, are fully correlated across run groups. The net computed
uncertainties (and corrections) are listed in Table II. The fit
of the four run-group results has a χ2=n:d:f: ¼ 6.8=3,
corresponding to Pðχ2Þ ¼ 7.8%; we consider the Pðχ2Þ to
be a plausible statistical outcome and not indicative of
incorrectly estimated uncertainties. The weighted-average
value isR0

μ ¼ 0.003 707 300 3ð16Þð6Þ, where the first error
is statistical and the second is systematic [82]. From Eq. (2),
we arrive at a determination of the muon anomaly

aμðFNALÞ ¼ 116 592 040ð54Þ × 10−11 ð0.46 ppmÞ;

where the statistical, systematic, and fundamental constant
uncertainties that are listed in Table II are combined in
quadrature. Our result differs from the SMvalue by 3.3σ and
agrees with the BNL E821 result. The combined exper-
imental (Exp) average [83] is

aμðExpÞ ¼ 116 592 061ð41Þ × 10−11 ð0.35 ppmÞ:

The difference, aμðExpÞ − aμðSMÞ ¼ ð251$ 59Þ × 10−11,
has a significance of 4.2σ. These results are displayed
in Fig. 4.
In summary, the findings here confirm the BNL exper-

imental result and the corresponding experimental average
increases the significance of the discrepancy between the
measured and SM predicted aμ to 4.2σ. This result will
further motivate the development of SM extensions,
including those having new couplings to leptons.
Following the Run-1 measurements, improvements to

the temperature in the experimental hall have led to greater

TABLE II. Values and uncertainties of the R0
μ correction terms

in Eq. (4), and uncertainties due to the constants in Eq. (2) for aμ.
Positive Ci increase aμ and positive Bi decrease aμ.

Quantity
Correction
terms (ppb)

Uncertainty
(ppb)

ωm
a (statistical) % % % 434

ωm
a (systematic) % % % 56

Ce 489 53
Cp 180 13
Cml −11 5
Cpa −158 75

fcalibhωpðx; y;ϕÞ ×Mðx; y;ϕÞi % % % 56
Bk −27 37
Bq −17 92

μ0pð34.7°Þ=μe % % % 10
mμ=me % % % 22
ge=2 % % % 0

Total systematic % % % 157
Total fundamental factors % % % 25
Totals 544 462

FIG. 4. From top to bottom: experimental values of aμ from
BNL E821, this measurement, and the combined average. The
inner tick marks indicate the statistical contribution to the total
uncertainties. The Muon g − 2 Theory Initiative recommended
value [13] for the standard model is also shown.

PHYSICAL REVIEW LETTERS 126, 141801 (2021)
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The muon anomalous magnetic moment: experiment vs (White Paper) SM prediction

Prospects for precise predictions of aµ in the SM

Contribution Value ⇥1011 References

Experiment (E821 + E989) 116 592 061(41) Refs. [1, 5]

HVP LO (e+e�) 6931(40) Refs. [17–22]
HVP NLO (e+e�) �98.3(7) Ref. [22]
HVP NNLO (e+e�) 12.4(1) Ref. [23]
HVP LO (lattice, udsc) 7116(184) Refs. [24–32]
HLbL (phenomenology) 92(19) Refs. [33–45]
HLbL NLO (phenomenology) 2(1) Ref. [46]
HLbL (lattice, uds) 79(35) Ref. [47]
HLbL (phenomenology + lattice) 90(17) Refs. [33–45, 47]

QED 116 584 718.931(104) Refs. [48, 49]
Electroweak 153.6(1.0) Refs. [50, 51]
HVP (e+e�, LO + NLO + NNLO) 6845(40) Refs. [17–23]
HLbL (phenomenology + lattice + NLO) 92(18) Refs. [33–47]
Total SM Value 116 591 810(43) Refs. [17–23, 33–39, 46–51]
Difference: �aµ := aexp

µ � aSM
µ 251(59)

Table 1: Summary of the contributions to aSM
µ , as compiled in Ref. [6], except for the update

of the experimental number to the average of E821 and the first Run of E989. The first
block gives the main results for the hadronic contributions as well as the combined result
for HLbL scattering from phenomenology and lattice QCD available at the time of Ref. [6].
The second block summarizes the quantities entering the final recommendation for the SM
contribution, in particular, the total HVP contribution, evaluated from e+e� data, and the
total HLbL number. The HVP evaluation is mainly based on the experimental Refs. [52–
104]. In addition, the HLbL evaluation uses experimental input from Refs. [105–124].
The lattice QCD calculation of the HLbL contribution builds on crucial methodological
advances from Refs. [125–131]. Finally, the QED value uses the fine-structure constant
obtained from atom-interferometry measurements of the Cs atom [132], and is affected
by the tension with the more recent Rb result [133] only at a level irrelevant for aSM

µ .
Mixed leptonic and hadronic corrections enter at the same order O(↵4) as HVP NNLO and
HLbL NLO, but have been estimated as . 1⇥ 10�11 [134].

the most urgent task is to scrutinize the result of Ref. [135] in detailed comparisons with
lattice results of commensurate precision obtained in independent calculations by other
lattice collaborations. As discussed in Sec. 3, such calculations are forthcoming. If the
tensions persist, their phenomenological consequences must also be explored [136–140]
(see Sec. 6). Moreover, also the hadronic light-by-light (HLbL) contribution needs to be
further improved to meet the final precision �aE989

µ = 16⇥10�11 projected for the Fermilab
experiment [13].

A comparison of published results for HVP and HLbL, including those that were pub-
lished after the March 2020 deadline, is shown in Fig. 1. In this contribution, we briefly
review the current status from data-driven evaluations and from lattice QCD for both quan-
tities and discuss future prospects as well as future plans of the Muon g � 2 Theory Initia-
tive.
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aexp
µ � aSM

µ ⇠ 3 �

The Standard Model prediction for aµ

aµ [10−11] ∆aµ [10−11]

experiment 116 592 089. 63.

QED O(α) 116 140 973.21 0.03
QED O(α2) 413 217.63 0.01
QED O(α3) 30 141.90 0.00
QED O(α4) 381.01 0.02
QED O(α5) 5.09 0.01
QED total 116 584 718.85 0.04

electroweak 153.2 1.8

had. VP (LO) 6923. 42.
had. VP (NLO) –98. 1.

had. LbL 116. 40.

total 116 591 813. 58.

µ µ

γ

Schwinger 1948

B. Kubis, Theπ0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 5
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Forthcoming FNAL results also call for further scrutiny of the SM prediction

Low-energy strong interaction 
effects: non-perturbative!



Hadronic vacuum polarization 

The most precise determination of the LO-HVP relies on a dispersive approach:

Gauge invariance: i

Z
d4x eiq·xh0|T{jemµ (x)jem⌫ (0)}|0i = �(q2gµ⌫ � qµq⌫)⇧(q2)

parameterized in terms of a single scalar function of one kinematic variable

The crucial limiting factor in the accuracy of SM predictions for     is control over 

hadronic contributions, responsible for most of the theory uncertainty 

aµ
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d4x eiq·xh0|T{jemµ (x)jem⌫ (0)}|0i = �(q2gµ⌫ � qµq⌫)⇧(q2)

Analyticity: 

discontinuity along a branch cut corresponding to physical processes 
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Gauge invariance: i

Z
d4x eiq·xh0|T{jemµ (x)jem⌫ (0)}|0i = �(q2gµ⌫ � qµq⌫)⇧(q2)

Analyticity: 

Unitarity (optical theorem): 

Hadronic vacuum polarization

• how to control hadronic vacuum polarization?
• characteristic scale set by muon mass

−→ this is not a perturbative QCD problem!
• dispersion relations to the rescue:
use the optical theorem!

µ µ

hadrons

Im

hadrons hadrons

2

⇔ ∝ σtot(e+e− → hadrons)
γ γ γ
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Gauge invariance: i

Z
d4x eiq·xh0|T{jemµ (x)jem⌫ (0)}|0i = �(q2gµ⌫ � qµq⌫)⇧(q2)

Analyticity: 

Unitarity (optical theorem): 
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Hadronic vacuum polarization 

LO-HVP is obtained by integrating the hadronic R-ratio weighted with a known 
perturbative QED kernel:

Dedicated        program with the goal to improve the presently quoted sub-percent 
accuracy (new data expected from CMD-3, BaBar, BES-III, Belle II)

e+e�

dominated by the low-energy region (in particular ππ contribution) 

Figure 7: Contributions to the total hadronic cross section (expressed as the hadronic R-ratio, R(s) =
�had(s)/

�
4⇡↵2/ (3s)

�
) from the di↵erent final states below

p
s ⇠ 2 GeV. The total hadronic cross section is shown

in light blue and each final state is included as a new layer on top in decreasing order of the size of its contribution
to aLOHVP

µ . This figure has been taken from [58].

groups directly use the bare cross section. An alternative approach is achieved by the CHHKS groups, who
apply additional constraints from analyticity and unitarity to evaluate the ⇡0�, 2⇡ and 3⇡ channels [59–61]
(DHMZ apply similar constraints for the 2⇡ channel [57]). The results from these three groups have been
merged in a conservative procedure to account for di↵erences between groups and tensions between data
sets. The merging procedure yields aLOHVP

µ
= 6931(40)⇥ 10�11 [38], with the corresponding results for the

aNLOHVP
µ

= �98.3(7) ⇥ 10�11 [10] and aNNLOHVP
µ

= 12.4(1) ⇥ 10�11 [62] resulting in an estimate of the
total HVP contribution of [38]

aHVP
µ

= 6845(40)⇥ 10�11 . (15)

A comprehensive review of all data-driven determinations of aHVP
µ

, including those from other groups not
included in the merged result, is given in [38]. Prospects to improve the data-driven determinations of aHVP

µ

rest in new e+e� ! hadrons cross section measurements, particularly those of the ⇡+⇡� channel. Such new
⇡+⇡� data sets are expected from CMD-3 [63], BaBar [64], BES-III [65] and Belle-II [66]. The CMD-3 result
is projected to be the most statistically precise of all the current measurements in the two pion channel,
with systematic uncertainties ranging from 0.6%-1%.

The same �had(s) data used to evaluate aHVP
µ

are also used to estimate the five-flavor hadronic contribu-

tion to the running QED coupling at the Z-pole, �↵(5)
had(M

2
Z
). This quantity is a crucial input to global EW

fits and, therefore, predictions of the EW fit parameters (e.g., the Higgs mass, mH). This connection has
been explored in several works [67–71], asking the following question: should the muon g� 2 discrepancy be
artificially accounted for in �had(s), are the predictions for EW fit parameters such as mH still consistent
with their measured values? In [69], shifts in �had(s) needed to bridge �aµ were found to be excluded
above

p
s ⇠ 0.7 GeV at the 95%CL. However, prospects for �aµ originating below that energy were deemed

improbable given the required increases in the hadronic cross section.
Further opportunities to scrutinize the HVP contributions are expected from the MUonE experiment [72–

74], which is a proposed approach to determine the leading hadronic corrections to the muon g � 2 purely
from experiment. It proceeds by scattering high energy muons on atomic electrons of a low-Z target through
the elastic process µe ! µe [73]. In doing so, it is possible to directly measure the running of the QED
coupling, �↵(Q2), for spacelike Q2 (which is in common with lattice QCD determinations) and therefore
extract the hadronic component �↵had(Q2), which can be used as input into an alternative dispersion
relation to give aLOHVP

µ
. Such an experimental result would serve as an invaluable cross check of the results

from e+e� ! hadrons data and from lattice QCD. The current status for theory predictions, recent activities
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Keshavarzi, Nomura and Teubner (2018)
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LO-HVP using lattice QFT

Several efforts to determine LO-HVP on Euclidean discretized space-time:
finite volume and continuum extrapolations, physical pion mass ensembles/chiral extrapolations, strong 
and electromagnetic isospin breaking corrections, scale settingProspects for precise predictions of aµ in the SM
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e� ! hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(↵2), it contains, by

definition, one-photon-irreducible contributions of order O(↵3). This convention matches the one used in
lattice-QCD calculations.
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Hadronic light-by-light

Contribution PdRV(09) [94] N/JN(09) [95, 96] J(17) [89] Dispersive [38]

⇡0, ⌘, ⌘0-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
⇡,K-loops/boxes �19(19) �19(13) �20(5) �16.4(2)

S-wave ⇡⇡ rescattering �7(7) �7(2) �5.98(1.20) �8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars � � �
�

� 1(3)
tensors � � 1.1(1)

axial vectors 15(10) 22(5) 7.55(2.71) 6(6)
u, d, s-loops / short-distance � 21(3) 20(4) 15(10)

c-loop 2.3 � 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

Table 5: Results from various contributions to aHLbL
µ in units of 10�11 from dispersive evaluations [38] and compared with

previous estimates [89, 94–96]. This table has been adapted from [38].

Detailed descriptions of the dispersive calculations and experimental inputs of each of the various contri-
butions to aHLbL

µ
are given in [38, 97–107]. The recommended results of these calculations, compared with

previous estimates, are displayed in Table 5. In general, the values obtained from dispersive approaches are
consistent with those from previous estimates, with improved uncertainties. The sum of the values from the
di↵erent contributions results in a data-driven, dispersive estimate for the full aHLbL

µ
of

aHLbL
µ

= 92(19)⇥ 10�11 , (20)

where the overall uncertainty is established as a sum of data-driven errors added in quadrature and model-
dependent errors added linearly [38]. The NLO HLbL contribution is found to be aNLOHLbL

µ
= 2(1)⇥10�11.

Further improvements on these dispersive estimates are currently in progress and are expected to achieve a
10% uncertainty on the HLbL contribution to aµ [38].

HLbL from Lattice QCD
Due to the e↵orts of the Muon g � 2 Theory Initiative [38], the full aHLbL

µ
has now been calculated on

the lattice by two groups [108, 109]. In discretized Euclidean spacetime, it has been computed treating
QED both perturbatively and non-perturbatively, in both finite (QEDL) and infinite volumes (QED1).
Large uncertainties arise from volume errors and non-zero lattice spacings. In QEDL, aHLbL

µ
is recovered by

extrapolating to infinite-volume and continuum limits. Derivations and the methodologies of the approaches
are given in detail in [38, 108, 109]. In general, both approaches have been tested by replacing quark loops
with lepton loops and have been shown to perform well. Additionally, cross checks have been performed
between the results of both groups, which exhibit compatibly when checking e↵ects from lattice spacings
and finite/infinite volumes.

After the infinite volume and continuum extrapolations, the result from the RBC calculation (with both
QED and QCD gauge fields on the finite-volume QEDL) found [108]

aHLbL
µ

= 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (21)

This calculation was performed for several lattice ensembles, with di↵erent lattice spacing and volume, with
all particles at their physical masses and including contributions from both connected and disconnected
diagrams. The result is not currently as precise as the dispersive HLbL determination, but is expected to
improve in precision for both the statistical and systematic errors. Until recently, this result was the only
complete calculation of aHLbL

µ
and so is the recommended value for aHLbL

µ
given in [38]. In QED1, the RBC

group has carried out preliminary calculations of both connected and leading disconnected diagrams with
physical masses. A more recent calculation from the Mainz group found aHLbL

µ
= 107(15) ⇥ 10�11 [109],

which is consistent with the result from [108], but with a smaller uncertainty. Further improved results of
aHLbL
µ

from both groups in the near future.
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dependent errors added linearly [38]. The NLO HLbL contribution is found to be aNLOHLbL

µ
= 2(1)⇥10�11.

Further improvements on these dispersive estimates are currently in progress and are expected to achieve a
10% uncertainty on the HLbL contribution to aµ [38].

HLbL from Lattice QCD
Due to the e↵orts of the Muon g � 2 Theory Initiative [38], the full aHLbL

µ
has now been calculated on

the lattice by two groups [108, 109]. In discretized Euclidean spacetime, it has been computed treating
QED both perturbatively and non-perturbatively, in both finite (QEDL) and infinite volumes (QED1).
Large uncertainties arise from volume errors and non-zero lattice spacings. In QEDL, aHLbL

µ
is recovered by

extrapolating to infinite-volume and continuum limits. Derivations and the methodologies of the approaches
are given in detail in [38, 108, 109]. In general, both approaches have been tested by replacing quark loops
with lepton loops and have been shown to perform well. Additionally, cross checks have been performed
between the results of both groups, which exhibit compatibly when checking e↵ects from lattice spacings
and finite/infinite volumes.

After the infinite volume and continuum extrapolations, the result from the RBC calculation (with both
QED and QCD gauge fields on the finite-volume QEDL) found [108]

aHLbL
µ

= 78.7(30.6)stat(17.7)sys ⇥ 10�11 . (21)

This calculation was performed for several lattice ensembles, with di↵erent lattice spacing and volume, with
all particles at their physical masses and including contributions from both connected and disconnected
diagrams. The result is not currently as precise as the dispersive HLbL determination, but is expected to
improve in precision for both the statistical and systematic errors. Until recently, this result was the only
complete calculation of aHLbL

µ
and so is the recommended value for aHLbL

µ
given in [38]. In QED1, the RBC

group has carried out preliminary calculations of both connected and leading disconnected diagrams with
physical masses. A more recent calculation from the Mainz group found aHLbL

µ
= 107(15) ⇥ 10�11 [109],

which is consistent with the result from [108], but with a smaller uncertainty. Further improved results of
aHLbL
µ

from both groups in the near future.

15

Hadronic light-by-light scattering

• hadronic light-by-light soon to dominate
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Based on model calculations: 
uncertainties are guesstimates

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π-box π-resc.

Some preliminary numbers for π-rescattering

Based on:

! taking the pion pole as only left-hand singularity

! ⇒ pion vector FF to describe the off-shell behaviour

! ππ phases obtained with the inverse amplitude method
[reasonable low-energy representation + unique and well defined extrapolation to ∞]

! numerical solution of the γ∗γ∗ → ππ dispersion relation

S-wave contributions:

aHLbL
µ in 10−11 units

cutoff(GeV) 1 2 ∞
I = 0 −9.2 −9.4 −8.8
I = 2 2.0 1.0 0.9
total −7.3 −8.4 −7.9

Data-driven determination 
with reliable uncertainties


Lattice:
RBC/UKQCD, Blum et al. (2020)

Dispersive approach to HLbL 
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µ = 107 (15)⇥ 10�11 Mainz, Chao et al. (2021)
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Defines and relates single contributions to HLbL to form factors and cross sections

Exploits fundamental principles: 

Dispersive approach to HLbL

Much more challenging task than LO-HVP due to the complexity of the HLbL tensor

gauge invariance and crossing symmetry

unitarity and analyticity 

to relate HLbL to experimentally accessible quantities

The Standard Model prediction for aµ

aµ [10−11] ∆aµ [10−11]

experiment 116 592 089. 63.

QED O(α) 116 140 973.21 0.03
QED O(α2) 413 217.63 0.01
QED O(α3) 30 141.90 0.00
QED O(α4) 381.01 0.02
QED O(α5) 5.09 0.01
QED total 116 584 718.85 0.04

electroweak 153.2 1.8

had. VP (LO) 6923. 42.
had. VP (NLO) –98. 1.

had. LbL 116. 40.

total 116 591 813. 58.

µ

hadrons

B. Kubis, Theπ0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 5

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015), JHEP 1704 + PRL 118 (2017) 

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014)

Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)



HLbL tensor and master formula


�µ⇥�⇤(q1, q2, q3) = �i

Z
d4x d4y d4z e�i(q1·x+q2·y+q3·z)⇥0|T{jµ

em(x)j⇥
em(y)j�

em(z)j⇤
em(0)}|0⇤

Lorentz covariance: 138 structures, which are redundant due to Ward identities 

Derived 54 generating Lorentz structures that are manifestly gauge invariant and 
crossing symmetric. The scalar functions     are free of kinematic singularities and 
zeros: their analytic structure is dictated by dynamics only

2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

�µ⇤�⌅(q1, q2, q3) =
54�

i=1

T µ⇤�⌅
i �i(s, t, u; q

2
j )

• Lorentz structures manifestly gauge invariant

• crossing symmetry manifest: only 7 distinct
structures, 47 follow from crossing

• scalar functions �i free of kinematics
⇥ ideal quantities for a dispersive treatment
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Obtained a general master formula:

aHLbL

µ =
2↵3

3⇡2

Z 1

0

dQ1

Z 1

0

dQ2

Z
1

�1

d⌧
p

1� ⌧2 Q3

1
Q3

2

12X

i=1

Ti(Q1, Q2, ⌧) ⇧̄i(Q1, Q2, ⌧)

3 Master Formula for (g � 2)µ

Master formula: contribution to (g � 2)µ

aHLbL
µ =

2�3

3⇥2

⇥ ⇥

0

dQ1

⇥ ⇥

0

dQ2

⇥ 1

�1

d⇤
⌅
1� ⇤ 2Q3

1Q
3
2

⇥
12�

i=1

Ti(Q1, Q2, ⇤)�̄i(Q1, Q2, ⇤),

• Ti: known integration kernels

• �̄i: linear combinations of the scalar functions �i

• Euclidean momenta: Q2
i = �q2i

• Q2
3 = Q2

1 +Q2
2 + 2Q1Q2⇤

21
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5.1 Derivation of the double-spectral representation

For the derivation of a Mandelstam representation of the scalar functions, we follow the

discussion in [62]. We assume that the photon virtualities q2i are fixed and small enough

so that no anomalous thresholds are present. A parameter-free description of the HLbL

tensor and therefore an unsubtracted dispersion relation is crucial. The behavior of the

imaginary parts, which is determined by the asymptotics of the sub-processes, does indeed

suggest that no subtractions are needed. Furthermore, even a quark-loop contribution to

the HLbL tensor has an asymptotic behavior that requires no subtractions.13 Hence, for a

generic scalar function Πi, we write a fixed-t dispersion relation without any subtractions:

Πt
i(s, t, u) = cti +

ρti;s
s−M2

π
+

ρti;u
u−M2

π
+

1

π

∫ ∞

4M2
π

ds′
ImsΠt

i(s
′, t, u′)

s′ − s
+

1

π

∫ ∞

4M2
π

du′
ImuΠt

i(s
′, t, u′)

u′ − u
,

(5.1)

where cti is supposed to behave as lim
t→0

cti = 0 and takes into account the t-channel pole.

The imaginary parts are understood to be evaluated just above the corresponding cut. The

primed variables fulfill

s′ + t+ u′ = Σ :=
4∑

i=1

q2i . (5.2)

If we continue the fixed-t dispersion relation analytically in t, we have to replace the

imaginary parts by the discontinuities, defined by

Dt
i;s(s

′) :=
1

2i

(
Πt

i(s
′ + iε, t, u′)−Πt

i(s
′ − iε, t, u′)

)
,

Dt
i;u(u

′) :=
1

2i

(
Πt

i(s
′, t, u′ + iε)−Πt

i(s
′, t, u′ − iε)

)
,

(5.3)

hence

Πt
i(s, t, u) = cti +

ρti;s
s−M2

π
+

ρti;u
u−M2

π
+

1

π

∫ ∞

4M2
π

ds′
Dt

i;s(s
′)

s′ − s
+

1

π

∫ ∞

4M2
π

du′
Dt

i;u(u
′)

u′ − u
. (5.4)

Both the discontinuities as well as the pole residues are determined by s- or u-channel

unitarity, which also defines their analytic continuation in t. While ρti;s,u are due to a one-

pion intermediate state, Dt
i;s,u are due to multi-particle intermediate states, see figure 5.

We limit ourselves to two-pion intermediate states and neglect the contribution of heavier

intermediate states to the discontinuities.

First, we study the pion-pole contribution by analyzing the unitarity relation:

Ims

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)
(5.5)

=
∑

n

1

2Sn

(
n∏

i=1

∫
d̃pi

)
〈γ∗(−q3,λ3)γ

∗(q4,λ4)|n; {pi}〉∗〈γ∗(q1,λ1)γ
∗(q2,λ2)|n; {pi}〉,

13Contrary to possible subtractions in the sub-processes, the presence of subtraction constants in the

HLbL scalar functions would imply a contribution to aµ that is not determined by unitarity.

– 32 –

The lightest intermediate states dominate (in agreement with models)

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

�µ⇤�⇧ = �⌅0-pole
µ⇤�⇧ + �box

µ⇤�⇧ + �̄µ⇤�⇧ + . . .

24

HLbL tensor can be split up into contributions with different topologies:

one-pion intermediate state :

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

�µ⇤�⇧ = �⌅0-pole
µ⇤�⇧

one-pion intermediate state:

+ �box
µ⇤�⇧ + �̄µ⇤�⇧ + . . .

24
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5.1 Derivation of the double-spectral representation

For the derivation of a Mandelstam representation of the scalar functions, we follow the

discussion in [62]. We assume that the photon virtualities q2i are fixed and small enough

so that no anomalous thresholds are present. A parameter-free description of the HLbL

tensor and therefore an unsubtracted dispersion relation is crucial. The behavior of the

imaginary parts, which is determined by the asymptotics of the sub-processes, does indeed

suggest that no subtractions are needed. Furthermore, even a quark-loop contribution to

the HLbL tensor has an asymptotic behavior that requires no subtractions.13 Hence, for a

generic scalar function Πi, we write a fixed-t dispersion relation without any subtractions:
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where cti is supposed to behave as lim
t→0

cti = 0 and takes into account the t-channel pole.

The imaginary parts are understood to be evaluated just above the corresponding cut. The

primed variables fulfill

s′ + t+ u′ = Σ :=
4∑
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q2i . (5.2)

If we continue the fixed-t dispersion relation analytically in t, we have to replace the

imaginary parts by the discontinuities, defined by
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unitarity, which also defines their analytic continuation in t. While ρti;s,u are due to a one-

pion intermediate state, Dt
i;s,u are due to multi-particle intermediate states, see figure 5.

We limit ourselves to two-pion intermediate states and neglect the contribution of heavier

intermediate states to the discontinuities.
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For the derivation of a Mandelstam representation of the scalar functions, we follow the

discussion in [62]. We assume that the photon virtualities q2i are fixed and small enough

so that no anomalous thresholds are present. A parameter-free description of the HLbL

tensor and therefore an unsubtracted dispersion relation is crucial. The behavior of the

imaginary parts, which is determined by the asymptotics of the sub-processes, does indeed

suggest that no subtractions are needed. Furthermore, even a quark-loop contribution to

the HLbL tensor has an asymptotic behavior that requires no subtractions.13 Hence, for a

generic scalar function Πi, we write a fixed-t dispersion relation without any subtractions:
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HLbL tensor can be split up into contributions with different topologies:

two-pion state only in the direct channel:

4 Dispersive representation ⇡⇡ rescattering

Rescattering contribution

• neglect left-hand cut due to multi-particle
intermediate states in crossed channel

• two-pion cut in only one channel:

⇧
⇡⇡
i =

1

2

✓
1

⇡

Z 1

4M2
⇡

dt0
Im⇧

⇡⇡
i (s, t0, u0

)

t0 � t
+

1

⇡

Z 1

4M2
⇡

du0 Im⇧
⇡⇡
i (s, t0, u0

)

u0 � u

+ fixed-t

+ fixed-u
◆
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For the derivation of a Mandelstam representation of the scalar functions, we follow the

discussion in [62]. We assume that the photon virtualities q2i are fixed and small enough

so that no anomalous thresholds are present. A parameter-free description of the HLbL

tensor and therefore an unsubtracted dispersion relation is crucial. The behavior of the

imaginary parts, which is determined by the asymptotics of the sub-processes, does indeed

suggest that no subtractions are needed. Furthermore, even a quark-loop contribution to

the HLbL tensor has an asymptotic behavior that requires no subtractions.13 Hence, for a
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where cti is supposed to behave as lim
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cti = 0 and takes into account the t-channel pole.

The imaginary parts are understood to be evaluated just above the corresponding cut. The

primed variables fulfill

s′ + t+ u′ = Σ :=
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If we continue the fixed-t dispersion relation analytically in t, we have to replace the
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Both the discontinuities as well as the pole residues are determined by s- or u-channel

unitarity, which also defines their analytic continuation in t. While ρti;s,u are due to a one-

pion intermediate state, Dt
i;s,u are due to multi-particle intermediate states, see figure 5.

We limit ourselves to two-pion intermediate states and neglect the contribution of heavier

intermediate states to the discontinuities.

First, we study the pion-pole contribution by analyzing the unitarity relation:

Ims

(
e4(2π)4δ(4)(q1 + q2 + q3 − q4)Hλ1λ2,λ3λ4

)
(5.5)

=
∑

n

1

2Sn

(
n∏

i=1

∫
d̃pi

)
〈γ∗(−q3,λ3)γ

∗(q4,λ4)|n; {pi}〉∗〈γ∗(q1,λ1)γ
∗(q2,λ2)|n; {pi}〉,

13Contrary to possible subtractions in the sub-processes, the presence of subtraction constants in the

HLbL scalar functions would imply a contribution to aµ that is not determined by unitarity.
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The lightest intermediate states dominate (in agreement with models)

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

�µ⇤�⇧ = �⌅0-pole
µ⇤�⇧ + �box

µ⇤�⇧ + �̄µ⇤�⇧ + . . .

24

HLbL tensor can be split up into contributions with different topologies:

higher intermediate states: ongoing work



Numerical results for dispersive aμHLbL

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

�µ⇤�⇧ = �⌅0-pole
µ⇤�⇧

one-pion intermediate state:

+ �box
µ⇤�⇧ + �̄µ⇤�⇧ + . . .

24

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

�µ⇤�⇧ = �⌅0-pole
µ⇤�⇧ + �box

µ⇤�⇧

two-pion intermediate state in both channels:

+ �̄µ⇤�⇧ + . . .

24
4 Dispersive representation ⇡⇡ rescattering

Rescattering contribution

• neglect left-hand cut due to multi-particle
intermediate states in crossed channel

• two-pion cut in only one channel:

⇧
⇡⇡
i =

1

2

✓
1

⇡

Z 1

4M2
⇡

dt0
Im⇧

⇡⇡
i (s, t0, u0

)

t0 � t
+

1

⇡

Z 1

4M2
⇡

du0 Im⇧
⇡⇡
i (s, t0, u0

)

u0 � u

+ fixed-t

+ fixed-u
◆
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Info on pion transition form factor:

Info on pion vector form factor: a⇡�box
µ = �15.9(2)⇥ 10�11

Info on helicity partial waves for              
with S-wave ππ rescattering effects:

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

a⇡⇡µ,J=0 = �8(1)⇥ 10�11

Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

Colangelo, Hoferichter, MP, Stoffer (2017)

In agreement with lattice: Gérardin, Meyer, Nyffeler (2019)

<latexit sha1_base64="RabhUVnLMteTDO9Gw/NCaSAHM8w="></latexit>

a⇡
0�pole

µ = 63.0+2.7
�2.1 ⇥ 10�11

Colangelo, Hoferichter, MP, Stoffer (2017)



Ongoing work on dispersive aμHLbL

Reduce model dependence in the remaining contributions:

Will lead to a more precise SM evaluation of the muon g-2 !

Contributions from higher intermediate states (axial and tensor mesons)

Asymptotic regime: short-distance constraints on HLbL (OPE and pQCD)
Hadronic models: Melnikov and Vainshtein (2004), Colangelo et al. (2020), 
Leutgeb and Rebhan (2020), Cappiello et al. (2020)

Interpolants: Lüdtke and MP (2020)

Include rescattering contributions for higher partial waves to account for 
prominent features in photon-photon to two mesons cross sections.  
Extension of the solution of partial-wave dispersion relations for 

to D-waves to capture effects of f2(1270) beyond narrow width approximation

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

Hoferichter and Stoffer (2019)
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FIG. 12: Comparison of analytical predictions with DEL-
PHI data for both track and calorimeter thrust distributions.
There is good qualitative and quantitative agreement in the
tail region, though as shown in Fig. 3, the theoretical uncer-
tainties at NLL� are larger than the experimental ones.
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FIG. 13: Calorimeter and track thrust distributions obtained
from Pythia 8. Apart from deviations in the peak region due
to higher-order non-perturbative corrections, these agree well
with our NLL� calculation after the leading power correction
is included (compare to Fig. 3).

of the full non-perturbative corrections, whereas we only

include the leading power correction. Future track thrust

calculations could use a full non-perturbative shape func-

tion for better modeling of the ⇥̄ � 0 region.

VIII. DISCUSSION

In this paper, we have presented the first calculation of

track thrust in perturbative QCD. Our result is accurate

to O(�s) in a fixed-order expansion while also including

NLL resummation, i.e. NLL
⇥
order. By incorporating

both track functions and the leading power correction,

we have accounted for the dominant non-perturbative ef-

fects that determine the track thrust distribution. Our

result is in good agreement with track thrust measure-

ments performed at ALEPH and DELPHI.

One feature seen in the data is a remarkable similarity

between the calorimeter thrust and track thrust distri-

butions. At NLL, we traced this feature to a partial

cancellation between two non-perturbative parameters—

one associated with the gluon track function gL1 , and one

associated with pairs of quark track functions qL. We

conjecture that a similar cancellation should be present

in most (if not all) dimensionless track-based observables.

This should be relatively straightforward to prove for

e+e� dijet event shapes with a thrust-like factorization

theorem, but is likely to persist for more general track-

based observables, including jet shapes relevant for the

LHC such as N -subjettiness ratios [50, 51] or energy cor-

relation functions ratios [52]. It is worth further study

to understand whether this partial cancellation is just an

accident or reflects some deeper property of track func-

tions. Crucially, we have seen that neither higher-order

terms at NLL
⇥
nor the leading power correction qualita-

tively spoil the similarity.

The track functions were originally designed to de-

scribe the energy fraction of a parton carried by tracks

(i.e. the large component of the light-cone momentum).

Track thrust essentially measures the small component of

the light-cone momentum carried by tracks, so it is per-

haps surprising that the same track functions can be used

in this context. The reason this works is that the track

thrust distribution can be thought of as arising from mul-

tiple gluon emissions, each of which carries its own track

function. Just as multiple emissions can be exponenti-

ated in the case of calorimeter thrust, multiple emissions

with track functions can also be exponentiated. In our

calculation, this shows up in the fact that the anomalous

dimension of the soft and jet functions depend on the

logarithmic moment of the gluon track function gL1 . We

are confident that similar techniques could be applied to

any track-based observable, as long as the calorimetric

version of that observable has a valid factorization theo-

rem. This motivates future experimental and theoretical

studies of track-based observables.
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Appendix A: Resummation

For the NLL
⇥
distribution in Eq. (50), we need ex-

pressions for the evolution kernels. Apart from the non-

The discrepancy between SM prediction and experimental determination of the 
muon anomalous magnetic moment is (still) an open puzzle: new physics ?

Theoretical uncertainties are dominated by hadronic contributions

Hadronic vacuum polarization: quoted sub-percent precision from a data-driven 
approach based on dispersion relations.

Ongoing work: improved experimental input, further accurate lattice evaluations, 
MUonE experiment. 


Hadronic light-by-light: data-driven dispersive approach delivered robust 
evaluations of dominant and sub-dominant contributions, in agreement with lattice.

Ongoing work: refined analysis of two-meson intermediate states, higher 
intermediate states and asymptotic constraints from OPE and perturbative QCD.
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A roadmap for HLbL

Colangelo, Hoferichter, Kubis, MP, Stoffer (2014)

Intro HLbL: gauge & crossing HLbL dispersive Conclusions

Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arXiv:1408.2517 (PLB ’14)

γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω,φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor

Fπ0γ∗γ∗

(

q2
1
, q2

2

)

Partial waves for

γ∗γ∗
→ ππ e+e− → e+e−ππ

Pion vector

form factor F π
V

Pion vector

form factor F π
V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω,φ → 3π ω,φ → π0γ∗ω,φ → π0γ∗

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists



The fully off-shell HLbL tensor :

The HLbL tensor

Mandelstam variables:

�µ⇥�⇤(q1, q2, q3) = �i

Z
d4x d4y d4z e�i(q1·x+q2·y+q3·z)⇥0|T{jµ

em(x)j⇥
em(y)j�

em(z)j⇤
em(0)}|0⇤

q1

q2

�q3

k = q4

Figure 3: Kinematics of the light-by-light scattering amplitude.

We find that the pion-pole contribution corresponds exactly to the sQED Born contribution multiplied by
electromagnetic pion form factors for the two o�-shell photons.7 Note that, if we think in terms of unitarity
diagrams, we have now considered the pure pole contribution to the scalar functions. However, in terms of
Feynman diagrams in sQED this corresponds to a sum of two pole diagrams and the seagull diagram.8 It is
important to be aware of the di�erent meaning of a topology in the sense of unitarity and a Feynman diagram,
see Fig. 2. As will be shown in Sect. 5, it is exactly this distinction that makes the sQED pion loop in HLbL
coincide with box-type unitarity diagrams representing ⌅⌅ intermediate states with a pion-pole LHC, although,
in terms of Feynman diagrams, it is composed of the sum of box, triangle, and bulb topologies.

3 Lorentz structure of the HLbL tensor

3.1 Definitions
In order to study the contribution of HLbL scattering to the anomalous magnetic moment of the muon, we need
first of all a description of the HLbL tensor. The object in question is the hadronic Green’s function of four
electromagnetic currents, evaluated in pure QCD (i.e. with fine-structure constant � = e2/(4⌅) = 0):

�µ⇤�⌅(q1, q2, q3) = �i

⇥
d4x d4y d4z e�i(q1·x+q2·y+q3·z)⌅0|T{jµ

em(x)j⇤
em(y)j�

em(z)j⌅
em(0)}|0⇧. (3.1)

The electromagnetic current includes only the three lightest quarks:

jµ
em := q̄Q⇥µq, (3.2)

where q = (u, d, s)T and Q = diag( 2
3 ,� 1

3 ,� 1
3 ).

The contraction of the HLbL tensor with polarization vectors gives the hadronic contribution to the helicity
amplitudes for (o�-shell) photon–photon scattering:

H�1�2,�3�4 = ⇤�1
µ (q1)⇤�2

⇤ (q2)⇤�3
�

⇤
(�q3)⇤�4

⌅
⇤
(k)�µ⇤�⌅(q1, q2, q3). (3.3)

For notational convenience, we define

q4 := k = q1 + q2 + q3. (3.4)

The kinematics is illustrated in Fig. 3.
We use the following Lorentz scalars as kinematic variables — these are the usual Mandelstam variables:

s := (q1 + q2)2, t := (q1 + q3)2, u := (q2 + q3)2, (3.5)

which fulfill (we will take k2 = 0 at some later point)

s + t + u =
4�

i=1

q2
i =: ⇥. (3.6)

Gauge invariance requires the HLbL tensor to satisfy the Ward–Takahashi identities

{qµ
1 , q⇤

2 , q�
3 , q⌅

4 }�µ⇤�⌅(q1, q2, q3) = 0. (3.7)
7Therefore, the dispersive definition of the pion pole (2.49) coincides with the gauge-invariant pole contribution of the ‘soft-

photon amplitude’ in [43]. We thank S. Scherer for pointing this out.
8The equivalence of the pion pole and the Born term is surprising given the fact that (2.50) contains a term with gµ⇥ , while the

imaginary parts (2.46) and (2.47) do not. Tracing the above steps backwards, one sees that in the t- or u-channel imaginary parts
the coe�cient of gµ⇥ is proportional to (t�M2

⇤)�(t�M2
⇤) or (u�M2

⇤)�(u�M2
⇤) and hence vanishes due to the delta function.
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2 Lorentz Structure of the HLbL Tensor

The HLbL tensor: definitions

• hadronic four-point function:

�µ⇤�⌅(q1, q2, q3)

= �i

⇥
dxdydze�i(q1x+q2y+q3z)⇤0|Tjµem(x)j⇤em(y)j�em(z)j⌅em(0)|0⌅

• EM current:
jµem =

�

i=u,d,s

Qiq̄i�
µqi

• Mandelstam variables:
s = (q1 + q2)2, t = (q1 + q3)2, u = (q2 + q3)2

• for (g � 2)µ, the external photon is on-shell:
q24 = 0, where q4 = q1 + q2 + q3

10

Back to HLbL

BTT for HLbL Colangelo, MH, Procura, Stoffer 2015

43 basis tensors

11 additional ones

Out of 54 only 7 independent ones

2 further redundancies in d = 4

q1, µ

q2, ν

−q3, λ

k, σ

T
µνλσ
1

= εµναβελσγδq1αq2βq3γ q4δ T
µνλσ
4

=
(

q
µ
2

qν1 − q1 · q2gµν
)(

qλ4 qσ3 − q3 · q4gλσ
)

T
µνλσ
7

=
(

q
µ
2

qν1 − q1 · q2gµν
)(

q1 · q4

(

qλ1 qσ3 − q1 · q3gλσ
)

+ qλ4 qσ1 q1 · q3 − qλ1 qσ1 q3 · q4

)

T
µνλσ
19

=
(

q
µ
2

qν1 − q1 · q2gµν
)(

q2 · q4

(

qλ1 qσ3 − q1 · q3gλσ
)

+ qλ4 qσ2 q1 · q3 − qλ1 qσ2 q3 · q4

)

T
µνλσ
31

=
(

q
µ
2

qν1 − q1 · q2gµν
)(

qλ2 q1 · q3 − qλ1 q2 · q3

)(

qσ2 q1 · q4 − qσ1 q2 · q4

)

T
µνλσ
37

=
(

q
µ
3

q1 · q4 − q
µ
4

q1 · q3

)(

qν3 qλ4 qσ2 − qν4 qλ2 qσ3 + gλσ
(

qν4 q2 · q3 − qν3 q2 · q4

)

+ gνσ
(

qλ2 q3 · q4 − qλ4 q2 · q3

)

+ gλν
(

qσ3 q2 · q4 − qσ2 q3 · q4

) )

T
µνλσ
49

= qσ3

(

q1 · q3q2 · q4q
µ
4

gλν
− q2 · q3q1 · q4qν4 gλµ + q

µ
4

qν4

(

qλ1 q2 · q3 − qλ2 q1 · q3

)

+ q1 · q4q
µ
3

qν4 qλ2 − q2 · q4q
µ
4

qν3 qλ1 + q1 · q4q2 · q4

(

qν3 gλµ
− q

µ
3

gλν
) )

− qλ4

(

q1 · q4q2 · q3q
µ
3

gνσ
− q2 · q4q1 · q3qν3 gµσ + q

µ
3

qν3

(

qσ1 q2 · q4 − qσ2 q1 · q4

)

+ q1 · q3q
µ
4

qν3 qσ2 − q2 · q3q
µ
3

qν4 qσ1 + q1 · q3q2 · q3

(

qν4 gµσ
− q

µ
4

gνσ
) )

+ q3 · q4

( (

qλ1 q
µ
4

− q1 · q4gλµ
) (

qν3 qσ2 − q2 · q3gνσ
)

−
(

qλ2 qν4 − q2 · q4gλν
) (

q
µ
3

qσ1 − q1 · q3gµσ
) )
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Figure 3: Kinematics of the light-by-light scattering amplitude.

We find that the pion-pole contribution corresponds exactly to the sQED Born contribution multiplied by
electromagnetic pion form factors for the two o�-shell photons.7 Note that, if we think in terms of unitarity
diagrams, we have now considered the pure pole contribution to the scalar functions. However, in terms of
Feynman diagrams in sQED this corresponds to a sum of two pole diagrams and the seagull diagram.8 It is
important to be aware of the di�erent meaning of a topology in the sense of unitarity and a Feynman diagram,
see Fig. 2. As will be shown in Sect. 5, it is exactly this distinction that makes the sQED pion loop in HLbL
coincide with box-type unitarity diagrams representing ⌅⌅ intermediate states with a pion-pole LHC, although,
in terms of Feynman diagrams, it is composed of the sum of box, triangle, and bulb topologies.

3 Lorentz structure of the HLbL tensor

3.1 Definitions
In order to study the contribution of HLbL scattering to the anomalous magnetic moment of the muon, we need
first of all a description of the HLbL tensor. The object in question is the hadronic Green’s function of four
electromagnetic currents, evaluated in pure QCD (i.e. with fine-structure constant � = e2/(4⌅) = 0):

�µ⇤�⌅(q1, q2, q3) = �i

⇥
d4x d4y d4z e�i(q1·x+q2·y+q3·z)⌅0|T{jµ

em(x)j⇤
em(y)j�

em(z)j⌅
em(0)}|0⇧. (3.1)

The electromagnetic current includes only the three lightest quarks:

jµ
em := q̄Q⇥µq, (3.2)

where q = (u, d, s)T and Q = diag( 2
3 ,� 1

3 ,� 1
3 ).

The contraction of the HLbL tensor with polarization vectors gives the hadronic contribution to the helicity
amplitudes for (o�-shell) photon–photon scattering:

H�1�2,�3�4 = ⇤�1
µ (q1)⇤�2

⇤ (q2)⇤�3
�

⇤
(�q3)⇤�4

⌅
⇤
(k)�µ⇤�⌅(q1, q2, q3). (3.3)

For notational convenience, we define

q4 := k = q1 + q2 + q3. (3.4)

The kinematics is illustrated in Fig. 3.
We use the following Lorentz scalars as kinematic variables — these are the usual Mandelstam variables:

s := (q1 + q2)2, t := (q1 + q3)2, u := (q2 + q3)2, (3.5)

which fulfill (we will take k2 = 0 at some later point)

s + t + u =
4�

i=1

q2
i =: ⇥. (3.6)

Gauge invariance requires the HLbL tensor to satisfy the Ward–Takahashi identities

{qµ
1 , q⇤

2 , q�
3 , q⌅

4 }�µ⇤�⌅(q1, q2, q3) = 0. (3.7)
7Therefore, the dispersive definition of the pion pole (2.49) coincides with the gauge-invariant pole contribution of the ‘soft-

photon amplitude’ in [43]. We thank S. Scherer for pointing this out.
8The equivalence of the pion pole and the Born term is surprising given the fact that (2.50) contains a term with gµ⇥ , while the

imaginary parts (2.46) and (2.47) do not. Tracing the above steps backwards, one sees that in the t- or u-channel imaginary parts
the coe�cient of gµ⇥ is proportional to (t�M2

⇤)�(t�M2
⇤) or (u�M2

⇤)�(u�M2
⇤) and hence vanishes due to the delta function.
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In order to extract        ,           afterwardsaHLbL

µ q4 ! 0



Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures 

Lorentz structure of HLbL tensor

In 4 space-time dimensions there are 2 linear relations among these 138 structures

Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

Eichmann, Fischer, Heupel, Williams (2014)

This set of functions is hugely redundant: Ward identities imply 95 linear relations 
among these scalar functions (kinematic zeros) 

J
H
E
P
0
9
(
2
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1
5
)
0
7
4

q1

q2

−q3

k = q4

Figure 3. Kinematics of the light-by-light scattering amplitude.

3.2 Tensor decomposition

In general, the HLbL tensor can be decomposed into 138 Lorentz structures [13, 44, 45]:

Πµνλσ = gµνgλσ Π1 + gµλgνσ Π2 + gµσgνλ Π3

+
∑

k=1,2,4
l=1,2,3

gµνqλkq
σ
l Π4

kl +
∑

j=1,3,4
l=1,2,3

gµλqνj q
σ
l Π5

jl +
∑

j=1,3,4
k=1,2,4

gµσqνj q
λ
k Π6

jk

+
∑

i=2,3,4
l=1,2,3

gνλqµi q
σ
l Π7

il +
∑

i=2,3,4
k=1,2,4

gνσqµi q
λ
k Π8

ik +
∑

i=2,3,4
j=1,3,4

gλσqµi q
ν
j Π9

ij

+
∑

i=2,3,4
j=1,3,4

∑

k=1,2,4
l=1,2,3

qµi q
ν
j q

λ
kq

σ
l Π10

ijkl

=:
138∑

i=1

Lµνλσ
i Ξi.

(3.8)

The 138 scalar functions

{Ξi} := {Π1,Π2,Π3,Π4
kl,Π

5
jl,Π

6
jk,Π

7
il,Π

8
ik,Π

9
ij ,Π

10
ijkl} (3.9)

depend on six independent kinematic variables, e.g. on two Mandelstam variables s and

t and the virtualities q21, q22, q23, and q24. They are free of kinematic singularities but

contain kinematic zeros, because they have to fulfill kinematic constraints required by

gauge invariance. The Ward identities (3.7) impose 95 linearly independent relations on

the scalar functions, reducing the set to 43 functions.

As we did in section 2.2 for the case of γ∗γ∗ → ππ, we will now construct a set

of Lorentz structures and scalar functions, such that the scalar functions contain neither

kinematic singularities nor zeros. Compared to γ∗γ∗ → ππ, the application of the recipe

given by Bardeen, Tung [31], and Tarrach [32] is much more involved. Again, the recipe by

Bardeen and Tung does not lead to a kinematic-free minimal basis (which would consist

here of 43 scalar functions).9 Following Tarrach, we will construct a redundant set of 54

structures, which is free of kinematic singularities and zeros.

9We use ‘basis’ in a loose terminology: as we will discuss in section 3.3, a basis in the strict mathematical

sense consists of 41 elements due to two peculiar redundancies in four space-time dimensions.
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Following Bardeen and Tung (1968) - “BT”-  we contracted the HLBL tensor with 

Lorentz structure of HLbL tensor

95 structures project to zero

         and          poles eliminated by taking linear combinations of structures

This procedure introduces kinematic singularities in the scalar functions: 
degeneracies in these BT Lorentz structures, e.g. as          

2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

• construct gauge projectors:

Iµ⇤12 = gµ⇤ � qµ2 q
⇤
1

q1 · q2
, I�⌅34 = g�⌅ � q�4 q

⌅
3

q3 · q4

• gauge invariant themselves, e.g.

qµ1 I
12
µ⇤ = 0

• leave HLbL tensor invariant, e.g.

Iµµ
�

12 �µ�⇤�⌅ = �µ
⇤�⌅
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2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Following Bardeen, Tung (1968):

• apply gauge projectors to the 138 initial structures:
95 immediately project to 0

• remove 1/q1 · q2 and 1/q3 · q4 poles by taking
appropriate linear combinations

• BT basis: degenerate in the limits
q1 · q2 ⇤ 0, q3 · q4 ⇤ 0
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2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

According to Tarrach (1975):

• no kinematic-free ‘basis’ of 43 elements exists

• degeneracies in the limits q1 · q2 ⇤ 0, q3 · q4 ⇤ 0:

�

k

cikT
µ⇤�⌅
k = q1 · q2Xµ⇤�⌅

i + q3 · q4Y µ⇤�⌅
i

• extend basis by additional structures Xµ⇤�⌅
i , Y µ⇤�⌅

i

taking care of remaining kinematic singularities

• equivalent: implementing crossing symmetry
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Following Tarrach (1975) we extended BT set to incorporate                  

to obtain a (“BTT”) generating set of structures even for 

Lorentz structure of HLbL tensor

Lorentz structures are manifestly gauge invariant
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2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

�µ⇤�⌅(q1, q2, q3) =
54�

i=1

T µ⇤�⌅
i �i(s, t, u; q

2
j )

• Lorentz structures manifestly gauge invariant

• crossing symmetry manifest: only 7 distinct
structures, 47 follow from crossing

• scalar functions �i free of kinematics
⇥ ideal quantities for a dispersive treatment
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crossing symmetry is manifest (only 7 genuinely different structures, the 
remaining ones being obtained by crossing)

the BTT scalar functions are free of kinematic singularities and zeros: 

their analytic structure is dictated by dynamics only. 

This makes them suitable for a dispersive treatment
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Following Bardeen, Tung (1968):

• apply gauge projectors to the 138 initial structures:
95 immediately project to 0

• remove 1/q1 · q2 and 1/q3 · q4 poles by taking
appropriate linear combinations

• BT basis: degenerate in the limits
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Master formula for aμHLbL

From         to          :

By expanding the photon-muon vertex function around        , 

aHLbL

µ = � 1
48mµ

Tr
�
(/p + mµ)[��, �⇥](/p + mµ)�HLbL

�⇥ (p)
�

where           and 

�HLbL

⇤⌅ (p) = e6

Z
d4q1

(2⇥)4
d4q2

(2⇥)4
�µ

(/p + /q
1

+ mµ)
(p + q1)2 �m2

µ

��
(/p� /q

2
+ mµ)

(p� q2)2 �m2
µ

�⇥

⇥ 1
q2

1
q2

2
(q1 + q2)2

⇤

⇤q⇤
4

⇥µ⇥�⌅(q1, q2, q4 � q1 � q2)
����
q4=0

p2 = m2
µ

Aldin, Brodsky, Dufner, Kinoshita (1970)

q4 = 0

aHLbL

µ⇧µ⌫��



Master formula for aμHLbL

Since there are no kinematic singularities in the BTT scalar functions, 

the limit          can be taken explicitly

aHLbL

µ = � e6

48mµ

Z
d4q1

(2⇥)4
d4q2

(2⇥)4
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q2

1
q2

2
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1
(p + q1)2 �m2

µ

1
(p� q2)2 �m2

µ

⇥ Tr
⇣
(/p + mµ)[�⇤, �⌅](/p + mµ)�µ(/p + /q

1
+ mµ)��(/p� /q

2
+ mµ)�⇥

⌘

⇥
54X

i=1

✓
⇤

⇤q⇤
4

T i
µ⇥�⌅(q1, q2, q4 � q1 � q2)

◆ ����
q4=0

�i(q1, q2,�q1 � q2)

From         to          :

By expanding the photon-muon vertex function around        , 

aHLbL

µ = � 1
48mµ

Tr
�
(/p + mµ)[��, �⇥](/p + mµ)�HLbL

�⇥ (p)
�

q4 = 0

aHLbL

µ⇧µ⌫��

q4 ! 0



Master formula for aμHLbL

We obtained a general master formula
3 Master Formula for (g � 2)µ

Master formula: contribution to (g � 2)µ

aHLbL
µ =

2�3

3⇥2

⇥ ⇥

0

dQ1

⇥ ⇥

0

dQ2

⇥ 1

�1

d⇤
⌅
1� ⇤ 2Q3

1Q
3
2

⇥
12�

i=1

Ti(Q1, Q2, ⇤)�̄i(Q1, Q2, ⇤),

• Ti: known integration kernels

• �̄i: linear combinations of the scalar functions �i

• Euclidean momenta: Q2
i = �q2i

• Q2
3 = Q2

1 +Q2
2 + 2Q1Q2⇤
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Our goal: dispersive representation of HLbL scalar functions at fixed photon 
virtualities to be evaluated at the reduced kinematics in the master formula,

Master formula for aµ

Colangelo, MH, Procura, Stoffer 2015

Master formula for aµ

aHLbL
µ =

2α3

3π2

∫

∞

0

dQ1

∫

∞

0

dQ2

∫ 1

−1

dτ
√

1 − τ 2Q3
1Q3

2

12
∑

i=1

Ti(Q1, Q2, τ )Π̄i(Q1,Q2, τ )

Ti : known kernel functions

Π̄i : linear combinations of Πi

Can perform five integrations with Gegenbauer polynomials

Wick rotation: all input quantities at space-like kinematics

Decomposition completely general, now dispersion relations for Π̄i

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 16

Q1 ·Q2 = Q1 Q2 ⌧ J
H
E
P
0
9
(
2
0
1
5
)
0
7
4

where τ = cos θ4, defined by Q1 · Q2 = |Q1||Q2|τ , is the cosine of the angle between the

Euclidean four-momenta Q1 and Q2, and further

σE
i :=

√

1 +
4m2

µ

Q2
i

, R12 := |Q1||Q2|x, x :=
√
1− τ2,

z :=
|Q1||Q2|
4m2

µ
(1− σE

1 )(1− σE
2 ).

(4.27)

4.3 Master formula

After using the angular integrals (4.26), we can immediately perform five of the eight loop

integrals by changing to spherical coordinates in four dimensions. This leads us to a master

formula for the HLbL contribution to the anomalous magnetic moment of the muon:

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1− τ2Q3
1Q

3
2

12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (4.28)

where Q1 := |Q1|, Q2 := |Q2|. The hadronic scalar functions Π̄i are just a subset of the Π̂i

and defined in (D.2). They have to be evaluated for the reduced kinematics

s = −Q2
3 = −Q2

1 − 2Q1Q2τ −Q2
2, t = −Q2

2, u = −Q2
1,

q21 = −Q2
1, q22 = −Q2

2, q23 = −Q2
3 = −Q2

1 − 2Q1Q2τ −Q2
2, k2 = q24 = 0.

(4.29)

The integral kernels Ti listed in appendix E.2 are fully general for any light-by-light process,

while the scalar functions Πi parametrize the hadronic content of the master formula.

In particular, (4.28) can be considered a generalization of the three-dimensional integral

formula for the pion-pole contribution [3]. It is valid for the whole HLbL contribution and

completely generic, i.e. it can be used to compute the HLbL contribution to (g − 2)µ for

any representation of the HLbL tensor, irrespective of whether the scalar functions are

subsequently specified dispersively or taken from a model calculation. For an arbitrary

representation of the HLbL tensor, the scalar functions Πi can be obtained by projection,

see appendix C and appendix F.2.

An analogous master formula was derived in [26] in the case of a helicity basis for

the HLbL tensor. This step in the calculation is completely equivalent, in both cases

the calculation of aHLbL
µ proceeds via an evaluation of the trace in (4.10) and subsequent

reduction of the two-loop integral with Gegenbauer techniques. From a technical point of

view, the BTT approach offers several simplifications, since the D-wave-related amplitudes

in [26] require another angular average to define the k → 0 limit as well as more complicated

Gegenbauer integrals than the standard ones given in (4.26).

In close analogy to the pion-pole contribution [19], the main benefit of the master

formula (4.28) is the fact that it contains only a three-dimensional integral, and thus

is well-suited for a direct numerical implementation. In particular, the energy regions

generating the bulk of the contribution can be identified by numerically integrating over τ

and plotting the integrand as a function of Q1 and Q2 [19, 51–53].

Before turning to the main part of this paper, the foundations for a model-independent

calculation of the scalar functions Πi by making use of dispersion relations, we next consider
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The pion-pole contribution

From the unitarity relation with only π0 intermediate state, the pole residues in 
each channel are given by products of doubly-virtual and singly-virtual pion 
transition form factors (         and          , input for our analysis)

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: known
Projection on the BTT basis: done
Our master formula=explicit expressions in the literature

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F����⇥0 and F���⇥0

• dispersive analysis of transition
form factor:
� Hoferichter et al., EPJC 74 (2014) 3180

25
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and the discontinuities of the subtracted integrals are e.g.

Ds;t,u
i (s⇥; tx, uy) :=

1
⇥

⇧
du⇥

⇤i;su(s⇥, u⇥)
(t⇥ � tx)(u⇥ � uy)

� 1
⇥

⇧
dt⇥

⇤i;st(s⇥, t⇥)
(t⇥ � tx)(u⇥ � uy)

,

Ds;u,u
i (s⇥;ux, uy) :=

1
⇥

⇧
du⇥

⇤i;su(s⇥, u⇥)
(u⇥ � ux)(u⇥ � uy)

� 1
⇥

⇧
dt⇥

⇤i;st(s⇥, t⇥)
(u⇥ � ux)(u⇥ � uy)

.

(141)

The signs are determined by the second subtraction.
Note that for the sQED contribution all the discontinuities and the double-spectral densities in (136) and

(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically
for some random kinematic points (below the appearance of anomalous thresholds) that the dispersive repre-
sentations of the functions �̃i agrees with the loop representation. It turns out that �̃sQED

39 = �̃sQED
40 = 0, hence

we can set

�sQED
49 = 0, (142)

which also fixes the ambiguity discussed in subsection 3.3.2.
This completes our proof of the uniqueness of the pion-box contribution. The FsQED contribution fulfils the

same double-spectral representation as the pure pion-box topologies in the sense of unitarity. Cutkosky’s rule
tells us that the discontinuities of the FsQED contribution are the same as the ones of the pion-box topologies.
Therefore, the two representations are the same. Unitarity and Mandelstam analyticity define the pion-box
contribution in a unique way.

Let us stress that these calculations are also a strong test of our Lorentz decomposition (50). Apart from
the function �49, which does not get a contribution from the pion loop, all scalar functions have been shown to
be free of kinematics.

5.4 Contribution to (g � 2)µ

In this subsection, we insert our dispersive representation of the scalar functions into the master formula (112)
to get the contribution to aµ.

5.4.1 Pion-Pole Contribution

With (129) and using the master formula (112), we find the well-known result for the pion-pole contribution to
aµ [12]:

a⇤0-pole
µ =

2�3

3⇥2

⇧ ⇤

0
dQ1

⇧ ⇤

0
dQ2

⇧ 1

�1
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⌃
1� ⌅2Q3

1Q
3
2

·
⇤
T1(Q1, Q2, ⌅)�̄⇤0-pole

1 (Q1, Q2, ⌅) + T2(Q1, Q2, ⌅)�̄⇤0-pole
2 (Q1, Q2, ⌅)

⌅
,

(143)

with

�̄⇤0-pole
1 = �

F⇤0����
�
�Q2

1,�Q2
2

⇥
F⇤0����

�
�Q2

3, 0
⇥

Q2
3 + M2

⇤

,

�̄⇤0-pole
2 = �

F⇤0����
�
�Q2

1,�Q2
3

⇥
F⇤0����

�
�Q2

2, 0
⇥

Q2
2 + M2

⇤

,

(144)

where Q2
3 = Q2

1 + 2Q1Q2⌅ + Q2
2 and the integral kernels Ti are given in appendix B.2.

5.4.2 Pion-Box Contribution

The single-integral discontinuities and the double-spectral densities in the dispersive representations of the basis
functions (136) and (139) are quantities that can be extracted directly from the projected basis functions �̃i.
Contrary, the separation of the double-spectral densities ⇤̃i into the two contributions from the di⇢erent scalar
funtions �i is not unambiguously possible, which reflects just the redundancy (61). However, such a separation
is not necessary: for the calculation of aµ, we need the scalar functions �i only in the limit k ⇤ 0. In this
limit, all the scalar functions �i appearing in the master formula (113) can be expressed in terms of single-
dispersion integrals, where the discontinuities are directly related to the basis functions �̃i. All the subtracted
double-spectral integrals, which are not unambiguously defined, drop out in the limit k ⇤ 0.
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Therefore, the two representations are the same. Unitarity and Mandelstam analyticity define the pion-box
contribution in a unique way.

Let us stress that these calculations are also a strong test of our Lorentz decomposition (50). Apart from
the function �49, which does not get a contribution from the pion loop, all scalar functions have been shown to
be free of kinematics.

5.4 Contribution to (g � 2)µ

In this subsection, we insert our dispersive representation of the scalar functions into the master formula (112)
to get the contribution to aµ.

5.4.1 Pion-Pole Contribution

With (129) and using the master formula (112), we find the well-known result for the pion-pole contribution to
aµ [12]:

a⇤0-pole
µ =

2�3

3⇥2

⇧ ⇤

0
dQ1

⇧ ⇤

0
dQ2

⇧ 1

�1
d⌅

⌃
1� ⌅2Q3

1Q
3
2

·
⇤
T1(Q1, Q2, ⌅)�̄⇤0-pole

1 (Q1, Q2, ⌅) + T2(Q1, Q2, ⌅)�̄⇤0-pole
2 (Q1, Q2, ⌅)

⌅
,

(143)

with

�̄⇤0-pole
1 = �

F⇤0����
�
�Q2

1,�Q2
2

⇥
F⇤0����

�
�Q2

3, 0
⇥

Q2
3 + M2

⇤

,

�̄⇤0-pole
2 = �

F⇤0����
�
�Q2

1,�Q2
3

⇥
F⇤0����

�
�Q2

2, 0
⇥

Q2
2 + M2

⇤

,

(144)

where Q2
3 = Q2

1 + 2Q1Q2⌅ + Q2
2 and the integral kernels Ti are given in appendix B.2.

5.4.2 Pion-Box Contribution

The single-integral discontinuities and the double-spectral densities in the dispersive representations of the basis
functions (136) and (139) are quantities that can be extracted directly from the projected basis functions �̃i.
Contrary, the separation of the double-spectral densities ⇤̃i into the two contributions from the di⇢erent scalar
funtions �i is not unambiguously possible, which reflects just the redundancy (61). However, such a separation
is not necessary: for the calculation of aµ, we need the scalar functions �i only in the limit k ⇤ 0. In this
limit, all the scalar functions �i appearing in the master formula (113) can be expressed in terms of single-
dispersion integrals, where the discontinuities are directly related to the basis functions �̃i. All the subtracted
double-spectral integrals, which are not unambiguously defined, drop out in the limit k ⇤ 0.
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and the discontinuities of the subtracted integrals are e.g.
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The signs are determined by the second subtraction.
Note that for the sQED contribution all the discontinuities and the double-spectral densities in (136) and

(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically
for some random kinematic points (below the appearance of anomalous thresholds) that the dispersive repre-
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(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically
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sentations of the functions �̃i agrees with the loop representation. It turns out that �̃sQED
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which also fixes the ambiguity discussed in subsection 3.3.2.
This completes our proof of the uniqueness of the pion-box contribution. The FsQED contribution fulfils the

same double-spectral representation as the pure pion-box topologies in the sense of unitarity. Cutkosky’s rule
tells us that the discontinuities of the FsQED contribution are the same as the ones of the pion-box topologies.
Therefore, the two representations are the same. Unitarity and Mandelstam analyticity define the pion-box
contribution in a unique way.

Let us stress that these calculations are also a strong test of our Lorentz decomposition (50). Apart from
the function �49, which does not get a contribution from the pion loop, all scalar functions have been shown to
be free of kinematics.
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In this subsection, we insert our dispersive representation of the scalar functions into the master formula (112)
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The pion-pole contribution

From the unitarity relation with only π0 intermediate state, the pole residues in 
each channel are given by products of doubly-virtual and singly-virtual pion 
transition form factors (         and          , input for our analysis)

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F����⇥0 and F���⇥0

• dispersive analysis of transition
form factor:
� Hoferichter et al., EPJC 74 (2014) 3180

25

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F����⇥0 and F���⇥0

• dispersive analysis of transition
form factor:
� Hoferichter et al., EPJC 74 (2014) 3180

25

These form factors can be reconstructed dispersively using

pion vector form factor

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersive analysis of the pion transition form factor

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

! To calculate the pion-pole contribution the crucial
ingredient is the pion transition form factor

! a dispersive representation thereof requires as input:
! the pion vector form factor [dispersive repr. well known]
! the γ∗ → 3π amplitude [analyzed dispersively in this work]
! the ππ scattering amplitude [dispersive repr. well known]

γ
∗

v

γ
∗

s

γ∗

s

P

amplitude

elastic     scattering amplitude
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Dispersive analysis of the pion transition form factor

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

! To calculate the pion-pole contribution the crucial
ingredient is the pion transition form factor

! a dispersive representation thereof requires as input:
! the pion vector form factor [dispersive repr. well known]
! the γ∗ → 3π amplitude [analyzed dispersively in this work]
! the ππ scattering amplitude [dispersive repr. well known]

γ
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γ
∗

s

γ∗

s

P
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Dispersive analysis of the pion transition form factor

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

! To calculate the pion-pole contribution the crucial
ingredient is the pion transition form factor

! a dispersive representation thereof requires as input:
! the pion vector form factor [dispersive repr. well known]
! the γ∗ → 3π amplitude [analyzed dispersively in this work]
! the ππ scattering amplitude [dispersive repr. well known]

γ
∗

v

γ
∗

s

γ∗

s

P

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

Pseudoscalar poles with higher masses can be treated analogously

Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)a⇡
0�pole

µ = 62.6+3.0
�2.5 ⇥ 10�11



Pion-box contribution

Defined by simultaneous two-pion cuts in two channels

Contribution to scalar functions as dispersive integral of double spectral functions 

4 Mandelstam Representation

Box contributions

• simultaneous two-pion cuts in
two channels

• Mandelstam representation
explicitly constructed

�i =
1

�2

�
ds�dt�

⇥sti (s
�, t�)

(s� � s)(t� � t)
+ (t ⇤ u) + (s ⇤ u)

• q2-dependence: pion vector form factors F V
� (q2i ) for

each off-shell photon factor out

26

Dependence on    carried by the pion vector FFs for each off-shell photon 

one-loop sQED projected onto the BTT structures fulfills the same Mandelstam 
representation of the pion box, the only difference being the pion vector FFs :

4 Mandelstam Representation

Box contributions

• sQED loop projected on BTT basis fulfils the same
Mandelstam representation

• only difference are factors of F V
�

• ⌅ box topologies are identical to FsQED:

⇤ F V
� (q21)F

V
� (q22)F

V
� (q23)

�

�

⇤ + +

⇥

⌅

• model-independent definition of pion loop
27

q2
i

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

In JHEP 2014 paper

ΠFsQED
µνλσ = F V

π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)

×













Separate contribution with two simultaneous cuts

Analytic properties like the box diagram in sQED

Triangle and bulb required by gauge invariance

Multiplication with vector form factor F V
π gives correct q2-dependence ⇒ FsQED

Claim: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 18

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

Now with BTT basis

Constructed a Mandelstam representation for ππ intermediate states with

pion-pole left-hand cut

Checked explicitly that this agrees with FsQED

Proven: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

Uniquely defines the notion of a “pion loop”

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 19



Numerics for the pion-box contribution

The only input: pion vector form factor in the space-like region

Numerical results:                                 vs                                                    

                                          

Rapid convergence:  

Pion box: numerics
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π V
|2

s [GeV2]

Our fit

Volmer et al.
VMD

Only input space-like pion vector form factor

Preliminary numbers: aπ-box
µ = −15.9 × 10−11, aπ-box,VMD

µ = −16.4 × 10−11

Error estimate in progress, but uncertainties will be tiny

M. Hoferichter (Institute for Nuclear Theory) HLbL scattering: a dispersive approach Seattle, September 29, 2015 20

Pion box: saturation
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Our fit

aπ
-b
o
x
,
c
u
t

µ
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π
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µ

Impose cutoff in momenta Qmax (polar-coordinate-type trafo)

Rapid convergence: Qmax = {1, 1.5}GeV ⇒ aπ-box
µ = {95,99}% of full result

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 24

a⇡�box
µ = �15.9(2)⇥ 10�11 aK�box ,VMD

µ ' �0.5⇥ 10�11



The remaining ππ contribution

Unitarity relates this contribution to the subprocess               ,                     


4 Mandelstam Representation

Rescattering contribution

• neglect left-hand cut due to
multi-particle intermediate states
in crossed channel

• two-pion cut in only one channel

• expansion into partial waves

• unitarity relates it to the helicity
amplitudes of the subprocess
���(�) ⇥ ⇥⇥

29By generalizing previous analyses of            and 

our goal is a dispersive reconstruction (based on analyticity, unitarity and crossing) 
of helicity partial waves for    

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

Two-pion cut only in the direct channel:

LH cut due to multi-particle intermediate 

states in the crossed channel neglected  

Colangelo, Hoferichter, MP, Stoffer (2014)

4 Dispersive representation ⇡⇡ rescattering

Rescattering contribution

• neglect left-hand cut due to multi-particle
intermediate states in crossed channel

• two-pion cut in only one channel:

⇧
⇡⇡
i =

1

2

✓
1

⇡

Z 1

4M2
⇡

dt0
Im⇧

⇡⇡
i (s, t0, u0

)

t0 � t
+

1

⇡

Z 1

4M2
⇡

du0 Im⇧
⇡⇡
i (s, t0, u0

)

u0 � u

+ fixed-t

+ fixed-u
◆
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�� ! ⇡⇡ ��⇤ ! ⇡⇡ Moussallam et al. (2010, 2013)

The solution of the resulting coupled set of dispersion 
relations involves elastic ππ phase shifts, which allows 
for the summation of ππ rescattering effects in the 
direct channel (effects of resonances coupling to ππ)

Physics of γ∗γ∗ → ππ

ππ rescattering includes dofs corresponding to

resonances, e.g. f2(1270)

S-wave provides model-independent

implementation of the f0(500) σ, f0, a0

h0,++ h0,++

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 29

Physics of γ∗γ∗ → ππ

ππ rescattering includes dofs corresponding to

resonances, e.g. f2(1270)

S-wave provides model-independent

implementation of the f0(500) σ, f0, a0

h0,++ h0,++

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 29
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The remaining ππ contribution

Contribution to        from              helicity partial waves :   

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ
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e
+

e
−

π

π

e
+

e
−

π

π

ππ intermediate states: rescattering

Dispersion relations for Πi , e.g. fixed-u at u = ub = q2
1

Π1(q
2
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2
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2
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ds′
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Discontinuities from unitarity: diagonal in helicity basis for partial waves, e.g.

Im hJ
++,++

(

s; q2
1 , q

2
2 ; q2

3 , 0
)

=
σ(s)

16π
h∗

J,++

(

s; q2
1 , q

2
2

)

hJ,++

(

s; q2
3 , 0

)
h0,++ h0,++

↪→ need to project onto BTT basis

Solved for S-waves in 2014, now for arbitrary partial waves

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 25

projecting onto BTT basis determines Im    , from which     for master formula. 

Our framework holds for arbitrary partial waves.     

aHLbL

µ

3 Master Formula for (g � 2)µ

Master formula: contribution to (g � 2)µ

aHLbL
µ =

2�3
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• Ti: known integration kernels

• �̄i: linear combinations of the scalar functions �i

• Euclidean momenta: Q2
i = �q2i

• Q2
3 = Q2

1 +Q2
2 + 2Q1Q2⇤

21

We solved dispersion relations for              S-waves taking:

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ
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pion pole as only LH singularity and phenomenological ππ phase shifts

Preliminary results for ππ rescattering

S-wave contributions

Λ 1 GeV 1.5 GeV 2 GeV ∞

I = 0 −9.2 −9.5 −9.3 −8.8

I = 2 2.0 1.3 1.1 0.9

Check on γ∗γ∗ → ππ: sum rule involving J = 0 (and higher) amplitudes

↪→ fulfilled at better than 10% with S-waves alone

“f0(500) contribution” to aµ around 9 · 10−11
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Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π-box π-resc.

Some preliminary numbers for π-rescattering

Based on:

! taking the pion pole as only left-hand singularity

! ⇒ pion vector FF to describe the off-shell behaviour

! ππ phases obtained with the inverse amplitude method
[reasonable low-energy representation + unique and well defined extrapolation to ∞]

! numerical solution of the γ∗γ∗ → ππ dispersion relation

S-wave contributions:

aHLbL
µ in 10−11 units

cutoff(GeV) 1 2 ∞
I = 0 −9.2 −9.4 −8.8
I = 2 2.0 1.0 0.9
total −7.3 −8.4 −7.9

f0(500)

5 Conclusion and outlook

Results for two-pion contributions

Pion-box contribution:

a
⇡-box
µ = �15.9(2) ⇥ 10�11

S-wave rescattering contribution:

a
⇡⇡,⇡-pole LHC
µ,J=0

= �8(1) ⇥ 10�11
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3 Master Formula for (g � 2)µ

Master formula: contribution to (g � 2)µ

aHLbL
µ =

2�3

3⇥2

⇥ ⇥

0

dQ1

⇥ ⇥

0

dQ2

⇥ 1

�1

d⇤
⌅
1� ⇤ 2Q3

1Q
3
2

⇥
12�

i=1

Ti(Q1, Q2, ⇤)�̄i(Q1, Q2, ⇤),

• Ti: known integration kernels

• �̄i: linear combinations of the scalar functions �i

• Euclidean momenta: Q2
i = �q2i

• Q2
3 = Q2

1 +Q2
2 + 2Q1Q2⇤
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